
-92-

A FORTRAN F'REF°ROCESSOR
FOR THE LARGE PROGRAM ENVIRONMENT

Neal R. W~ner
Computer Scienc, e DePartmer~t

Universit~ of Houston

Houston, Texas 77004

Obs£~a~£~ The use of a PreProcessor to mid structured
Pro~rammin~ in Fortran has been widel~ discussed~ This ar-

ticle considers a design ehilosoehw which is eseeciall~
oriented toward large Program develomment and maintenmnce.
"The design is distinguished b~ the retention of the form of
the original source Program in the standard Fortran oube~rt
b~ the PreProcessor. A specific implementation is
described.

I . INTRODUCTION

Various software tools are often nearl~ essential for large
Program development, and one such useful tool is a Preprocessor
for the language used. A Preprocessor is esPeciall~ helpful for

an~ development involvin~ the Fortran language as suPPlied b~
mane vendors. Even after Fortran 77 is widel.~ implemented,
eliminatin~ some of" the need for a PreProcessor, rec~uirements on
a far.me Pro~rammin_~ ero,Ject will often be so specialized that
then will best be met b~ a PreProcessor written sPecificall~ for
that one aPPlication. (Usual i~ the aPPlications Programmers
themselves should design and implement such a Preprocessor.) One

can achieve the effect of a change in the compiler b~ a change in
the Preprocessor.

This article focuses on a specific experimental Fortran
PreProcessor. However the article also Presents a much more

broadl~ aPPlicable design methodology, namel~, a PreProcessor
which incorporates the original source text into its output.

II. DESIGN GOALS AND MOTIVATION

There now exist a surerisin~ number of special Fortran
P r e P r o c e s s o r s . The .~ se rve t o ex tend the F o r t r a n language w i t h
new c o n t r o l s t r u c t u r e s or new da ta t~ees o r o t h e r f e a t u r e s . (See
R e i f e r [1 2] f o r a l i s t o f 55 such P r e p r o c e s s o r s .) These
P reProcesso rs o f t e n s u f f e r from man.~ o f t he f o l l o w i n ~ d i s a d v a n -
tares;

http://crossmark.crossref.org/dialog/?doi=10.1145%2F947800.947812&domain=pdf&date_stamp=1980-12-01

-93-

Fortran PreRrocessor

I, Comeile-time a n d executior, e r r o r s a r e not d e s c r i b e d
in source l~nguage terms°

2~ The ~re~rocessed form of the erogram i s hard to
read ~nd unde rs tand , and hard to c o r r e c t o r modi fy°

3~ There i s a need to m a i n t a i n two seea ra te
because o f i tems 1 and 2~

listings

4° Ir, some swstems the extended
mrocessed are no t checked f o r e r r o r s °

f e a t u r e s be ing

5° Each PreProcessor imelements d i f f e r e n t t~ees and
forms of language extensior, s°

6° The Preprocessor uses ue e x t r a e x e c u t i o n t ime°

7° The ~reerocessed t e x t s u f f e r s i n comear ison to
hand-coded t e x t designed to do the same t a s k .

For example the RATFOR Preprocessor developed b~ Kerni~ham
[8 :] , though ver~ s u c c e s s f u l , s u f f e r s from a l l the d i s a d v a n t a g e s

excee t i tem 4.

I n the l a r g e Program env i ronmen t , i tems i , 2 and 3 form the
h e a r t o f the Problem° (I n an env i ronment c o n s i s t i n ~ mos t l y o f
s m a l l e r ~ros~rams i tem 6, the e x t r a e x e c u t i o n t i m e , ma~ be the
most i m p o r t a n t , as i s d iscussed i n the c o n t e x t o f WATFIV-S b~
D i r k s o n and McPhee [4] °) When the a u t h o r ProPosed to s e v e r a l c o l -
l eagues i n an indust r .~ env i ronment t h a t a e r e e r o c e s s o r be used
f o r d e v e l o e i n ~ a l a rge c o l l e c t i o n o f F o r t r a n s o f t w a r e , t h e i r main
reason f o r r e j e c t i n g the idea was the need f o r two seea ra te
l i s t i n g s , s i n c e t h i s would ~ r e a t l ~ i nc rease the amount o f work
r e ~ i j i r e d d u r i n ~ debugging and maintenance°

