
w56-

A Simple Extension of Pascal
for Quasi-Parallel Processing

Terje Noodt
Dag Belsnes

Computing Center
University of Oslo

1 Introduction

The University of Oslo has for a number of years been engaged
in the development of systems for data communications. The
main work investments have been the design of suitable
protocols, and the implementation of these in network node
machines. Most of the node machines have been of the Nord
family, produced by the Norwegian manufacturer Norsk Data A.S.

There exists no suitable language on the Nord for programming
real-time stand-alone systems. Therefore, all programming has
been done in assembly code. Even though we have felt the need
for a high-level language tool, the cost of developing and/or
implementing a suitable language was thought to be high.

Some time ago, we looked into the possibility of using the
existing Pascal compiler for our purposes. It proved that a
simple but usable language tool could be made from Pascal very
cheaply. We have called this extension of Pascal for QPP
(Quasi-Parallel Pascal). This article describes QPP and its
implementation.

2 Basic primitives

The present section first discusses how to establish a
suitable process concept. Then the sequencing of processes is
treated.

2.1 Processes

The most important task in the design of QPP was to establish
a process concept without deviating from Standard Pascal. In
this context, a process is a sequential program together with
a set of data on which the program operates. We call this set
of data the attributes of the process.

In several respects, the Pascal procedure has the
characteristics of a process. We have managed to use the
procedure as a process, by overcoming the following two
obstacles :

i. It is necessary that several processes can be executed
simultaneously - that is, the processes must be able to
have active phases in quasi-parallel.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F947639.947647&domain=pdf&date_stamp=1980-05-01

-57-

2o It must be possible for processes
information - that is, one process must
access the attributes of another process°

to exchange
be able to

To transform the procedure concept into a process, point Io
requires that the attributes of a "process-procedure" must be
retained while it has a passive phase. That is, a
"process-procedure" cannot execute on the stack top as usual,
but must have some permanent space in memory.

Point 2o requires some form of looking "into" a procedure. In
Pascal, a similar mechanism is given by the record concept.
Consider the following program fragment:

type
PROCESS = record

x, y: T
end;

PTRPROCESS = ~PROCESS;
var

p: PTRPROCESS;

procedure processprogram;
vat

LOCALS: PROCESS;
begin

with LOCALS do
begin

end " "
end

Within the with statement in processprogram the attributes x
and y may be accessed directly°

A process is created by calling the function

function NEWPROCESS(procedure PROG);

This function allocates data space for the procedure PROG on
the heap. The function value is a pointer to the record
containing the process attributes. In reality, the pointer is
a reference to the inside of the procedure object. The Pascal
system, however, treats the pointer as if it were generated by
the NEW function.

The main program (or another process) may access
attributes through the pointer generated by NEWPROCESS.

the

The following progr am fragment shows how a process
generated, and its attributes accessed from the outside:

is

-58-

p := NEWPROCESS(processprogram) ;
• - o

. e e

with Pt do
if x = . . o

Several processes of the
follows:

same type may be generated as

vat
pl, p2: PTRPROCESS;

pl := NEWPROCESS(processprogram) ;
p2 := NEWPROCESS(processprogram) ;

Processes of different types may be defined by declaring
different PROCESS types, or by defining a variant part for
each type of process within PROCESS.

Thus, a usable process concept has been established by

i. Implementation of the function NEWPROCESS. In Nord-10
Pascal this is an assembly routine of 15 instructions°

2. Requiring that the programmer stick to the following
rules:
a. Define a record type PROCESS which contains those

variables of a process which are to be visible from
outside the process.

b. Declare a variable LOCALS of type PROCESS as the
first variable within the process procedure.

c. Surround the statements of the procedure by
with LOCALS do begin . . . end

2.2 Sequencing

It must be possible to start and stop the execution of any
process, in order that operations occur in the sequence
required by the actual application. For this purpose, two
operations are implemented (these are modelled after the
corresponding primitives in Simula 67):

procedure RESUME(p: PTRPROCESS) ;

This procedure transfers control from the caller to the
process given by the actual parameter p. The execution of p
is resumed at the place where the process last became
passive. The caller becomes passive.

procedure DETACH;

-59-

When a process p calls DETACH, it becomes passive.
goes to the last process x which called RESUME(p).

