APL and Algol0E, the covrespondence

and the differences,

copecially in epplications of graph-analysis

PoLLd,

Leiden University

The Hothers

Aostract.

In this presentation the characteristics of
both languages will be presented. Typical
features and facilities of Aigol68 will be
compared with the most important faciiities
of APL. Some other complicated features of
Algel68 are considered and their possibilities
for applications.

AppTications in the field of graph theory
have been coded for the two languages.

Introduction,

In this lecture a number of characteristics

of APL and ATgoi68 will be treated.

Main features of both Tanguages will be
considered; afterwards the characteristics of
both languages are compared.

Much attention will be given to the types of
datastructures in APL and the complicated
datastructures of Algol68.

APL operctors will be cempared with Algol68
operators, the possibility of new operator
definitions in Algol68 will be described.

APL functions will be considered and attention
will be drawn to Algol68 precedures with

their many possibilities.

After these considerations about the features
of the languages, applications are shown in
the area of graph theory and numerical analysis.

Par, 1.

The APL language, datatypes, operators,
functions.

APL uses rectangular datatypes for all dimen-
sions, scalars, vectors, matrices and so on.
The contents of the data can be of the type
numerical or of the type character.

It is not possible to work with complex
numbers. Up till now there are no implementations
of nested arrays or mixed arrays.

Working with lists is rather difficult. It is
possible to consider rows of a certain matrix
as elements of lists. The Tast position in
the row is used as a pointer to the next
element of the list (see fig. 1). It is
possible to write APL functions to delete
elements of the Tist, to add elements, to
find the last element of the list,

Of course there should be an agreement about
the contents of the pointer Tocation of the
last element. It is also possible to refer
from one matrix to another,

Siero

~

iter Centre
1ds

fig. 1

The operators in APL make use of the normal,

scaler dvadic and monadic functions +, -, X
.s the result is again a function.

For instance:

a. A<«4 3 7
+\A gives 4 7 14
X\A gives 4 12 84

(\ is the scan operator)

b.M«+~«23pl121212
M+.xA gives 17 25

(. is the inner product operator)

There are threemore operators, namely: reduction,
axis and outer product.

There are a great number of primitive functions
in APL (look at the keyboard of the terminals)
and moreover there are so called defined
functions. The primitive functions, as the
defined functions, are niladic, monadic or
dyadic. They are working on the APL data
structures and the result is also a data
structure. Sometimes the APL functions do not
have an explicit result (niladic).

At the end of this review the possibilities

of jumps and labels have to be mentioned.

Par, 2.

The language Algol68, datatypes, operators,
functions.

BeTore talking about these features it should
be mentioned that APL is an interpreter, and
a timesharing tool with many possibilities of
conversational use. For instance function
editing can easy be done from at the terminal.
Algo168, however, is a batch application and
it has a much wider range of possibilities.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F947800.947807&domain=pdf&date_stamp=1980-12-01

. S T ol
s natation of e
. NP - ~

seidan s uand,

witlh one accoent in front

7.1

In Algolf® thave are many possibiilitics of
gata sitructures, look at the foliowing
declarations:

First one has rectanguiar datatypes, for
instance: 'int g

"Toc (1 J) it omg

examnle mi=(2,6,3,4,1);

in Algol 6¥ nomenclature this is calle rowW

"of tint
"Toc stands

"Toc (1:3) ‘char a;

a::(upﬂSllqn’lirH);

for tocal declaration.

exanple

this is called ‘row 'of ‘char
"Toc (4:10,3:8) ‘real x;
this is cailed ‘row ‘row ‘of

There are other possibilities to use non-
rectanqular catatyv;x,for instance

((1,2 3) (4.,5), (6 7,8,9)), in Algoi68 this is
called 'row 'of 'row

More examples can be made by using st

for instance putting an integer andkf?ea]
together in

"struct('int a,'real b) st; see figure 2.
st
tint
a
fig. 2
'real
b
[
Or if one wants to administer names, ages

and weights.

"struct ({30) 'char name,'int age,weight)u;
Looking at the example of the integer and the
real, you sometimes want to combine more
integers with more reals, for instance
((3,2.1),(4.3.2),(6,8.7)), this is called a
"row 'of 'structures in Algol68,

Another important Algol68 notion is the term
mode ; there are standard medes,as int, real,

bool.

