
-35-

J r-"~J |r'--xJ l l \ i J ~-.,.-.~r ,.,'---j Ic--'~| I I I I I r " ~ i
JJ u l l l i l i \ \ l i l I ! 11 i l I1 I~-"Wl
lJ n l l i l 14 \J]1 I I i l ! t I f i \ \ - ' j
I L J i IL-JI I I I i I I IL -J I I~ -J I I 1 \ \

~ U u U ~ ~ U U

A method of preparing structured flowcharts

James F° Gimpel
Sperry Univac, Blue Bell, Pa.

Former address: Bell Labs, Holmdel, N.J.

Contour is a program whose purpose is to graphically illustrate a
program's structure. It operates by bounding the scope of loops
and conditionals by solid (or nearly solid} lines. When compound
statements are embedded in other compound statements, one obtains,
rather than confusion, a rather pleasant display reminiscent of
the contour lines of a topographical map.

Aside from its visual appeal, the method has the advantage that it
makes far fewer demands on the reader's linguistic expertise and
so may be used for presenting algorithms in an almost
language-independent manner (a kind of structured flowchart).

The general notion of a structured flowchart is usually attributed
to Nassi and Schneiderman [I] and has been further discussed by
Grouse [2]. Roy and St. Denis [3] report on their experiences at
automatically converting programs into the Nassi-Schneiderman
format. The effort described here differs in several respects.
The format used requires less horizontal display space and this is
critical in producing a practical, generally usable formatter.
Also, control clauses become embedded within the flow lines to
more clearly delineate the scope of while's, case's, etc.

Figure I shows a Pascal program taken from [3]. The result of
passing this program through Contour is shown in Figure 2. Note
that Begin and End keywords replaced by contour lines are dropped
and any semicolon whose purpose is to separate an enclosure from
its following neighbor is also dropped.

Contour was originally written to display C programs [4]. It was
modified somewhat (for the purpose of this article) to accomodate
Pascal programs. The Pascal program in Figure I was rewritten in
C and is shown in Figure 31 its contour form is shown in Figure 4.

Note that although the two programs appear to be quite different
when viewing just their original forms (Figures I and 3) they

http://crossmark.crossref.org/dialog/?doi=10.1145%2F947727.947730&domain=pdf&date_stamp=1980-10-01

-36-

I
2
3
4
5
6
7
8
9

I0
11
12
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
4O

42
43
44
45
~6

vat
(~ input conversion of number $)

x:char~
sign, int0expoj:integer;
number~fraction:real~
types:(error~fixed~float) ;

begin read (x) ;
repeat

int:=0;
if x='+ ~ then begin sign:=1: read(x); end

else if x =~-~ then begin sign:=-1; read(x); end
else sign:=1;

while {x>=a0J)and(x<=~9 ~) do begin (~ integer part ~)
int:=int~10+ (ord(x) -ord(' 0 ~)) ;
read (x) ;
end;

fraction:=0; j:=10; int:=int~sign;
if x='o i then begin (~ fraction part e)

read (x) ;
while (x>='0')and(x<=U9 ~) do begin

fraction: =fraction+ (ord (x) -ord (' 01))/j ;
j:=j~10; read(x) ;
end;

types: =float:
end

else types: =fixed;
number: =int+sign~fraction; exp:=0 :
if x='e' then begin (~ exponent part ~

read (x) ;
if x='+' then begin sign:=1; read(x); end

else if x=,-~ then begin sign:=-1; read(x); end
else sign:=1 ;

while (x>=,0,)and(x<=,9,) do begin
exp:=exp~10+ (ord (x)-ord(' 0')) :
read (x) ;
end;

j:=exp~sign; number:=number~power(10,j) ; types: =float ;
end;

if (x ~= ' ') and (x ~= eol) then types:=error;
while (((x=' ')or(x=eol))and(not eof(input))) do read(x);
case types of

error: write (' error in number ~, eol) ;
fixed: write (' ',int,eol) ;
float: write (' ',number,eol) ;
end;

until eof (input) ;

Fibre !

A Pascal program to convert character input to
number.