Control

The following method has been used to implement RESUME and
DETACH efficiently and with ease.

A Pascal procedure object will normally contain one location
for the return address (RA), and one location for the dynamic
link (DL). Let CP be a pointer to the currently active
processl and consider the main program to be a process with
the name MAIN.

The operation RESUME(p) leaves the current program address in
CP.RA, and the address of the currently active object (which
may be CP itself or an ordinary procedure called by CP) in
CP.DLo p. DL becomes the new active object, and execution is
resumed at p. RA.

The DETACH operation is restricted to be used to give control
back to the main program. It leaves the current program
address in CP.RA, and the address of the currently active
object in CP.DL. MAIN.DL becomes the new active object, and
execution is resumed at MAIN.RA.

The DL location of a process is zero while the process is
executing. Thus, CP is found by following the DL chain until
DL equals zero. The following function is provided to enable
the Pascal program to find CP:

function THISPROCESS: PTRPROCESS;

2.3 Summary

With a very small effort a primitive but usable process
concept has been implemented within Pascal. On the Nord-10,
the routines NEWPROCESS, RESUME, DETACH and THISPROCESS
consist of ca 60 assembly instructions. No changes have been
made to the Pascal compiler or the Pascal run-time library.
Although Pascal may operate differently on other computers,
the authors believe that our method of implementation may be
adapted to most Pascal systems.

On the Nord-10, an ordinary procedure called from a process
will execute in the memory space allocated to that process.
This requires that the process object be large enough to
accommodate such procedure calls. We have solved this problem
by letting NEWPROCESS have one extra parameter, giving the
largest necessary space for the process.

3 Process Scheduling

Section 2 defines and indicates how to implement a process
concept and the basic primitives for process sequencing. To
program a real-time system or a simulation model, some

-60-

additional concepts are needed° Also in this case SIMULA 67 is
used as a source of inspiration° The new programming platform
contains:

* a system time concept°

* a "sequencing set" containing the processes scheduled for
future execution°

* primitives for process scheduling~

In this section we show how these concepts may be implemented
in Standard Pascal, using the basic primitives of section 2o

3.1 Simulated timer Real time

In the case of simulations, the system time is introduced as
in SIMULA, but in a real-time environment the system time
corresponds closely to the time defined by the computer s
real-time clock. The system time is represented by a variable
in the main program:

SYSTIME:real;

The execution of an active phase of a process, called an
event, is regarded as not consuming system time° That is,
SYSTIME is only updated between the events. How SYSTIME is
updated is described below.

3.2 The sequencing set

A process may be scheduled for the execution of a future
events An event is associated with a system time, indicating
when the event will occur. This time is represented by a
variable local to each process:

EVTIME:real;

All scheduled processes are collected in a set, the sequencing
set, sorted on the EVTIME variable. The sequencing set is
represented by a main program variable:

SQS:PTRPROCESS;
which points to the first member of the set, and a variable

NEXTPR:PTRPROCESS;
in each process pointing to the next element of the sequencing
set.

When an active phase of a process ends, the first process P in
the SQS will be the next process to execute an event. The
value of SYSTIME is changed to EVTIME of P. If simulated time
is used, the simulation is carried on by resuming the process
P.

