
-62-

AN ALTERNATIVE TO THE COmmUNICATION PRIMITIVES IN ADA

Jan Stroet
Informatica/Computer Graphics

University of Nijmegen
Nijmegen~ The Netherlands

I • Abstract

A critical look is taken at the ADA communication primitives by comparing
them to the ITP (Input Tool Process) model, the model for process communication
developed at Nijmegen. The comparison is done by means of example solutions to
several problems in both models.
It is shown that by using features extracted from the ITP model, the
communication facilities in ADA could be improved considerably with respect to
orthogonality, clarity, flexibility and power.

2. Criticism

In a previous note of Van den Boa [3] in fact most of our criticism on the
ADA communication facility is mentioned, i.e.

- Accept entries and accept statements occur in the middle of the executable
code, and each entry point may be connected with a different accept body,
even to accept en~lies wlth the same name; this can be rather confusing;

The calling process is suspended until the called process has executed its
accept statement. This lays a strong restriction on the parallel behaviour
of the processes, especially when the called process has to execute many
statements or suspends itself in its accept statement;

- Asymmetry of the identification of processes: the caller can address the
destinated task, but a called task cannot select its customers;

- Communication primitives may be intermixed with all other kinds of ADA
primitives.

In this paper we show how the communication facility in ADA could be improved.
The improvements have been derived from the ITP model [4] for communicating
processes, developed at the University of Nijmegen. The latter model is based
on message exchange, with the communication protocol specified by means of a
variant of path expressions.
We start by presenting a brief introduction to a subset of the original ITP
model. Following that we will present an alternative notation for the
communication facility in ADA by means of relevant examples from the ADA
rationale [I] and reference manual [2].

http://crossmark.crossref.org/dialog/?doi=10.1145%2F947800.947808&domain=pdf&date_stamp=1980-12-01

3- An ITP subset
-63-

In interactive computing, and also in communication between processes, input
and output play a predominant, closely coupled role. With this idea in mind the
ITP model has been developed.
Exchange of information between processes is performed by message passing.
Output for a sending process is input for a receiving process.

The basic concept in the ITP model is the tool. A process is a specific kind
of tool. Tools can be built out of other tools. Two kinds of tools are
distinguished, abstract tools and basic tools.

Basic tools are the lowest level tools. They have a receive rule. A process
can communicate with another process by sending a message to a basic tool of
that process. The receive rule of the basic tool specifies what type of message
such a basic tool accepts. A basic tool in fact acts as a message slot. The
type of the message sent must correspond with the type of the message specified
in the basic tool.

The higher level tools or abstract tools have an input rule instead of a
receive rule. This input rule specifies, in a regular expression, how that tool
is composed out of other tools, and finally out of basic tools. Hence an
abstract tool specifies what pattern of input is expected, expressed in terms of
tools out of which it is built.

An abstract tool has in general the following appearance:

too1 name = input input-pattern end

declarations of variables
and internal (lower level) tools

init initialisations en_~

tool body (executable statements)
end

Whenever a tool becomes active, which means that its specified input pattern
is a candidate for occurring, the init statement (if present) is executed to
perform certain initialisations. When the input pattern has occurred (the input
rule is satisfied) the semantic action, called tool body, is executed.
Input patterns are specified by means of input expressions, controlled by
conditionals. Sequencing (; operator), selection (+ operator), repetition
($ operator), and testing (: operator) are control structures which can be used
in an input rule. The operators ; + and $ have tools as operands, the operator

: has a boolean condition and a tool as operands.
It iS possible to bind whole or part of an input expression to an external

proces~ or set of processes by the destination operator (->). This has the
effect that (this part of) the input expression can only be satisfied by (one

of) t~e process(es) specified.
Because tools are built out of other tools this model makes it possible to

specify input patterns in a clear, hierarchical and modular way. Structured
programming is almost a natural consequence of using the ITP model.