-37-

vat

(~ input conversion of number e)
x: char;
sig n, i nt, e xp, j : i nte get ;
numbe r, fraction: real ;
types: (errorefixedefloat) ;

begin read (x) ;
r-repeat-

9
10

11

12

13

l q
15

17
18

19
20
21
22

24
26

27
28

29
30

31

32

33
3q
35

37

39

q0

~3

~4

int: =0 ;
r-if x= ' + ~ th~n---------~
i sign:=1; read(x); i
~--else if x= ' - ' then--~
i sign:r-l; read(x); J
~ - - e l s e
I sign: = I |

c-while (x>='O')and(x<='9') do ,
I (* inte?er part *) |
I int:=inte10÷(ord(x)-ord('O')} ; |
I r e a d (x) ; I
I I

fraction: =O ; j:=lO; int:=int*sign;
--if x='. 0 then

{* fraction part *)
read (x} ;
r-while (x> ='O')and(x< =t9') do •
I fraction: =fraction÷ (ord (x) -ord ('0 '))/j ;
I j:=j*10; read(x);
| ,

type s: =float;
--else
types:= fixed

number:=int÷sign*fraction; exp:=O :
r-if x=,e, then
I (* exronent part *)
I read (x) ;
I r-if x='+' then
I I sign: =I; read(x); i

I I }--else if x='-' then-4
I I sign:r-l; read(x); I
I l--else I
I I sign:=1 I
I |
I f--while (x>=,O,)and(x<='9') dc ,
I I exp:=exp'lO÷(ord(x) -Ord('O')) ; I
I | read(x) ; I
I | i
I j:=exp*sign; number: =number*power (10 , j) ;
I

r-if Ix ~= ' ') and (x ~= eol) then-~
I type s:=error I
I J

i
I
I

i,
1 1
' I

I

I
, ,|

i
I
I
I
I
I
I
I
I
I
I
I
I

types:=float; I
_ J

r-while (((x= ' ') or (x=eol)) and (not eof [input))) do-~
I read (x) I
I I

r--case types of
I error: write {' error in number t, eol} i
I I
I fixed: write (' ' ,int,eol) I
I I
I float: write (' ' ,number,eol) I
I •

| *mtil eof (input} -J

F i urn2_

A contourized version of Figure 1.

-38-

1
2
3
q
5
6
7
8
9

10
11
12
13
iq
15
16
17
18
19
20
21
22
23
2q
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
I10
ql
q2
q3
llq
q5
q6

/$ input conversion of number $/
char x:
int signr Into expo j;
float numbers fraction;
enum {ERRORa FIXLD~ FLOAT} types;

x = read () ;
do {

Int = 0 ;
if (x == 0÷,) { sign = I$ x = read() ;]
else if (x == '-~) [sign = -I; x = read(); }
else sign = I;
while (x >= t0, ~& x <= q9') [/7 integer part ~/

Int = Int • 10 + x- a0';
x = read (5 ;

]
fraction = 0~ j = 10; Int = Int • sign;
if(x == '.') { /$ fraction part ~/

x = read();
while(x >= '0' && x <= '9') {

fraction = fraction ÷ (float} (~ - '0'5 / j~
j = j $ 10; x = read();

}
types = FLOAT;
}
else types = ~IXED;
number = Int + sign $ fraction; exp = 0;
if (x == 'e') { /~ exponent part ~/

x = read (5 ;
if(x == '÷') [sign = I; x = read() ;]
else if (x == '-') { sign = -I; x = read(} ; }
else sign = I;
while (x >= '0' &$ x <= '9') {

exp = exp $ 10 ÷ x - '0';
x = read(} ;

]
j = exp • sign: number = numberSpower(10,j); types = FLOAT:

]
if(x != ' ' SS x X= 'kn') types = ERROR;
while ((x==' ' | | x == 'kn') &S !feof(stdin)) x = read() ;
switch (types) [

case ERROR: printf(" error in numberkn"); break~
case P IXED: printf(" ~d\n", Int); break;
case FLOAT: printf(" ~fkn", number): break;

]
] while(!feof(stdin));

Figure 3

A C version of the program in Figure 1.

-39-

1
2
3

5
6
7
8
9

10

11

12

13

14
15

177
18

19
20
21
22

2.
26

27
28

2 9
30

31

32

33
34
35

37

3 9

~0

41

~ 2

4 3

/~ input conversion of number ~/
char x;
in! sign, Int, exp, j;
float number, fraction;
enum [ERRORe FIX~Ds FLOAT] types;

x = read(} ;
r-dc---------------------

Xnt = 0;
J r-if (x == I+,}__
I J sign = I; x = read(); ;
| ~--else if (x == '-')-----------~
| I sign = -I; x = read(} ;]
i i--else
I I sign = I; I

t i

r-while (x >= '0' 88 x <= vg')--~
[/~ inteqer part ~/ I
I In! = Int • 10 + x - '0°; I

l X = read(} ; I
! |

fraction = 0; j = 10; Int = In! • sign;
r--if(x == '.')
I /~ fraction part ~/
I x = read 0 ;
| r--while(x >= '0' 88 x <= '9'}
i i fraction = fraction + (float) (x - '0'} / j;.
I | j = j * 1 0 ; x = read(); I
| t , , , !