With t h i s c r i t i c i s m i n mind, t he au tho r began the des ign o f
a PreProcessor which would i n c l u d e the c r i m i n a l source language
as comments i n the eroerocessed t e x t ° I f t h i s were done i n such
a wan t h a t the o r i g i n a l source was e a s i l ~ readab le then on l~ a
c o m p i l e r l i s t i n g o f the ereerocessed t e x t would be needed.

A number o f au tho rs have suggested s i m i l a r s~stems, t he
c l o s e s t be in~ t h a t of Bodd~ [1]0 Other i n t e r e s t i n ~ e roPosa ls have
been ~ i v e n b~ Bond [2] , Charmonman and Wa~ener [3] , Gales [5] ,
H i ~ i n s [6] , Horowi tz [7] and M~ers [10]o However, none o f t hese
a u t h o r s ment ion a ke~ f e a t u r e o f our s~stem~ the a b i l i t y t o
=ecoue= the o r i ~ i n a l source code from the ereerocessed t e x t °
T h i s f e a t u r e w i l l be d iscussed more t h o r o u g h l ~ l a t e r .

Of course the idea of i n c l u d i n ~ the c r i m i n a l source i s no t
newt Assembler l i s t i n g eroduced b~ c e r t a i n c o m e i l e r s g i v e the
comp i led h i ~ h - l e v e l s ta tements i n t e r s e e r s e d i n the assembler
code° Another examele i s the i n c l u s i o n o f macro expans ions i n

assembler code°

-94-

Fortran PreProcessor

Notice that there rare other mosssible wa~s to tr~ to
eliminate the need for double listings0 For ex~.~m~,le, one could i n
~ v~riet~ of wa~s retrieve the line numbers from the compiler
listine and match them up with the aPPropriate statements in 'the
or;i.~inal source listin~ In f'~ct, our s.~stem ~].so does this, .~s
will be described in the next section~

Our original design is illustrated in Figure I, which rives
the PreProcessed text~ There is no need to ~ive the source text,
since the source is what aPPears between the two dashed vertic~l

lir, es~ (Actu~ll::~, ~e have taken certain liberties here, since
FiWure I is P~rt of ~ listin~ Produced bw ~n ~dv~r, ced vers:[or', of
the Preprocessor. The oriSir, al desiSn diff'ered in a ~'ew |;,inor

waist) [he basic design strateee~ as should be evident f'rom

Fi:~ure I, was to shield the extended statements as comments ~r',d
to move the ~enerated standard Fortran to the far ri.~ht 15
columns° Vertical lines ~re inserted where Possible in columns 6
rand 57 to separate out the original source. In addition to the
features illustrated, the original design had an 'INCLUDE" state-
Pent f o r incorPoratinG source text fi!es~

SimPlicit~ was also an important Part of the original
design0 For example, such ~s~ntactic sugar" as the use of '!="

as an alternative to '~NE~ ~ in the RATFOR s~stem [8] was
resisted, since too man.~ such special features can make it harder
to train newcomers to the s~stemo

Finall.~, the design aimed "to be as flexible as r~ossible so

• that man.~ different combinations of" 'features could be tried out~
This PreProcessor was always visualized as ~r~ exPerimer, tal tool,
and durin~ its development man~ chan~es were tried out in the
s.~ntax of the extended statements, in the wa~ the~ were shielded
as comments, in the form of the ~enerated standard Fortran, and
so forth. In this sense Figure I represents a f'airl.~ late sta_~e
in the development.