The highest level abstract tool is an independent process; this is similar to
a task in ADA. The name of the process is the name of the highest level tool.
The lower level tools, that is the internal tools, are sequential objects; they

behave like input-driven procedures.
Processes may send information to another process by addressing a basic tool of
this process. This is done by a send statement, which looks like:

-64-

send process name.basic toolname (message)

In the send statement the specification of the basic tool name and the message
are optional. (In fact the process name is also optional; this however is not
applied in this paper.) When the basic tool name is omitted any basic tool of
the designated process which can accept the type of message sent is a possible
consumer of the message. When in the send statement the message is omitted the
send is called a signal.
A process issueing a send is suspended until the message is consumed by the
designated process. A send statement may occur in any executable part of a
tool, that is in the init rule and the tool body.

4- .Cgmparison of ADA examples_

Most of the relevant examples in the ADA rationale [I] and reference manual
[2] are applications of service processes. Several of these examples are
presented here.
For easy comparison both the ADA solutions (at the left hand side) and the ITP
solutions are given. Because the focus of this paper is ADA's primitives, the
ITP solutions were tailored after the ADA solutions. This mapping sometimes
resulted in solutions that do not smoothly fit in the ITP spirit.

4.1 Protected array

As a first example we refer to the 'Protected array' example of ADA.

task PROTECTED_ARRAY ia
-- INDEX and ELEM are global types
entry READ (I : in INDEX; V : out ELEM);
entry WRITE(I : in INDEX; E : in ELEM);

end:

task body PROTECTED_ARRAY is
TABLE : array(INDEX'FIRST .. INDEX'LAST) of ELEM :=

(INDEX'FIRST .. INDEX'LAST = > 0);

begin
loop

select
accept READ (I : i . INDEX; V : out ELEM) do

V := TABLE(I);
end READ:

or
accept WRITE(I : in INDEX; E : in ELEM) do

TABLE(I) := E;
e . d WRITE;

end seh~"t:
end loop:

end PROTECTED_ARRAY;

tool Protected array = input (read + write) $ end;

table : arras(index'first 3. index'last) o_~ elem;
i : index; e: elem;

tool read = receive i;
send sender~ble(i));

end;

tool write = receive i, e;
-- table(i):=e;
end;

init for j in index'first .. index'last loop
table(J) := O;

end loop;
end;

en_._d.;

The input rule of the process 'Protected array' specifies that it waits for an
infinite number (Z-operator, which is similar to the looping construct in ADA)
of occurrences of the expression between parentheses. This expression
'read+write' indicates that it waits for either a 'read' or a 'write' (the
'select accept read .. or accept write ..' construct in ADA). The input rule of
the process gives clear information about the kind of input this process
expects.
Because the input expression is not bound to any external process it accepts
input from any process which sends messages to one of its basic tools 'read' or
'write'.

When this process gets started its init rule is executed. Subsequently the
input expression determines which tools are candidates for activation; in this

-65-

case the basic tools ~read' and 'write'. Now the process is suspended, waiting
for a message sent to either 'read' or 'write'.

Each tool contains a (possibly empty) tool body° The body of a basic tool is
executed when a message is accepted for that basic tool. The body of a higher
level tool is executed when its input pattern has occurred.

In the above example~ when a process issues

send Protecte~array°write(1,5)

the message (I~5) is accepted by basic tool 'write'. Its body is executed,
which results in making the first element (i=I) of 'table' equal to 5 (e=5)o
After the body is executed tool 'write' has occurred and so the expression
'read + write' is satisfied. Because the S-operator is applied to this
expression, it is activated again. This means that both 'read' and 'write' are
candidates for receiving the next message. Only one of the active basic tools
however can actually receive the message.

When a

send Protected array.read(SO)

is issued the receive rule of the tool 'read' is satisfied. This results in
executing the body of the basic tool 'read'. With the help of the sender
primitive, which yields the name of the process from which the last message was
accepted, the contents of 'table(SO)' is returned to the caller.

The body of a basic tool is comparable to the body of an accept entry in ADA.

However there are some differences:

- Each tool has only one body, so one specific basic tool performs one specific
job. In ADA it is possible to have different accept bodies connected with an

entry with a certain name;

The sending process is suspended only until the sent message has been
consumed. This guarantees much more concurrency than ADA does, especially
when it takes a lot of time before a possible answer has been determined.
The ADA approach in our case would amount to suspending a process until the
body of the basic tool has been executed. After execution of the accept body
ADA may return parameters. In the ITP approach the service process must send
a message to the user. This has the disadvantage that when the user does not
wait for the answer the service process hangs. A time out mechanism will be
one of the possible solutions. However these details are beyond the scope of

this paper.