The programmer can make his own modes,as
‘mode 'new='struct{'int a,'real b); and

'node="struct((2) ‘int name, 'ref ‘node

next);

'mode

structures

—~57~

e s circular mods declavation, 'node
appears Lo the right and to the !e Eof the =
toten,

The definition of mods ‘node can be used in

P1st provessing,
lor instancoe
'node a:={17,nilj;

nodo bro{19,ni1);

noxt 'of a:=b;

gives
a b

g, 3 { 7[]~>J O'Vﬁ

fig. 3 P7L T 19

In Algol6d there s a principle of orthogonali
of modes and programmers can construct new
modes out of already existing modos.

2.2.

The normal operators +,-,... between scalars
can be cxpanﬁed to work with more complicated
data siructures

An example can be given by the operator +
working between two rows, having as a resmi.

a new row:

'OP + = (()'REAL A,B)()'REAL:
‘BEGIN
'LOC (1: 'UPB A)'REAL SUMR;
'FOR T 'TO 'UPB A 'DO
SUMR(T) :=A(1)+B{I)
0D
SUMR 'END;

Some remarks about the coding:

The operator + has two parameters of the type
‘row 'of 'real and the result is of the same
type, this is a so-called dyadic operator.

‘row 'of can be coded as ()

In the definition of the operator + a local
declaraticn of a 'row 'of ‘real is present,
namely the definition of sumr. There is also
a loop clause. No further declaration of the
variable i is needed, because i appears just
after FOR; this is an Algol68 rule.

‘upb is a standard Algol168 operator, which
gives the upperbound of an array, there is
also an operator 'lwb for the lowerbound of
an array.

If the use of the scan operator of APL has to
be demonstrated in Algol68, you can do so as
follows for the case +\ (applied to a 3 by 3
matrix):

‘0P 'SCAN=((,)'REAL A)(,) 'REAL:

'BEGIN

"LOC (1:3,1: 3) 'REAL SUMM;

SUMM(,1):2A(,1);

SUMM(,2):=A(,1)+A(,2);

SUHM(L3): =SUMM(,2)4A(.3)
SUMM 'END;

.

oy

Remarks: there is one parameter in the operator

scan, the parameter and the result have both
the type 'row 'row.

the first column of A,
tor in the aperator SCAN
[cperator +. AN othey o

ALLL) means
The + opora
Just defing:

is the
cannle can

be made for the case XV, using & suitable
definition of an operator .
Also the scoond e e of par. 2, the mulli-

plication of a matrix with a vector cen be
done in Algol6s.

See reference 1.

2.3,

PPO(@GU oS in Algol68 give

nany possibilities
in practice, thore are stendard procedures

and user written procedures. The procedires
are working with datastructures 1nd their
results are datastructures as well. One can
call this the traditional usc. There are meny

..

other possibilities to manipulate with procedures,

in the same way as one can work with integers,
characters, etc.

One can construct rows
vwith other prOveJu>n> as paraneters.

There is much resemblance between the working
of operators and procedures in Algol68. A
ayadic (monadic) operator can be compared
with a procedure with two (one) parameter(s).
In the case of operators however, one often
has to take care of priorities if the same
operator is twice definea for different
datastructures.

Some examples of procedures:

(a)

The procedure MEMB decides if an integer @
belongs to an array P or not.

'PROGC MEMB=(() 'INT P,'INT Q) 'BOOL:
‘BEGIN 'BOOL FOUND:= 'FALSE;

'FOR 1 'FROM 'LWB P 'TO 'UPB P 'WHILE
FOUND

'DO (Q=P(1)/FOUND:="TRUE) '0D; FOUND 'END;

"NOT

Remarks: the parameters are a row of integers
and an integer, the result is of the type
boolean.

In this example there is again a so-called
Toop clause:

(Q=P(I)/FOUND:='TRUE) is an abbreviation of
"IF Q=P(I) ‘'THEN FOUND:=TRUE 'FI

This is a so-called conditional clause. Loop
clauses and conditional clauses are examples
of the working of the control structures in
Algo168.

There is much more to say about it; it has to
do with "ranges and reaches" and the scope
and availability of identifiers.

I finish this chapter with another example of
an Algol68 'procedure COMPR which uses the
procedure MEMB.