-95-

Fortran Preprocessor

90007

C#

90010

C@

90013

C#

90016
C#

C#

90017
C#
90014
90015

C~
90011

90012
C$

90008

90009

:F'OR S FROM T TO 1 BY -I DO

H = HT(S)
FOR J FROM H+i TO N DO

I = J - H
RR = R(J)

WHILE RR °LT° R(1) DO

R(I + H) = R(1)
I = I - H
IF (I °LE. O)
THEN

OD

BREAK

FI

R(I+H) = RR
OD

IOD

RETURN
END

I90007=(I -T
+ (- i)) / (- i)

S=T- (- I)
S=S+(-I)

IF(I9OOO7.LE
°O)GOT090009

I90010=N
- (H + I) + i

J = (H + i) - I
J=,J+l

IF(I9OOIO°LE
°O)GOT090012

IF(,NOT,(RR°LT.
R(1)))GOT090015

GOI'O 90016

GOTO 90017
CONTINUE

I

GOTO 90015

CONTINUE
Z

GOTO 90013
CONTINUE

190010=190010-1
GOTO 90010

CONTINUE

190007=I90007-1
GOTO 90007

CONTINUE

FIGURE I° PreProcessed t e x t .

-96-

F'ort rat, PreProcessor

III. FINAL DESIGN AND IMRLEMENTATION

Rather that, dwell on this mre~,rocessor's evolution, we will
discuss its final f o r m in this section~ The next section will
discuss the development and use ot the F, reF, rocessor,

The final version of the Preerocessor consists of two P L . / I
ero.~rams; the ~.reF.rocessor itself (over I000 card images ion~)

and a semarate PostProcessor for compiler lis'tin~s (about 150

c:ard images lon~). There are also four catalogued Procedures
(collections of control cards) for usin~ these e~ro.~rams.

One of the most interestin~ features of this PreProcessor is
that it will run in two modest 'normal' and "recover'. In 'nor-

mal" mode, comments and standard Fortran are i~nored, and the
language extensions are translated as one would expect. If mart
of the source t e x t con ta ined t e x t t h a t had a l read~ beer, r u n

th rough the PreProcessor , t h i s source t e x t would look l i k e com-
ments and s tandard F o r t r a n and so would be i~nored .

In 'recover' mode, first the original source is recon-
structed and then the Preerocessor Proceeds as in "normal' mode.
If" no eart of the source text has alread.~ been ere~rocessed, this
mode is equivalent to "normal' mode. If Part (or all) of the

source text had been ereerocessed, the effect of the
ereerocessin~ on that Part would be undone, so that e.reerocessin~

would start from scratch on all earts of the source text.

A "recover" mode imelies a n al~orithm for reconstructin~ the
source text from the ereerocessed text. The al~orithm is clear
from Figure I and from the followin~ restrictions on the form of
standard Fortran that a user of the ereerocessor must emPlow.

I . A user i s not a l lowed to Put a "e" c h a r a c t e r in
column 2 o f a comment. Thus the Preprocessor can assume
t h a t an~ comment s t a r t i n ~ w i t h 'C# ' i s generated b~ i t s e l f
and can e a s i l ~ r e c o n s t r u c t the o r i g i n a l source t h a t the
comment s h i e l d s .

2. A user is not allowed to code a standard (non-
comment) Fortran statement with blanks in columns 7-57.
Thus the PreProcessor knows that an~ standard Fortran
statements which are not comments and which use onl~
columns 1-6 and 58-72 are statements which it ~enerated.
In 'recover n mode such statements can be recognized and
deleted. (In Practice, few Peoele would ever space over to
column 58 to be~in a Fortran statement.)

All communication to and from the ereerocessor is via For-
tran comments. Anw oetions to the Preerocessor are seeci?ied o n

a seecial "C OPTIONS' card at the be~innin~ of the ero~ram. The
"C OPTIONS" card is itself ereerocessed (or ~enerated if not

-97-

Fortran PreProcessor

Present) to indicate also the default options in effect. The
Preprocessor identifies itself b~ two comments and Produces "er-
ror message ~ comments for ~n~ errors it detects. Finall~ it
Rroduces an error count ~or each subprogram and a ~rand total of
the nu~nber o~ errors. (See Figure 3 for examPleso)

L.et us list and discuss some of the Preprocessor options as
~iven on the ~C OPTIONS" card at the head of Figure 2. The ef-
fects of several of these options are shown in Figure 2.