In ADA with each accept entry a FIFO queue is connected. In the ITP solutions
given here we assume a FIF0 queue connected with each basic tool. The behaviour

of such a queue is similar to the accept entry queue in ADA.
We want to remark that queues are no part of the official ITP model.

-6{T~-.

4.2 Signals and semaphores

The solutions for a task 'Signal' are as follows:

gametic task SIGNAL is
entry SEND:
entry WATT:

end SIGNAL:

tool Signal ~
~ in~ut (send + Ireceivedl:wait)$ end;

received : boolean;

task body SIGNAL is
RECEIVED : BOOLEAN := FALSE; too_l send = receive;

begin received : = true;
loop en._d;

select
accept SEND; tool wait = receive;
RECEIVED := TRUE; received := false;

or when RECEIVED => end;
accept WAIT:
RECEIVED := FALSE; init received :~ false;

end select; end ;
end loop;

end SIGNAL; en__d ;

In the input rule of 'Signal' the test operator ':' is used. Tool 'wait' may
occur, depending on whether the prefix test yields true or false. So the
expression 'send+Ireceivedl:wait' is equivalent to 'send+wait' when 'received'
is true and equivalent to 'send' when 'received' is false°

When process 'Signal' is started 'received' is set to false in its init ruleo
Consequently process 'Signal' will only accept (empty) messages (signals) to
basic tool 'send'. When a message for basic tool 'send' has been accepted, the
boolean 'received' is made true in the body of this basic tool. Subsequently
(as a consequence of the S-operator) messages can be accepted for the basic
tools 'send' and 'wait' After one message for basic tool 'wait' has been
accepted, 'received' is set to false again.
From the input rule of this process is immediately clear what this process does°
The same holds for the following process 'Semaphore'-

task SEMAPHORE is
entry P;
entry V;

end:

task body SEMAPHORE is
begin

loop
accept P;
accept V:

and loop;
end;

tool Semaphore = input (P ; V)$ end;
tool P = receive;
end;
tool V = receive;
end,;

end;

In this example the followed-by operator (';') is used. This process accepts an
infinite number of times a message for basic tool 'P' followed by a message for
basic tool 'V'. So a signal to basic tool 'V' will only be accepted when
previously a corresponding signal to basic tool 'P' has occurred.

-57-

4.3 Line to char

The process 'Line to char' alternately fills a buffer with characters (by
accepting a send to ~put line') and then empties the buffer (by accepting sends
to 'get char') until all characters in the buffer have been distributed.
In fact the description of this process reflects itself immediately in the input
rule specification~

ta=k LINE_TO_CHAR i=
~pe LINE i~ mrray (1 , , 80) Of CHARACTER;
erit,t7 PUT_LINE (L : in LINE);
=ntnf GET_CHAR (C : out CHARACTER);

end:

rash body UNE_TO_CHAR ie
BUFFER : LINE;

begin
Io~sp

accept PUT_LINE(L : in LINE) do
BUFFER := L;

end PUT_LINE;
for I in 1 ,. 80 loop

accep~ GET_CHAR(C : out CHARACTER] do
C := BUFFER(I);

end GET_CHAR;
end loop;

end loop;
end:

t o o l L i n e t o c h a r =

input (-put line:
(Ichar leftl: get char)S) $ end;

buffer : array (I .. 80) o~ character;
char left : boolean;
inde~ : integer;

tool put line = receive buffer;
char left := true;
index := I;

en_~d;

tool get char = receive;
-- sent sender bum(index));

index := index + I;
char left := index <~ 80;

end;
en/;

In the input rule for process 'Line to char' an example is seen of a conditional
repetition. As soon as the test 'char left' yields false (there are no
characters in the buffer) this repetition en~s.