In a real-time system the new value of SYSTIME is compared
with the computer s clock. If the difference is positive, the
Pascal program makes a monitor call to release the use of the

-61-

CPU for the given amount of time. On return from
call the procedure RESUME(P) is called.

the monitor

Bo3 Process scheduling

The following procedures define a small but convenient set of
operations for discrete event scheduling. All procedures are
written in Standard Pascal. The amount of Pascal code is about
40 lines° For a detailed description see the appendix.

procedure PASSIVATE;

The caller process ends its active phase, and the next
event is given by the first element of the SQS. SYSTIME is
updated~ and in the real-time case the program may request
a pause before the next process is resumed.

procedure HOLD(del:real) ;

Equivalent to PASSIVATE, except that the caller is put into
the SQS with an event time equal to SYSTIME+del.

procedure ACTIVATE(p:PTRPROCES; del:real) ;

The process p is scheduled to have an event at
SYSTIME+del.

the time

procedure CANCEL(p:PTRPROCESS) ;

If the process p is scheduled to have an event, this event
is cancelled. That is, p is removed from the SQS.

3.4 Summary

Based on the basic primitives discussed in section 2, we have
defined a set of additional primitives suitable for discrete
event scheduling. These primitives are implemented by Standard
Pascal procedures and data structures. The system time concept
is introduced in two variations: simulated time and real time.
In the implementation the difference between the two time
concepts is only visible as a small modification of the
procedure PASSIVATE. An important consequence is that it is
possible to test out a program by simulation and afterwards
use the same program as a part of a real time system.

4 Conc!udinq remarks

As an example, the Bounded Buffer problem has been programmed
in the appendix.

At the University of Oslo, QPP has been used to program the
UNINETT node. UNINETT is a computer network of the central
computers of all universities in Norway, plus several other
governmental computers. Each institution has a node machine

-62-

which hooks one or more computers into the network° At the
University of Oslo, this node is a Nord-10o The size of the
UNINETT node program is about 2200 lines of QPP code~ In the
development of this programs keeping to the restrictions of
QPP was neither hampering nor the cause for any serious
problems. The UNINETT project has shown that a considerable
amount of development time may be gained by going from
assembly code to a "primitive" high-level language toolo In
cases where a full-fledged language tailored to the actual
application (such as Concurrent Pascal) is not available,
there seems to be good reason to select a solution such as
ours.

The UNINETT node program was developed on a No,d-10 running
the MOSS operating system. The first step in testing the
program was to run it under MOSS as a simulation, using
simulated time. Then the program was run in real time under
MOSS. Finally, the program was transported to the UNINETT node
machine, where it runs in real time. The node machine has a
rudimentary operating system only, which supports stand-alone
systems of this kind. The small size of the code which
implements the QPP process primitives, has allowed us to
easily make different versions to adapt to the environment in
which the UNINETT program was to be run. It has proved very
valuable to run the program as a simulation before it was run
in real time. Development time was also saved by testing under
an operating system with utilities such as interactive
debugging, a file system etc. The errors remaining after
transporting the program to the node machine have been few.

The reader who compares QPP with for instance Concurrent
Pascal, will remark that QPP contains no primitives for the
protection of shared data. Such a mechanism could be useful in
QPP, but is not strictly necessary. The reason is that
processes run in quasi-parallel rather than true parallel. An
active phase of a process is regarded to take zero time, and
thus is an indivisible operation. Time increases only when
control is transferred from one process to another. It is the
programmer who decides at which points in the program this may
occur.

Appendix

This appendix contains a simple example of the use of QPP. A
producer process generates characters which are read by a
consumer process. The rate of production/consumption is up to
the processes themselves, and in order to remove some of the
time dependency between the processes, they are connected by a
bounded buffer. However, since the buffer may get full (or
empty) there is still need for some synchronization of the
processes. This is achieved by the use of the ACTIVATE and
PASSIVATE primitives.