1, As discussed above, the Preprocessor will
e i t h e r "normal ~ or ~recover" mode, where "R= I '
a recover ~ mode.

r u n i n

m e a n s

2. The s t a r t i n ~ va lue f o r the 5 - d i g i t i n t e g e r s used
f o r genera ted s ta tement l a b e l s can be changed from the
d e f a u l t va lue ~ iven b~ 'N=90001'° (T h i s i s e s s e n t i a l to
a v o i d d u p l i c a t e l a b e l s i f we add extended s t a temen ts to
e reerocessed t e x t and run the Prep rocessor a second t ime i n
'normal' modem)

3. The Preprocessor w i l l Produce a source l i s t i n ~
(" S = 1 ") , a l i s t i n ~ of the Preprocessor o u t p u t (' S = 2 ") or a
' r e c o v e r e d " source l i s t i n g (' S = 3 ") . (U s u a l l u one would want
none o f t h e s e , bu t a " r e c o v e r e d ' c o m p i l e r l i s t i n ~ as shown
i n F i g u r e 2 and d iscussed i n the nex t s e c t i o n .)

4. The number of columns (r i g h t - J u s t i f i e d to column
72) f o r the ~enerated s tandard F o r t r a n can be chan~ed from

the d e f a u l t va lue ~ i ven b~ ' L=15" .

5. The c h a r a c t e r used to mark. bounda r i es car, be
chan~ed from the d e f a u l t ~ iven bw "B= ' : ' ' , (I f B i s s e t
e~ual to a b l a n k , then the boundar ies are no t marked.)

6. I f reeues ted , the PreProcessor w i l l a u t o m a t i c a l l ~
r e f o r m a t source t e x t t o Prov ide un i fo rm amounts o f i n d e n t a -
t i o n f o r b l ocks and loo~s . Th is i s s p e c i f i e d b~ s e t t i n ~
'F" eeua l t o some P o s i t i v e in temer which w i l l be t he number
o f columns used f o r each l e v e l o f n e s t i n g . Comments are
on l~ r e f o r m a t t e d i f the f i r s t non -b lank c h a r a c t e r a f t e r

column 6 is a "~',

7. The Preprocessor w i l l o e t i o n a l l w Put ~ r i d marks o f
• °" i n t o the r e f o r m a t t e d comments to i n d i c a t e the l e v e l s o f

n e s t i n ~ o

8° The preprocessor will Produce update numbers for
columns 73-80 of ~enerated statements. (This is so it can

interact successfull~ with the IBM UPdate Utilit~o)

-98-

113

114
115
119

120
122

123

124
125
126

127

128

129
130

:t 33
134

136

137

139

140
144

148
149

150
151
152

154
155
156

157
158
161

164

165
166
167

168

Fort rmn Premrocessor

$,.IOB
C OPTIONS N=9000I~U=OOOO0000,L=15,B=" I',H='#',G='~',S=123,P=00~R=1~F= 3
C### UTEF' FORTRAN PREI::'ROCESSOR~ VERSION 2~3~27 MAR 1978, EL F'ASO, TEXAS
C### DATE OF JOB* 02 MAR 1979~ TIME: 17~15~47, STARTING I...ABEL~ 90001

(A number off source cards deleted)

C

C

*** CHECK FOR ,JOKER
I,.J = 0

I,.JOKE = 0
FOR I FROM 1 TO 5 DO

IF" (IP(I) .EQ~ O)

THEN

l , . J = I
. o *** MOVE JOKER TO 5TH POSITION

IR(IJ) = IR(5)