The functioning of this process is analogous to the 'Protected array'
process. Both are typical examples of service processes:~they do not i~entify
their input sources and they return information to the process which requested
it, by means of the sender primitive.

This example illustrates another advantage of the ITP method. The patterns
of input are specified in a distinct place, clearly separated from
administrative chores performed by the executable code. The input rule gives a
specification of the interactions occurring with other processes. This gives a
good insight in what the process is supposed to do. In ADA this is less clear
because the accept entries and so the interaction specifications may occur at
any place in the executable code.

4.4 Reader writer

Several processes can read from and write to process 'Reader writer'.
Writers have priority over readers. New readers will not be permitted to read
if there is a writer waiting. When a writer has finished all waiting readers
will have priority over the next writer.

The ITP model does not allow procedure entries such as in ADA. Information
about different processes has to be extracted from the queues for the basic
tools. Therefore the ITP solution looks somewhat different from the ADA
solution:

task READER_WRITER

en~t~"3, WRtTEiE : Jn ELEM);
end;

~ k body READER_WRITER
VARIABLE: ELEM;
READERS: INTEGER := O;
~n'~nf START_READ;
,~n~q/ STOP_READ;

procadum READ(V : o~.~ ELEM) h~
b,~gin

START_READ;
V := VARIABLE;
STOP_READ;

end;

begin
accept WRITE[E : in ELEM) de

VARIABLE := E;
N := START_READ'COUNT:

end;

~oop
select

when WRITE'COUNT = 0 = > -- this is safe
accept START_READ:
READERS := READERS + 1:

or
accept STOP_READ:
READERS := READERS - 1;

or
when READERS = O = ~

accept WRITE(E : in ELEM) do
VARIABLE := E;

end:
loop

select
accept START_READ;
READERS := READERS + 1;

else
exit;

end sel~t;
end loop;

end select:
end loop;

end READER_WRITER;

-58-

tool Reader writer =
- - input ~rite;

(lwrite~count=O or (readers>O an~ read'count>O)l:read
+]readers =-~I : write

)$

end;

variable : elem; readers : integer;

tool read = receive;
send sender [varlable);
if write'count = 0 -- no writers in queue
t-Ten readers := read'count;
%lee readers := readers - I;

end if;
end;

tool write ~ receive variable;
readers := read'count; -- readers with priority

end;

init readers := O; end;

end;

The variable 'readers' indicates the number of readers that have priority over
the next writer.
First a send to basic tool 'write' will be accepted. Subsequently when no
external process has issued a send the basic tools 'read' or 'write',
'Reader writer' waits for a send to any of these basic tools (both tests yield
true); -- when there are readers which have priority over writers then
'Reader writer' only accepts sends to basic tool 'read'; finally when sends are
issued --to basic tool 'write' and all readers which had priority over writing
have been serviced (readers = O) 'Reader writer' will only accept a message to
'write'.

4,5 Control

Process 'Control' satisfies disk requests which are ordered in FIFO priority
queues. The number of requests per queue is administered in the array
'pending'. The subscript for each array element serves as a priority level.
In order to service a request a send to basic tool 'signin' must be accepted
first and its occurrence recorded. In a second step the tool 'perform' must be
executed. The inT~t parameter of tool 'perform' indicates the priority level to
be serviced.
Process 'Control' proceeds by :
I. waiting for the first request to 'signin' if all previous requests have been

serviced ;

-69-

2. accepting all pending requests;
3o executing the request with the highest priority;
4. restart the mainloop of the input expression to take

issued in the meantime.
care of any signin's

From this description the input rule for process 'Control' is immediately
derived°
In this input rule another example is seen of a conditional repetition. As soon
as the test yields false (in fact case I (total=O) and 2 (sigin'count>O) are
both handled) the repetition will end. After the completion of the repetition
tool 'satisfy' is activated° In its init rule the priority level to be serviced
is determined° When this is done one request will be accepted and serviced.

tas~ CONTROL is
sub'bcpe LEVEL is INTEGER range 1 .. 50;
procedure REQUEST (L : LEVEL: D : DATA):

end:

task body CONTROL is tool
entry S IGN_IN { t : LEVEL);
entry PERFORM {LEVEL'FIRST ,. LEVEL'LAST)(D : DATA):
PENDING : array {LEVEL'FIRST ,.LEVEL'LAST) of INTEGER :=