-63-

The program also
concepts defined in
and primitives in
small letters are
example.

contains a complete implementation of the
section 3. Names corresponding to concepts
QPP are written in capital letters, while
use for variables particular for the

program prodcon;
const

buflength = 16;
buflgml = 15;

type

(* definition of bounded ring buffer *)

bufindex = 0..buflgml;
buf=record

p,c:bufindex;
txt:packed array[bufindex]

end;
ptrbuf=#buf;

of char ;

(* definition of the data structure of the processes *)

PTRPROCESS=%PROCESS;
processtype=(producer,consumer);
PROCESS=record

NEXTPR:PTRPROCESS; EVTIME:real; INSQS:boolean;
case processtype of

producer:(outbuf:ptrbuf; outcha:char) ;
consumer:(inbuf :ptrbuf; incha :char);

end;

var
SQS:PTRPROCESS; SYSTIME:real;

ptrpro,ptrcon:PTRPROCESS;

(** basic primitives **)

function NEWP(procedure p; siz:integer)
function THISP:PTRPROCESS; extern;
procedure RESUME(p:PTRPROCESS); extern;
procedure DETACH; extern;

:PTRPROCESS; extern;

-64-

(** sequencing routines e~)

procedure INTOSQS(p:PTRPROCESS)~
var rpvrpo:PTRPROCESS~

begin
with p~ do
begin

rp:=SQS~ rpo~=nil~
while (rp<>nil) and (rp~.EVTIME<EVTIME) do
begin rpo:=rp~ rp:=rp~oNEXTPR end;
if rpo=nil then SQS:=p else rpo}oNEXTPR:=p;
NEXTPR:=rp; INSQS:=true

end;
end;

procedure CANCEL(p:PTRPROCESS);
vat rp,rpo:PTRPROCESS;

begin
with p% do
if INSQS then
begin

INSQS:=false; rp:=SQS; rpo:=nil;
while rp<>p do begin rpo:=rp; rp:=rp~°NEXTPR end;
if rpo=nil then SQS:=rp~°NEXTPR else rpo~.NEXTPR:=rpt°NEXTPR;

end;
end;

procedure PASSIVATE;
vat p:PTRPROCESS;

begin
p:=SQS; if p=nil then DETACH else SYSTIME:=pt.EVTIME;

~ (* if realtime then monitor call PAUSE(SYSTIME-CLOCK)
SQS:=p~.NEXTPR; p~.INSQS:=false; RESUME(p)

end;

*)

procedure HOLD(del:real);
vat p:PTRPROCESS;

begin p:=THISP; p~.EVTIME:=SYSTIME+del; INTOSQS(p) ; PASSIVATE end

procedure ACTIVATE(p:PTRPROCESS; del:real) ;
begin CANCEL(p) ; p#.EVTIME:=SYSTIME+del; INTOSQS(p) end;

-65-

(** buffer routines **)

function bufempty(bp:ptrbuf) :boolean;
begin bufempty::(bp~op:bptoc) end~

function buffull(bp:ptrbuf) :boolean;
begin buffull:=(((bp~op+l) mod buflength)=bp~'oc) end;

function putchar (bp:ptrbuf; ch:char) :boolean;
begin with bp~ do

if ((p+l) mod buflength)=c then putchar :=false else
begin txt[p] :=ch; p:=(p+l) mod buflength; putchar::true

end
function getchar (bp:ptrbuf; var

begin with bp~ do
if p=c then getchar :=false
begin ch:=txt[c] ; c:=(c+l)

end ;

ch:char) :boolean;

else
mod buflength; getchar:=true

(** processes **)

procedure pproducer;
var LOCALS:PROCESS;
begin DETACH;

with LOCALS do
while true do
begin

(* produce next character *)
if bufempty(outbuf) then ACTIVATE(ptrcon,0);
while not putchar (outbuf,outcha) do PASSIVATE

end
end ;

procedure pconsumer;
vat LOCALS:PROCESS;
begin DETACH;

with LOCALS do
while true do
begin

if buffull(inbuf) then ACTIVATE(ptrpro,0);
while not getchar (inbuf,incha) do PASSIVATE;
(* consume character *)

end
end ;

(** main program **)

begin
ptrpro:=NEWP(pproducer,100) ; ptrcon:=NEWP(pconsumer,100) ;
new(ptrpro~.outbuf) ; ptrcon~.inbuf:=ptrpro9.outbuf;
RESUME (ptrpro)

end.

end

end ;