The procedure COMPR has two parameters, an
integer array and an integer. The input array
P has been filled with non zeros in the
beginning and zeros at the end. The result is

of procedures, procedures

Applications of APL in the

an orray ddentical Lo the input array without
duplicates of non zeros.
Ih)

"ERAC COMPR=(() "THT PLIREF INT 330) '1m7
R ROTIE

"LoC (1 P
Ji=1; H(]) =P(1
FOR T OTEFROM 9 Y
'IF H:ﬁ@(‘,P I)
H{J):=P{1) 'FI
0D,
H

'END;

"UpPB Hs
>
0 UPB Po'D

)
)5
| 'DO
j=FALSE "THE

Hdi=dil;

Remark:

The nuisber of elements # 0 in the result is
delivered by tne parameter J, in the procedure
headirng this has been coded as 'REF 'INT J,
which means to be a pointer to an integer
value.

area of graphs.

There are sowe programming languages which
have been cdeveloped to be suitable for graph
manipulations.

But also APL seems to be a nice language for
these purposes,

-As an example I mention the following appli-

cation.

In a connected graph G with at least one edge
one can find a closed Eulerian line if the
degree of each of its vertices is even. A
closed Eulerian line - or Euler path - is a
closed Tine which contains all the edges of
G (all lines are walked through one and only
one time).

Example:

If we start at vertex 2, we can find the
following Euler path:

263496758798465231°2,

using 3 APL functions namely COMP, EULER and
PATH,

-5

e reprusented by the

0110000600
101011000
110101000
6001001011
010001110
011110101
poo0Do011011
000110101
0co010111¢0

By means of the function COMP one can decide

if the graph is connected or not (in our case
the answer is yes). ZA has to be convericd to
a so called adjacency Tist. In our case this

1ist consists of:

23

1356 and so on,

In the function COMP this information has
been stored in the matrix ¥ in & special way.
Hith a well known algorithm you can see if
the number cf compounds is 1 or not. If so
and and the sum of every row (or column) is

even, the function Euler and Path are pecessary

for the calculation of an tuler path, starting
with a certain vertex.

The functions Euler and Path {the last one is
recursive) have been written in APPENDIX A.

The function COMP, which checks for connectivity

of the graph, follows:

veoupr{ilv
COMP ZA N VM T3C3FD
a IS PHIS GRAPH CONNFPCTED?
AVERTICES ARV COLLECTED
a IN V AND C
Fe1
Me((14pZ4),10)p0
LOOP FL«ZAl ;01 /1vi4p A
MU v+ J(FL>RYI«(FL>R) /FL
>((J~-N+1)<14ptA)/LOOP
L9] FlLi<Q
[10] T+l
{11} C+1+7T
[123 V<«,1
[13] m?RY T0 ADD TO VECTOR V
[14] Pi:~»((VI[WIeC)=1)/LL
{151 e, vl
(16] V+V UL VInsde0)/MLVED T 1)
{1731 L ((N +d)~T),1-0%)/P1 P2
[18] = IF SOMETHING ADDED,ADD HORE
{19] T<pV
f20] -r1

NI T W N
e e e e L

T
o
L

ot Towing

[21} P2iiles

(22 Fon{({BeC)=0) {+/(MIE;YeV))20)/R, A
(23] Bi{((NeFN+1)<14p2A) FLs0)Y /B, CO
(28] afp #L=1 0G0 20 P2 70 G5 MORF
[25) FlLeo

(26 P2

Leid 4:Fin

{28)] /«J,f(L "f)) /ML),

Pesd oeo (T de0) /0LH33),

L30) -2

[31] CO:ve((VAV)=10V) /¥

321 n COMPRESSION OF VECTOR

331 ~((pV)<ttpZd)/h
L3%1 '"GREAPH IS5 CONNECTED
{2s] =0
(361 L:'GRAPH IS DISCONRECTED
[37) =0

v

Par. 4.

Some examples of the use of ALGOL6S.

In connection with par. 3 we can try to make
a program to calculate the connectivity of a
graph in Algol68.

In fact our program will do the same as the
function COMP in APL.