(LEVEL'FIRST .. LEVEL'LAST = > 0):
TOTAL : iNTEGER := O;

procedure REOUEST(L : LEVEL; D : DATA) is
begin

SIGN_IN(L) :
PERFORM{L)(D);

end;

begin
loop

if TOTAL = O then
-- no request to be served: wait if necessary
accept SIGN_IN(L : LEVEL) do

PENDING(L) := PENDING(L) + 1;
TOTAL := 1 ;

end SIGN_IN;
end if;
k~op -- accept any pending SIGN_IN call without waiting

select
accept SIGN_IN(L : LEVEL) do

PENDING(L) := PENDING|L) + 1;
TOTAL := TOTAL ÷ 1;

end SIGN_IN:
e l s e

exit;
end select:

end loop:

for I in reverse LEVEL'FIRST .. LEVEL'LAST loop
if PENDING(I) > O then

accept PERFORM(I)(D : DATA) do
-- satisfy the request of highest level

end;
PENDING(I) :~ PENDING(I) - 1; en__d;
TOTAL := T O T A L - 1;
exit; - restart main loop in order to accept new requests

end if;
end loop;

end loop;
end CONTROL;

Control = • ' ' " n satisfy) $
input ((Itot al=O o_~ signln count>O,:slgni) $;

end;

subtype level is integer rtnge I..50;
total : integer; prty : level;
pending : array(level'first .. level'last) o_~ integer;

tool signin " receive prty;
-- pending(pzty~ pending(prty) + I;

total := total + I;

end;

tool satisfy ~ ~ perfo~[i] en2;

i : level;

too ! perform [J:level] " receive d;

d : data;
satisfy request(d);
pending(j) := pending(j) - I;
total := t o ta l - I;

end;

init i :" level'last; -- determine which priority
-- level should be serviced

while pending(1) = 0 and i >- level'first
loop i :- i - I end loop;

end;
end;

Init for J in level'flrst .. level'last;
Io~ ~dlng(J):'O; end io~; -- no request received

to ta l := O;
end;

The procedure entry in connection with the accept entry enhances the power of
the inter-process calling facility in ADA. Here it makes it possible to include
the protocol in the process which demands it, without the user having any notice
of it. In the ITP approach there are no procedure entries, so something
different has to be done. Obliging the user to follow the protocol seems rather
unsatisfactory. We have therefore chosen for a different approach. In the ITP

the name of the user process:

-70-

tool Sched control[user:process] = inou_~ request en_d;

1 : level: d : data;

tool request = receive l,d;
-- send Control.signin(1);

send Control+perform[l](d);
send user; -- acknowledgement to the user

end;
end ;

In fact the user now only communicates with its private scheduling process by
issueing a send Sched control[user].request(level,data).
By choosing an appropriate name for that scheduling process the user will not be
aware of talking to an+ intermediate process, rather than directly to 'Control'

4.6 Printer driver

The next process drives a chain printer. If the printer does not receive a
printing request for 10 seconds, while the chain is going, the chain is stopped.
A further print request will restart the chain and after a one second delay
printing can start again:

task P R I N T E R DRIVER i l
entry P R I N T (L : L INE);

end;

task body P R I N T E R _ D R I V E R is
C H A I N _ G O I N G : B O O L E A N := FALSE;
BUFFER : L INE;

begin
loop

select
accep t PRtNT(L : LINE) do

BUFFER := L;
end;
i f no t C H A I N _ G O I N G then

-- s ta r t the cha in
delay 1 . 0 * S E C O N O S ;
C H A I N _ G O I N G := T R U E ;

end if;
+= pr ln t the line

or
when C H A I N _ G O I N G = >

delay I O . O , S E C O N D S ;
-- s t o p the chain
C H A I N _ G O I N G := FALSE;

end select;
end loop:

end;

tool Printer driver =
-- input ~rintline + Ichain goingl:stop printer)$ end;

chain going : boolean;

tool printline =
- - input line ; Ino~ chain goingl:start printer en_~;

buffer : array (I .. 80) of character;

tool line = receive buffer;
end;

tool start printer = input clock[l] end;
chain going := t=ae;

end;
init start chain end -- system routine

printout (buffer);
end;

-- system routine

too1 stop_printer = input clock[10] end;
stop_chain; -- system routine
chain_going := false;

end;

end;

init chain_going := false;
end;

Each process has a basic tool 'clock' This basic tool has one parameter,
indicating the number of seconds after which an interrupt should occur. When
'clock' is one of the active basic tools, it occurs if within the specified
number of seconds no message for another active basic tool arrives.

