
technical cont¢ibutions

-26-

A SIMPLE MODEL OF DISTRIBUTED PROGRAMS BASED ON

IMPLEMENTATION-HIDING AND PROCESS AUTONOMY

K. M. Chandy and J. Misra
University of Texas at Austin, Austin, TX 78712

ABSTRACT

This paper presents a model for a network of communicating processes.
We extend well known ideas in sequentia] programming such as procedures,
parameter passing and binding, and recursion to distributed programs. We
stress the notion of implementation-hiding, i.e. the invoker of a process
or procedure has no knowledge of the implementation of the invoked computation.

I. INTRODUCTION

There are two approaches to distributed prog~'amming: one can
attempt to develop the most general, most powerful, and often least
understood mechanisms or one can develop simple easily understood
extensions to sequentia] progranmning models. We take the latter
approach. We present a model of parsllel programming based on message
communication. Our emphasis is on fundamental conceptual issues in
para]lelism and message communication. We are not proposing a complete
language; however we are proposing constructs on which a language can
be based.

A reasonable set of objectives for parallel programming is:

I.I Generalization of sequential programming

There has been a great deal of investment in the design, specifi-
cation and proofs of sequential programs; indeed an entire discipline
has developed in recent years. Distributed programming must make
maximum use of sequential programming concepts and techniques. Dis-
tributed programming models, tools and methodologies should be developed
as simple, natural extensions of their sequential programming counter-
parts so that a substantial reinvestment in the new technology is
avoided.

A d i s t r i b u t e d p r o g r a m m i n g l a n g u a g e o u g h t t o be d e r i v e d f r o m a
s e q u e n t i a l p r o g r a m m i n g l a n g u a g e w i t h t h e a d d i t i o n o f a min imum n u m b e r
o f new f e a t u r e s . S i m p l i c i t y i s t h e c r i t i c a l c o n c e r n .

We extend the concept of procedures to include networks of processes.
The concepts of parameter passing and binding, procedure invocation and
r e c u r s i ~ : m a r e g e n e r a l i z e d tel d i s t r i b u t e d p r o g r a m s .

1 . 2 P r o c e s s a u t o n o m y

Each c o m p o n e n t o f t h e d i s t r i b u t e d p r o g r a m s h o u l d b e d e s i g n e d and
p r o v e d i n d e p e n d e n t o f t h e r e s t : o f t h e p r o g r a m . I n o u r m o d e l t h e g o a l
o f p r o c e s s a u t o n o m y i s a c h i e v e d ; i n p a r t i c u l a r , a p r o c e s s may n o t name
a n o t h e r p r o c e s s .

Work partiall V supported by AFOSR AF77-3409°

-27-

] . 3 Hierarchical Proofs

It should be possible to prove properties of distributed programs
from properties of the externally observable behavior of component
p l -ocesses [5] ,

11.4 Abi]ity to guarantee determinism

Message communication systems are usually inherently non-deterministic.
However a progran~er may want to guarantee that his program is determinate:
for example he may want to ensure that the sequence of messages output
is a function of the sequence of messages input. A language must have
simple constructs, which if used, guarantee determinism of computation;
we present such a construct.

1.5 Referential transparency - implementation hiding

A computation may be implemented as a sequential or parallel program.
The invoker of a computation should not be aware of how the computation
is being carried out. A computation is specified merely as a relationship
between its inputs and outputs. Information hiding is an accepted
notion in sequential programming. The natural extension of information

hiding to distributed programming is implementation hiding: the imple-
mentation of a computation is hidden from the invoker.

In our model the inw~ker of a process or procedure has no knowledge
of how the invoked process is implemented.

2. FUNDAMENTAL CONCEPTS IN DISTRIBUTED PROGRAMMING

2.] Communication with a comDutation: external vie' mlcation with a c putat v lew of a computation

The external view of a computation generally takes two forms.

(a) A c~omputation may be "called" as in a procedure call; in this case
the invoker is suspended until the invoked computation terminates.
This form of computation is traditionally called a procedure.
Communication between the caller and called computations is

via parameters.

(b) Messages may be passed between computations. In this case the
message does not necessarily invoke a new computation. This form
of computation is called a process. A process sending a message
is not necessarily suspended while the receiver process is
computing [1,2]. The distinction between a procedure and
a process is that procedures are "called" while messages are passed

to/from processes.

