
technics! contributions
- 1 9 -

FIXING PASCAL'S I/O
by Richard J. Cichel l i , Research Manager, ANPA/RI, Box 598, Easton, Pa. 18042.

There have been a f l u r r y of ar t ic les advocating modifications to Pascal's
f i l e f a c i l i t y to improve i ts func t iona l i t y for input/output. Here, questions
regarding terminal I/O and re lat ive record I/O wi l l be discussed.

Many cr i t ic isms of Pascal's f i l e f a c i l i t y contain arguments that Pascal's
f i l es don't support the fu l l data set manipulation capabi l i t ies of the host's
operating system. An alternate view of the s i tuat ion is to ask i f the problem
to be solved can have i ts solution cleanly specified as an algorithm in Pascal.
I f so, request that the Pascal compiler/system wr i ter provide an implementation
complete enough to run the program e f f i c i en t l y . In short, buy compilers and
computing systems to run your programs rather than write programs to inst ruct
your (part icular) computer.

Wirth created Pascal f i l es . In the Revised Report Section 2, paragraph 10,
Wirth defines them as sequences of components of the same type. Although an
implementer may map Pascal f i l es into sequential data sets, this i sn ' t required
by the de f in i t ion . The Report doesn't seem to require that the ideas of I/O
and f i l es be associated. A valid Pascal implementation could exist on a system
which lacks backing storage and th i rd generation f i l e system. I f th is is the
case for your system and you s t i l l can run your Pascal programs, what do you
care? Besides, future data base oriented systems may avoid the redundancy of
a " f i l e system". The problems of named data sets and director ies are obviously
best dealt with in terms of local predefined (not standard) procedures.

For legible input and output ~Report section 12) Pascal has a special type
of f i l e called a text f i l e . Text f i l es have a special substructure and special
procedures and functions. Since sequences work and Pascal has appropriate fa-
c i l i t i e s for manipulating them (i .e . the Pascal f i l e primatives), i t would be
very strange i f you couldn't make Pascal ta lk to terminals. Wirth spec i f i ca l ly
mentions them in the f i r s t paragraph of section 12 and, guess what, many imple-
mentors have succeeded in implementing exactly what the report cal ls for and
having fac i le terminal interact ion as well. One of the techniques is called
"lazy I/O" and i t is f u l l y detailed in Pascal News #13.

There are those who want to put random I/O or "d i rect access f i l es " into
Pascal. What's Pascal missing? Surely not random access. In the Report sec-
t ion 2, paragraph 6, the array is discussed and spec i f ica l ly called a random
access structure. "But", you say, "I can' t f i t big d i rect access f i l es in
core". Every implementation of Pascal is l i ke l y to have some rest r ic t ions.
Perhaps an array wi l l need to be stored on bulk storage. Would you embed this
l im i ta t ion in the language and in your algorithms and programs? I f you need
to worry about a hierarchy of memory access f a c i l i t i e s in these days of v i r tual
memory, etc, then a pragma or compiler d i rect ive might be the appropriate mech-
anism for suggesting to a part icular compiler that certain data be placed on
backing store. Note: There is no prohibi t ion to passing arrays (e.g. an im-
plementation re lat ive records I/0) as program parameters. See the Report sec-
t ion 13. Program parameters can reference any external object. I t is only
suggested that these are "(usual ly f i l e s) " . Thus arrays and poi~nter based
data structures can be external objects to Pascal programs. (The "(usual ly
f i l e s) " reference has been removed from the current draf t standard document.)

Although doing re lat ive record I /0 with Pascal arrays may seem strange at
f i r s t , adding the unnecessary notion of memory hierarchies to the language is
far worse. The IBM System/38 has a uniform 48 b i t addressing mechanism. A
System/38 applications programmer does quite well while being unaware of the
storage location of his data whether i t be cache, core, disk buffer or on disk.
I f the 38 can be said to auger the future, then cer ta in ly Pascal shouldn't take
a step backwards and introduce concepts which provide no additional func t iona l i t y .

In summary, f ix ing Pascal's I /0 only requires implementing what the Report
suggests.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F947639.947640&domain=pdf&date_stamp=1980-05-01