Initially the process only waits for the occurrence of tool 'printline',
since the chain is not going ('chain going' is false). Consequently a send from
any process to 'line' will be accepted. After a line is received tool
'start_printer' is activated ('not chain going' yields true). In the init
statement of this tool the chain is started, following which basic tool
'clock[1]' will be activated. This implies a one second delay, since this is
the only active basic tool at that moment. When basic tool 'clock[l]' has
occurred, the input rule of 'printline' is satisfied. Consequently the body of

-71-

tool 'printline' will be executed~ that is the line sent will be printed.
Because of the repetition ($) in the input rule of 'Printer driver' the
expression between parentheses becomes active again° Since the printer chain is
going this process now waits for either a send to basic tool 'line' from any
process, or for a clock interrupt after 10 seconds (tool 'stop_printer~,
following which the chain will be stopped.

Inspection of this example shows that intermixing of lines from several
printing processes can happen. To avoid this it is necessary for the printer
driver to accept lines from one specific process only, until all printing for
that process is done. The ITP solution is given in the next example. It
assumes that the last line to be printed is identified by an EOF character.

tool Printer driver =
.... input ~rintline I . r _ _ + jchaln golngl !stop printer)$ end;

customer : process set;
chain going, first line : boolean;

tool printline =
incur customer -> line ;
- - l, not chain goingI~ :startprinter

end;

buffer : array (I .. 80) of character;

tool line = receive buffer;

if first line
t-Fen cus-tomer := {sender};

end if;
if %~fer(1) ~ EOF
t-hen first line := true;

" customer := Universe;

end if ;

end;

too ! start printer = input_ clock[l] en__d;

chain going :~ true;

init start chain end -- system routine

end;

print out (buffer); -- system routine

end';

tool delayed stop = input clock[t0] end:
stop_chain; -- system routine

chain going := false;

en__d;

init chain going := false;
first, line := true: customer :~ Universe;

end;
en_~;

This solution only accepts messages for basic tool 'line' from the members of
process set 'customer'. At initialisation of process 'Printer driver' this set
is made equal to the Universal set, containing the names of all processes in the

' " " e'
system. So when prlntlln gets active for the first time a send to basic tool

'line' will be accepted from any process.
When the first message to 'line' is accepted the process set 'customer' is set
equal to the process which sent this message. Hence the next time 'printline'
gets active, only a message to 'line' from that specific process is accepted,
since it is the only member of the set 'customer' Upon every new activation of

until the last
t ° " e' tool prlntlln only a message from this process is accepted,

line is sent. At that time 'customer' is set to the Universal set again.
In the mean time sends issued by other processes which are directed to basic
tool 'line' will be delayed until the current process has finished printing.

Following that the next process will get control over the printer.
The queue for basic tool 'line' is not strictly a FIFO queue any more. This is
caused by the fact that 'Printer driver' at a certain moment only accepts

-72-

messages from processes which are members of the set 'customer'°

This example shows the lack of power of the ADA primitives. A process should
be able to identify a customer and set up a connection with an external process.
In ADA this seems only possible by letting the user explicitly serialise the
printer with the help of semaphores, or by sending the entire file to be printed
as a single message°

4.7 Diskhead scheduler

As a last example a disk head scheduler is shown. It handles data requests

to and from a moving head disk. The requests are grouped into separate queues
for each track and all requests for a particular track are serviced together.
There is a basic tool for each track, so all queues are independent°