2.2 Implementation of a computation: internal view of a computation

Traditionally, computations have been implemented as sequential
programs (which may include procedure calls); the procedures are them-
selves implemented as sequential programs. Implementation of compu-
tations using messages (i.e. sequential processes) was suggested later

(see [2] for a review).

-28-

2. ? .R_e.(.!:'YF.J?~_:~J~J~ 7 3 aa~2jLr>~jLci 2 2..(_ .!:i~'2~2> Lt/LgJxm__!_JJ~£] emen t a t i o n - h i d ing. in
dis t r ibu ted pfig2ran!s ±

The implementation of a computation is of no logical, consequence
to the invoker of the computation. This implies that the specification
of a computation must define only the relationships between its inputs
and outputs, A consequence of referential transparency is that a
computation may be implemented either as a sequential program or as
a distributed program. Tn particular, a_ procedure ma X be implemented
either as a conventional §e_quential procedure or as a network of
communicating., processes. Similarly a process may be implemented as
a sequential process or as a set of communicating processes.

Procedure CALL-BY-
CALL ~]~ REStILT

PARAMETERS~ ~PARAMETERS

SEOUENTIAI, 1
PROCRAM/

__t

Procedure CALL-BY-
CALL " \) RESULT

PARAMETERS ~ PARAMETERS

ne twork of
processes

Fig i, Equivalent external view of a procedure: the implementation is hidden

PROCESS INITIATION
PARAMETERS

MESSAGES[N i"

I
CALL-BY-RESULT

PARAMETERS

SEQUENTIAL MESSAGES

PROGRAM OUT .~

PROCESS~. CALL-BY-RESULT
INITIATION ~ ~ PARAMETERS
PARAMETERS I-
MESSAGES I ~ MESSAGES

network OUT IN ~ of
p~ocesses ' i

Fig 2. Equivalent external view of a process: the implementation is hidden
................ 4 o.

2.4 Process autonomy

The definition of a process must allow it to be used in different
contexts. Hence a process should not name other external processes.
A process may make assumptions only about the sequences of messages
it receives: we therefore use the concept of external variables.

-29-

2 , 5 External variables

A process declaration names certain local variables which can

receive values from external processes or whose values may be
tra~smitted to external processes. The former kind of variable

is called an external inip.ut variable and the latter kind is called
at', external output variable. An external input or output variable
is local to the process iv~ which it is defined,

Input statements in any process h have the form

X*=9

and output statements have the form

?:=y,

w h e r e x ~md y a r e e x t e r n a l ~input and o u t p u t v a r i a b l e s (r e s p e c t i v e l y)
of h.

Each ~ m t p u t (i n p u t) v a r i a b l e o t a p r o c e s s i s bound t o e x a c t l y o n e
i n p u t (o u t p u t) v a r i a b l e o f a p r o c e s s . (O n l y v a r i a b l e s o f t h e same t y p e
c a n be bound t o g e t h e r .) The d e c l a r a t i o n o f t h e b i n d i n g w i l l be d e s c r i b e d
l a t e r . ']'he b i n d i n g i s e x t e r n a l to t h e p r o c e s s e s . L e t x b e an o u t p u t
v a r i a b] e o f p r o c e s s h 1 and l e t x be bound t o y , an i n p u t v a r i a b l e o f

process h 2, Then h I will wait at an output statement

?=:*;

u n t i] c o n t r o l i n h 2 reac , ht, s a c c ~ r r e s p o n d i n g i n p u t s t a t e m e n t

y:=9.
.

A message transmission may take place only after h I reaches the

output statement and h 2 ~eaches the corresponding input statement, h 1

and h 2 will both complete executions of their corresponding input and

output statements simultaneously when the message transmission is over;

at this point y in h 2 has the value of x in h I. Of course the value of

x in h I is unchanged by the message transmission. This protocol for

m e s s a g e t r a n s m i s s i o n h a s b e e n s u g g e s t e d by t t o a r e [1] .

2.6 External view of a process/procedure

A process P interacts with its environment through one or more

~f the fc~]lowing:

-30-

(1) Call-by-value parameters passed to a process from its environment
at process initiation; these parameters are treated as constants
in the process body.

(2) Call-by-result parameters passed to a process from its envir-
onment at process initiation and returned to the environment at
process termination.

(3) E x t e r n a l inpu t v a r i a b l e s .

(4) External output variables.

A process is specified by, the relationship between the above
parameters and variables.

The external view of a procedure is identical to that of a process
except that there can be no external variables.