We make use of the procedures COMPR and MEMB
of par. 2 and the procedure MEMBC and TRANSF

(a) TRANSF is a procedure which transfers
the matrix ZA (see par. 3) in a special
A1go168 structure called MATR, this has
to be coded in the program with a so
called mode declaration:

'MODE 'MATR='STRUCT((1'UPB ZA)'REF()
VINT ADL, (1:1'UPB ZA)'INT IN);

This structure consists of an adjacency
list of ZA (called ADL) which has the
type 'ROW 'OF 'ROW and an integer array
(called IN) which tells us, how many
elements there are in each row of ADL.
The coding of TRANSF has been put in
appendix B

(b) In the program it is useful to have a
procedure MEMBC which looks like the
procedure. MEMB, the input parameters are
the structure MATR from above (it is
possible to use MATR as input parameter),
a row of integers R and an integer Q.
MEMBE-makes use of MEMB. memb. The
result is a boolean. MEMBC examines if
the row Q of the ADL part of MATR has
something in common with a certain row
of integers R.

The text of MEMBC follows:

SHILE ROT FOU
DO (MEMB(PN,R{1))="TRUEL/FOUND: = ' TRUE)
0D; FOURD 'ERD;

Now the fod110 of the main program calling
TRANSF, FEMBC end other procecures follows.
The 1nput to the program is certain matrix

ZA, as in par. 3. Comments have been placed

between 'CO and 'CO.

'CO FIRST THE DECLARATIONS 'CO

'L0C (1:9,1:9) 'INHT ZA, "INT Q,J:

'Loc (1 40) "INT COLL; 'LOC (1:80) 'INT
TOTAL;

'CO THE ADJACENCY LISTS ARE PUT TOGETHER IN
TOTAL 'CO

'CO THE LENGTH OF THE ARRAYS COLL AND TOTAL
ARE NOT QUITE PREDICTABLE 'CO

'MATR M1:=TRANSF(ZA);

'FOR I 'TO 40 'DO COLL {1):=0 '0D;

'FOR T 'TO 80 'DO TOTAL(I):=0 '0OD;

PINT T:=1; 'INT COLLC:=0; 'INT CNT:=0;

YINT V0L:=0; 'INT M:=1;

TOTAL(1):=1;

'CO WE NEED THE COUMTERS COLLC AND CNT TO
KNOW HOW MANY 'CO

'CO ELEMENTS OF THESE ARRAYS HAVE BEEN FILLED

WITH NON ZERO 'CO
PARTI:
'CO TRY TO ADD SOMETHING TO TOTAL 'CO
Q:=TOTAL (M);

'IF MEMB(COLL,Q)="'TRUE 'THEN 'GOTO LL

'FI; 'FOR I 'TO (IN 'OF M1){Q) ‘DO
'CO SEE REMARK 1 'CO

TOTC=TOTC+1;

TOTAL(TOT):=(ADL ‘OF M1)(Q){(I) 'OD;
'CO SEE REMARK 1 'CO

COLLC:=COLLC+1;

COLL(COLLC):=Q;
LL: M:=M+1;

'"IF M<(T+1) ‘THEN 'GOTO PART1 'FI;

and so on ..

Further comments.

Remark 1.

With the fieldselections ADL 'OF and IN 'OF
the two parts of the structure 'MATR M1 can
be used in the program.

Remark 2.

As you see, a number of loop clauses and
conditional clauses have been used in the
program,

e e

Remark 3.

In APL therc are primitive functions for
membersnip and simple operations to get
rid of duplicates out of a vow. You can
easily inC?hL*ﬂ the lengtn of a veclor by
cetenation, In Algol68 you should declare
enough space in advance,

Conclusion.

In this paper main features of APL and Algol6§
have been considered,

APL 1s a nice language with many possihilities
and easy to Tearn. There are many applications
in the field administration {databases),

graph steovry and other areas of mathematics.
In numerical mathematics applications in the
field of series and polynomials are well

known (see reference 2).

In administration it can be used for all

kinds of data-analysis and reduct1on including
report writing.

In graph theory the use of matrices with ones
and zeros give many possibilities to use
primitive functions.

Other large iterative calculations might be
possible but may give performance problems.

Two disadvantages of APL are well known, the
lack of control structures and the restrictions
in the use of functions. Functions with more
than two parameters are not permitted.

Algol68 is a batch languayge with many tools,

it takes much more time to learn than APL.

If small reports are necessary in an environment
of industry or administration one should

prefer APL., For applications in the sense of
par. 3 and par 4, you can see that the use of
APL gives quick results, you don't have to
construct so many subroutines as in Algol68.
A1gol168 is not better than APL if small
calculations in the field of numerical analysis
are required or in special areas as calculations
with series and polynomials.