A separate process, called 'Disk head scheduler', controls the arm movement and
the choice of the track:

task D ISK_HEAD_SCHEDULER is
t ype TRACK is new INTEGER range 1 .. 2 0 0 ;
type D A T A is ... ** o ther p a r a m e t e r s of t ransfer
procedure T R A N S M I T (T N : TRACK: D : DATA) :

end;

task body D I S K _ H E A D _ S C H E D U L E R is
type D IRECTION i5 (UP, DOWN) ;
INVERSE: cons tan t array (UP .. D O W N) of DIRECTION :=

(UP = > D O W N . D O W N = > UP):
STEP : constant array (UP .. D O W N) of INTEGER range -1 .. 1 :=

(UP = > 1, D O W N = > -1) ;
W A I T I N G : array (T R A C K F I R S T .. TRACK 'LAST) of INTEGER :=

[TRACK'FIRST .. T R A C K ' L A S T = > 0);

COUNT : array (UP .. DOWN) of INTEGER := (UP .. D O W N = > 0);
MOVE : D IRECTION := D O W N ;
A R M _ P O S I T I O N : TRACK := t ;

entry S t G N _ I N (T : TRACK):
entry F I N D _ T R A C K (R E Q U E S T S : out INTEGER; T R A C K _ N O : out TRACK) ;

task T R A C K _ M A N A G E R is
entry TRANSFER(TRACK 'F IRST .. TRACK 'LAST) (D : DATA) ;

end:

procedure T R A N S M I T (T N : TRACK; O : DATA) is
begin

"S IGN_IN(TN} ;
T R A C K _ M A N A G E R . T R A N S F E R I T N) { D) ;

end;

task body T R A C K _ M A N A G E R is
N O _ O F _ R E Q U E S T S : INTEGER;
C U R R E N T _ T R A C K : TRACK;

begin
loop

F I N D _ T R A C K (N O _ O F R E Q U E S T S . CURRENT_TRACK) :
while NO_OF_REQUESTS > 0 loop

accept TRANSFER(CURRENT_TRACK) (D : DATA) do
-- do actual I /O
N O _ O F _ R E Q U E S T S := N O _ O F _ R E Q U E S T S o 1;

end TRANSFER;
end loop:

end loop;
end T R A C K _ M A N A G E R ;

end;

tool Disk head scheduler =
-- input (Ic~unt(up)+count(down) > 01: findtraek + signin) S ~n_~;

type track is new integer range I..200;
type direction i__s (up,down);
inverse : constant array (up .. down) of direction;
step : constant array ,,up .. down) of ~teger range -I .. I;
waiting : array [track'first .. tram'last) o~ integer;
count : array~up .. down) of integer;
move : direction;
armposition : track;

tool findtrack = receive;
requests : integer; trackno : track;
i_~ count(move) = 0
then move := inverse(move);
else armposition := armposition + step(move);
end if;
while waiting (armposition) = 0
loop anmposition := armposition + step(move); end loop;

count'(move) := count(move) - waiting(armposition--~
requests := waiting (armposition);
track no := armposition;
waiti~g(armposition) := O;
send sender(requests,trackno);

end;

tool

end;

in i t

end;

signin = receive t;
t : track;
if t<armposition
t-~en count(down) := count(down) + I;
elsif t>armposition
then count(up) := count(up) + I;

(
else count(inverse~move)) := count(inverse(move)) ÷ I;
end if;
waiting(t) := waiting(t) ÷ I;

inverse(up):=down; inverse(down):=up; count(up) := O;
count(down) := O;step(up):=1; step(down):=-1;
waiting:=O; move:=4own; armpostion := I;

-73-
begin -- OISK._H EAD_SCHEDULER

initials TRACK_MANAGER:
loop

select
when COUNT(UP) + COUNT(DOWN) > 0 = >

acceptt F I N D _ T R A C K (R E Q U E S T S : out INTEGER: TRACK_NO: out TRACKI do
if COUNT(MOVE} = 0 then

MOVE := INVERSE(MOVE);

ARM_POSITION := ARM_POSITION + STEP(MOVE):
end if:
while Vv'AITING(ARM_POS(TION) = 0 (oop