2.7 Binding

Processes may be constructed hierarchically: a process P may
be defined to consist of several component processes Qi,...,Q n. The

construction of P from QI,...,Qn must specify (a) the component

processes QI 'Qn and (b) the following fou r relationships among

P and QI,...,Q n.

(i) Distribution of call-by-value parameters. The call-by-value
parameters of P may be distributed among the component processes
QI 'Qn' i.e. a call-by-value parameter v of P may be passed

as a call-by-value parameter to any number of component processes.

(2) Partitioning of call-by-result parameters. The set of call-by-
result parameters of P is partitioned among the component
processes, Qi"'"Qn" i.e. every call-by-resu]t parameter of

P must be passed to exactly one component process Qi' as a call-

by-resu]t parameter.

(3)

(L~)

The connection between the external variables of the component

processes Q1 Qn' and

The relationship between the external variables of P and the
external variables of QI' Qn"

- 3 1 -

relationship
be tween
external [
variables
of P and Q. ~,

L

cal]-by\val,,e

,g
7q rv

distribution ; [!
] - t ° -manv "'~"~-;~ i L ~ /Jj

ca1 1 - b y ~ / e f e r e n c e

, 1

_ J t

1 , o f

Q2 7 >

component process interconnection

relationship
between
external
variables

P and
>

Fig 3: Binding of a process P with component processes Qi and Q2

These four relationships are collectively called the binding of
• to form P. Ql ' " " Q n

A p r o c e d u r e P may be c o n s t r u c t e d from component p r o c e s s e s Q i , . . . Q n .

The b i n d i n g o f Q 1 , . . . , Q n to form p r o c e d u r e P i s i d e n t i c a l to the ca se

where P i s a p r o c e s s e x c e p t t h a t t h e r e can be no e x t e r n a l v a r i a b l e o f
a p r o c e d u r e .

Binding allows processes to be defined autonomously and also
allows implementation-hiding. Binding is a Key concept. A binding
is static, i.e. network topology cannot be changed during its lifetime.

2.8 Process operation

2.8.1 Instantiation

A process or a procedure can be instantiated only as a consequence
of a call to some procedure. When a procedure P is called it is
instantiated: instantiation of a procedure P is defined to be the
instantiation of its component processes Qi,...,Q n, if any, and the

implementation of tile binding (if any, between Qi Qn and P)

declared in P. Similarly, instantiation of a process Qi is defined

to be the instantiation of its component processes and the implemen-

tation of the binding of Qi"

2.8.2 Termination

A sequential process or procedure terminates when it completes
execution of statements in its body. A hierarchical process or pro-
cedure (i.e. one with a binding section) terminates when all of its
component processes terminate.

-32-

Communication with a terminated process will be implemented as
an indefinite wait as in [4].]his implies that
normally a process will have to send explicit termination signals
to processes wishing to communicate with its

2.9 Determinate and indeterminate constructs for parallel waiting

It is crucial for absence of deadlock that a process have the
ability to wait simultaneously on several external variables° Even
though a process may wait jin parallel for messages, the actual trans-
mission of messages will be assumed to occur in sequence.

It is important for a programmer to be able to guarantee that his
program is deterministic [6]. A program is deter-
ministic if the sequence of values assigned to each and every variable
in the program depends only upon the inputs to the program. We have
two forms of parallel waiting in our model i) to give programmers the
ability to guarantee determinism and 2) to allow programmers to choose
hot, determinism.

2.9.1 Deterrainistlc I/O command

This command consists of one or more elementary I/0 statements
which may be executed in arbitrary order. For example,

Ix:=?, ?:=y, z[i]:=?]

denotes that inputs will be received on x and z[i] and the value of
y will be output in some arbitrary order. The variables named in
the command must be distinct. (This rule cannot be enforced by a
compiler if there are subscripted variables.) The I/O command
completes only when all elementary I/O statements within the
command complete. If all other constructs in a language are
deterministic, the inclusion of the deterministic 1/0 command will
preserve determinism because at the instant at which an I/O command
terminates, the values of all variables named in the deterministic
I/O command are independent of the sequence in which the elementary
I/O conmmnds are executed.

2.9.2 Guarded commands

Our model includes guarded commands as in [I]. The use
of this feature by any process results in potential nondeterminism.
Note however that unlike Hoare's model, a guarded command in process
h which has an input statement in the guard for communication with
process g, cannot fail merely because g has terminated.