For complex calculations A1gol168 might be
better than APL. Also in the case of complicated
datastructures Algo168 is favorite. It has

many tools, and the programmer can construct

his own as needed.

However, it is a question if programs with
compiicated datastructures are efficient.

Referencgi.

(1) C.H. Lindsey, S.G. van der Meulen;
Informal Introduction to Algol68. North-
Holland Publishing Company 1977.

(2) P.L.J. Siero; Het gebruik van polynomen
en reeksen in APL; CRI-bulletin, januari
1978.

-61-

Appendix A

*

SR R
SIS IS NS S MO S

(e
FS N P WU

3 N

3 AR Y M (D

[SATEE SR

[T AP
[e IIEN]

O R

D

WW NN DD NN NN
IR e G Co B GO I 3 03 I SL R N B S
9_.'1_.)L_JLJL.JX_JL—JL.JL_JL_:LJ_JLJLJL.J&_,:L_JL-JL—JLJ;JL—)‘_!L.JL_.'L__!l_.'

D LD WL W

D O

[37]
[£38]
[33]

Ao e B e B s B 2o I e W B e W W e B o W e TR e B e B s B s W e B B R e T e e R T
3 obe

£

s
/s

Balin (T DALY P ap (i Al 200
(*((Ak»u 1 0\F
clz {»L)’J-‘.«:.
A, :
({04151 40 8A)Y /100D
f LOOL FOR CIRCUIDPS T8 PARTY
CIRc+~, 1
C+Ari
B<0
PART L ¢ {{2|C)=0)/EVEFN

’!:
h
e
Q
+
N
L

Ae(((C=1)40),0
-+

HVER B<£{C~-1]
Ac(((C-2)Y40).0,0,((pA)~C)40) /A
n A GEPPING SHAL LZW’ UNTIL ph=0
L (Z=CTRCL11)/ADD

CTRC<CIRC, A

CArl

+PART1

ADD MU (3«B+1);]«u04CIRC

&KSAVE DPHE CIRCUIT IN MATR
+{((pA)=0)/PAR

C+1

CIRC«1+4

+PART

PARTZ2 :R<{((B, 40)4 MYy PATH V

s CALL FOR UyCcrIoN PATH
+0

v

SO, ((pA)Y-(C+2) 320 /A

[
£
A
£47 LT 0L, HOH
L5 bOSTARY VERTEX
LA STOCsLL OF
[ROV T TH
£ TATHING Rl
59
£100
RN ST
CEo
FiET e (9
reat =0
153 AR
163 BMATI Ry
D3vd sl 143 vk . :
RN ﬁﬁﬁfﬁ",x,}n,) LGN
L1937 e
¢
I I ﬂ)anIJvt 3
[h CROTATED UMTIL U TS5 THE
Loy ST OELEMENT THE RESULY I8 IM
247 U%(U*yHFIP)uHELP
s L5
26 ADDED

1

3

f‘N") Sl e TWeMATRE T 1%0)
{1 i ’)‘ G ANATREHSTRIWEI) Y=00 /8TOF
lv.v‘)(TE FPATH R
JTCFRIA0
%

l' XX i

Appendix B.

"PROC TRANSF=((,) INT Y)'MATR:
'BEGIN

'LOC 'MATR M;
'LOC (1:1'UPB Y)
'"LOC (1:1'UPB Y)
'FOR N 'FROM 1 '
'LOC 'INT J:=0;
LOC (1:1'UPB Y)'INT PN:=Y(,N);
'FOR T 'FROM (N+1) 'TO 'UPB PN 'DO

VINT INF;
(1:10) *INT INTR;
T0 1'UPB Y 'DO

'IF PN(I)™=0 'THEN
Ji=d+l; INTR(N)(J):=I 'FI "0D;
INF(N):=J . '0D;
'LOC (1'UPB Y)'REF()'INT W;

'FCR N 'TO 1'UPB Y 'Do;

W(N):='LOC (1:INF(N))'INT 'OD;
'FOR N 'TO 1'UPB Y 'DO
'FOR J 'TO INF(N) ‘D0
W(N)(Jd):=INTR(N)(J) 'OD
'0D;
IN 'OF M:=INF;
ADL 'OF M:=W;
M
'END;

M TH