A R M P O S I T I O N := ARM_POSITION ~ STEP(MOVEk
end loop:
COUNT(MOVE) := COUNT(MOVE) -WAITINGIARM_POSITION):
REQUESTS := WAITING(ARM POSITION);
TRACK_NO := ARM POSITION;
WAITING(ARM_POSITION) : : O;

end FIND_TRACK;
or

accepi SIGN_IN(T : TRACK) do
if T < A R M P O S I T I O N lhen

COUNT(DOWN) := COUNT(DOWN) + 1;
elsif T > A R M _ P O S I T I O N then

COUNT(UP) := COUNT(UP) 4- 1;
else

COUNT(INVERSE(MOVE)) := COUNT(INVERSE(MOVE)) + 1;
end if:
WAITING(T) := WAITING(T) + 1;

end SIGN_IN;
end select;

[end loop;
end DISK H E A D _ S C H E D U L E R ;

tool Trackmaaager =

innu__~_j (Disk head scheduler->adm;
',no 7f re~ is>Of: transfer[current track] $

end;

no of requests : integer; current track : track;

tool adm = receive no of requests, current track;

ini t send Disk head_scheduler, find track ; 5--
en_~;

tool transfer [tn : track] = receive d;
d : data;
do I0 ;
no of requests := no of requests - ~ ;

en_d;

end;

The user, probably via a dedicated scheduling process (such as in section 4.5)
would issue:

send Disk head scheduler.sign in (t);
send Track man~ger.transfer[t~(record);

The first send causes the request to be administered and the second send causes
the I/O to be performed.

A nominal investment of time in studying the ITP solution gives a good
insight in what these processes are doing, and how they communicate with each
other and with the user processes. The ADA solution however is much more
cryptic about that.
This comparison of both solutions clearly illustrates that for more complex
examples the readability and clearness of the ITP solution increases
considerably over the ADA solution. This is inherent to the structured,
hierarchical approach of the ITP model.

5. Conclusions

Using examples presented earlier in the ADA rationale and ADA reference
manual a new approach to a communication facility has been shown. This approach
is based upon input specifications, because input is one of the basic principles
in communication. Exchange of information between processes only occurs by
means of message passing. This has led to a somewhat lower level of
communication mechanism (send/receive). The benefit of it however is that real
parallel execution is possible. This is especially so when the receiving
process has to execute many statements before it can return a reply to the
requester. The send and receive primitives take care of the message exchange,
and synchronisation occurs implicitly. As soon as a message has been consumed

both the sending and the receiving process may proceed.

Another advantage is that input specifications lead to a hierarchical,
structured approach of describing the communication pattern. The communication
specification is separated from the normal executable statements. It has its

-74-

own primitive operators for selection, sequencing and (conditional) repetition.
This also makes it possible to discard such nasty constructs as else in ADA.

It seems a restriction of the ITP method that tools and hence basic tools
have one body. The body of a basic tool can be compared with the accept body in
ADA. However it is rather unnatural to have more than one body connected with a
certain entry. Especially for service processes an entry corresponds with a
certain task to be performed. It can only be confusing when an entry would do
different things depending on the local environment of the service process.

A last remark about this new approach is that it is possible for a sending
process to identify its destination, and it is possible for a process waiting
for information to identify its source. This latter is certainly necessary for
service processes wanting to communicate with a user process for a certain
amount of time, without any other process being able to interfere with this
communication.

By and large this new approach seems to lead to a simple and more powerful
way of communication, which is easier to read because of its structured
appearance. Especially the communication specification clearly separated from
the executable code is one of the great advantages of the ITP model.

REFERENCES

I. J.D Ichbiah et al
Rationale for the design of the ADA programming

June 1 979-
language, Sigplan Notices,

2. J.D. Ichbiah et al
Preliminary ADA reference manual, Sigplan Notices, June 1979.

3. J. van den Bos
Comments on ADA process communication, Sigplan Notices, June 1980.

4. J. van den Bos, N.J. Plasmeijer, J.W.M. Stroet
Communicating processes based on input specifications, Internal report no.
22, Informatica/Computer Graphics, University of Nijmegen, The Netherlands,
April 1 980.