2.10 Recursion

Procedures may be written using recursion even though a procedure
may be implemented as a network of processes. For example, a procedure
P may consist of processes Qi Qn' and any component process Qi

may call P resulting in the initiation of a fresh instance of procedure
P.

-33-

2.11 Other issues

2.11,i Process parameterization

Value parameters are treated as constants and may be used to
parameterize a process; for example, an array of external variables
or component processes A[l..n] may be declared where n is passed as

a value parameter.

2. Ii. 2 Sfo_pe rules

Since the proposed model has a hierarchic structure, we

propose a scope rule as in Algol-60.

2.11.3 Explicit description of network topology

The topology of a network of colnmunicating processes can be
represented by a labeled directed graph in which each process is
represented by a vertex. An edge from a vertex representing a
process P to a vertex representing a process Q is labeled x at its
head and y at its tail if (1) y is an external output variable of
P and x is an external input variable of Q and (2) these variables
are bound (as specified in the binding). Note that there could be
multiple edges with dist:inct labels between the processes.

edge e

y is an output
variable of
process P

Fig 4:

x is an input
variable of
process Q

Edge e represents the binding of external variables

x and y of process Q and P (respectively)

The definition of a network of communicating processes appears in
two distinct sections: (i) a definition of the internal computation of
each component process and (2) the definition of the structure of
process interconnecdon~.e, the labeled graph) as in Fig. 4. Properties
related to structure can be derived from the structural definition
(in the binding section). Our model provides an explicit topological
descriptifm which is useful in understanding network behavior.

-34-

2.11.4 Termination of a process/procedure

We adopt the rule that a process/procedure terminates only when
all component processes terminate. Since the effect of procedure
computation is determined solely by call-by-result parameters,
it is sufficient to run a procedure until all processes which have
call-by-result parameters have terminated.

2.]1.5 Dvnamic Network Topolog X

It may be convenient to have dynamic binding, i.e. to a11ow
changes in communication paths during the computation. One possibility
is to consider a s~ervisory bindin~process that runs concurrently
with other component processes and modifies the bindings during the
operation. Since it is extremely difficult to prove properties of
such a computation, we favor the static approach outlined in this
paper.

We may allow a process to dynamically equivalence one of its
external input variables with one of its external output variables
of the same type: this means that from that point onwards in the
computation the process behaves as a "short circuit" for these variables
transmitting the input directly to the output. A process may also
cancel an equivalence. This feature allows a limited amount of
dynamic binding while retaining process autonomy; however it makes
proofs about computation more difficult.

2.12 Summar I

We have evolved a model of distributed programming from key ideas
in sequential programming. We feel that an evolutionary approach is
preferable to the development of a radically new method for distributed
programming. We extend well known ideas in sequential programming
such as procedures, parameter passing, recursion and data types.
Binding is merely a generalization of parameter passing. Sequential
processes are merely sequential programs with message communication
primitives. The only w~! in which concurrent c o_mputations can be
initiated is b~procedure call. Thus the number of concepts intro-
duced solely for distributed programming is kept to a bare minimum.

We have developed an axiomatic approach to proving programs based
on this model [5]. Our approach is a natural extension
of axiomatic sequential programming techniques. It allows for the
hierarchical development of proofs, i.e. a proof of a process may be
derived from the proofs of its component processes. Our insistence
on process autonomy results in simple proofs of the harmonious behavior

of the component processes.

-35-

We have presented a necessary and sufficient condition for absence
of deadlock of programs based on our model [4]. Its application has
led to proofs much simpler than those appearing in the literature.

References

i. C.A.R. Hoare, Communicating Sequential Processes, CACM (21) 8,
August 1978.

2. G. Kahn, The Semantics of a Simple Language for Parellel Programming,
in Proc. IFIP Congress 74, North Holland , 1974.

3. W. A. Wulf, Languages and Structured Programs, in Current Trends in
Programming Methodology (ed. Yeh), Prentice Hall, 1977.

. K. M. Chandy and J. Misra, Deadlock Absence Proofs for Networks
of Communicating Processes, Information Processing Letters (9) 4,
Nov. 1979, pp 185-189.

. J. Misra and K. M. Chandy, An Axiomatic Proof Technique for Networks
of Communicating Processes, Technical Report, Computer Sciences Depart-
ment, University of Texas.

. R. E. Bryant and J. B. Dennis, Concurrent Programming in Research
Directions in Software Technology (ed. Wegner), MIT Press,
Cambridge, Mass. 1979.