i types = FLOAT;
I - - e l s e
I t y p e s = F I X E D ;
| , ,

number = Int * sign * fraction; exp = 0;

r--if(x == 'e')
/* exponent part */
x = read () ; |
r--if(x == '+'} | I
i sign = 1; x = read(); I I
t--else if (x == '-') | |
I sign = - 1 ; x = read(} ; I |

I ~-else I I
I s i g n = 1 : I I
z ! I
r--while (x >= '0' g8 x <= '9')--I I
I exp = exp * 10 + x - '0t: I I
I x = read() ; i |

! |

j = exp • sign; number = number~power(10, j); types = FLOAT; J
!

r--if(~ != ' ' 88 x [= '\n'}-~
I types = ERROR; I
! !

r-while ((x ==' ' |[x == 'kn'} 88 !feof(stdin)}--1
| x = read(); I
l !

r--switch (type s)

t
I case ERROR: print!(" error in nuwber\n"); break; I

t !
I case FIXED: print!(" SdXn", Znt); break;

P
[case FLOAT: print!(" %fkn", number); break; |
! !

while(tfeof(stdin})-J

A contourized version of Figure 3.

-40-

actually are quite similar as a comparison of Figures 2 and 4
reveals.

Further Notes

@ It is, of courser possible to produce ~contour lines ~ with
characters chosen from the standard Ascii set (such as vertical
bar and the underscore). The result is generally unpleasant.
Contour happens to use an enhanced character set consisting of
the four "corner" characters (r ~ L J) and the horizontal line
(-) that links them (as opposed to the minus (o) that does
not). These seem important to the point of being critical for
the application. Note that the standard vertical bar links
with the corner characters.

@ It was felt that a special case should be made of constructs of
the form: if() °.. else if() °.. else if() else o.o
since this is often used as a multi-way decision and is not
appropriately rendered as a nested sequence. Rather, a
ladder-like structure is employed as is shown in Figures 2 and
4.

O The author has used Contour for quite some time in the complete
absence of other forms of listings; this was only~practicableo
however, after Contour was modifed to prepend line numbers
(where appropriate) to output lineso Note that the line
numbers correspond to the physical line number of the file
rather than the line number in the listing°

® Information that is not comprehended by contour is simply
displayed as it is found. This practice greatly reduces user
frustration in the case of pre-processor usage compromising the
basic syntax of C.

I Eplementation

A line is read from the input stream and scanned to see if it
starts a special statement form: if so, an attempt is made to read
lines until either an entire statement is matched or until some
preset limit is reached (experience indicates that about 200 lines
is adequate). If a match cannot be made, we simply continue
processing as if the special form were not recognized and with the
input stream extracting lines from those that had been buffered
before proceeding with the rest of the fileo If a full statement
was recognized then one or more recursive calls is made with the
"input stream" set equal to a substatement of the statement
recognized. For example if the statement recognized is of the
form if b then sl else s2 then recursive calls are made with the

-41-

stream set equal to sl and s2o The result of the recursive call
is to convert a stream into a formatted block of characters (where
block has the meaning described in [5])° The caller must then
format the result in accordance with the formatting conventions
desired° For examples if the statement were

if b then sl else s2

the caller is in a position where sl and s2 have been formatted
into a block of characters of known width and height. He then
needs to surround these with appropriate contour lines and embed
the if clause to produce a returnable object.

The program was written in SNOBOL% [6] for convenience.

REFERENCES

[I]

[23

[33

[43

f5]

{63

Nassi I. and Shneidermane B. Flowchart techniques for
structured programming. Sigplan Notices, 8:8 (Aug. 1973),
12~-26.

Grouse, P. FLCWBLOCKS-- A technique for structured
programmingo Sigplan Notices, 13:2 (Feb. 1978), 46-56.

Roys P. and St. Eenis, R. Linear flowchart generator for a
structured language. Sigplan Notices~ 11:11 (Nov. 1976),
58-64.

Kernighan, B. and Ritchie, D. The C Programming Language.
Prentice-Hall, Englewood Clzffs, N. J~, 1978.

Gimpel, J. F. Blocks -- a new datatype for SNOBOL4.
15:6 (June 1972), 438-447.

CACMi

Griswold, R° E., Poage, J. F. and Polonsky, I. P. The
SNOBOL4 Programming Language. Prentice-Hall, Englewood
Cliffs, N. J., 1971.