IS(I J) = IS(5)
IR(5) = 0
IS(5) = 0

I JOKE = 1
~ *** JUMP OUT OF CONTAINING LOOP

BREAK

F I
OD
I F (I J ~EQ. O)
THEN
. *** NO JOKER

ITYPE = JTYPE(IR, IS)

ELSE
. *** HERE 5TH CARD IS JOKER

ITYRE = 0
FOR I FROM I,~ ÷ IACE TO I + IACE BY -I DO

FOR d FROM i TO 4 DO
. • • * * * TRY EACH POSSIBLE CARD

IR(5) = I
IS(5) = ,.J
IT = JTYPE(IR, IS)
IF (IT .OT. ITYPE)
THEN

. . . . * * * HERE HAND BETTER THAN ANY PREVIOUS ONE

ITYPE = IT
IR,J = I

ISJ = ,J
F I

OD
OD

° *** STORE BEST" VALUE OF' JOKER IN 5T14 CARD
IR(5) = IR,J

IS(5) = IS,.J
FI
RETURN
END

C

FIGURE 2. WATFIV ComPiler listin~ (recovered).

-99-

F o r t r s n PreProcessor

| " 0 IV~ EEVELOFMENT AND USE OF THE F'REPROCESSOR

The PreProcessor was coded in PL/I for use in a standard
academic IBM environment (IBM 360/65 with OS/MVT and HASP). The
first version was complete in Just a few weeks as a PL/I ero~4ram
with some 400 statements. Then over m six-month Period m ~reat

man~ chan~es and extensions were made to the original design,
based on use of the PreProcessor as it was chan~in~.

The o r i g i n a l vers ion handled s t r u c t u r e d c o n t r o l s t r u c t u r e s
similar to those in Figure I. The char,~es and additions in

chronological order were as follows:

i0 An "INCLUDE" statement was incorporated° This had
been Planned from the be~innin~ and was essential for large

Fortran Programs with mann subroutines and numerous common

blocks.

2 , Some minor char, yes to the syntax made
structures .look.. more lik.e those of Al~ol 68.

the control

3. The "C OPTIONS' card was implemented as an improved
wax to feed options to the PreProcessor.

4. The idea of a 'recover' mode for the
was discovered and implemented°

preprocessor

5. The Preprocessor was made to generate 8-digit uP-
date numbers in columns 73-80 of added text. These were

needed for ProPer interfacing with the IBM UPdate Utility.

6. A reformatting feature was added to indent source
statements in order to show the depth of nestin~o The

PreProcessor uses a ver~ simple reformattin~ al~orithm~ if
there is insufficient room to move the statement over to

the desired column, it Just moves it as far as it can and
makes no attempt to add another line~ As an afterthought,
optional insertion of ~rid marks was incorporated to show

how man~ levels of nestin~ were Present.

7. The ~enerated standard Fortran statements in com-
piler listings were found to be of ver~ little interest, so
a special posterocessor for compiler listings was written
to nrecover" the source but retain line numbers ~nd error
messages of the compiler listing. This eosterocessor will

oetionall~ list or surPress an~ statements incorporated

with an "INCLUDE" statement.

Ver~ few Problems were er, countered in imPlementin~ the
original design. The "INCLUDE" feature was harder to implement

than expected because our environment did not readil~ allow

rewindin~ of certain source input files. The original design

-i00-

Fortran PreProcessor

called for a final comment to be ~enerated ~ivin~ the total
number o9 PreProcessor errors <if there were ~r~), as shown in
Figure 3. This seemed straightforward and caused no Problems with
the WATVIV commiler~ However, to the author's amazement, our
version of the IBM Fortran H compiler ~ave a terminal error for

this kind of' final comment~ Thus the PreProcessor was chan~ed so
that it would not Produce this comment for the H comPiler~

The PreProcessor has been used for three medium-sized For-
tran development Pro.Jects (each about I000 card images lon~) and

~reatl~ facilitated the Program development° The "INCLUDE" fea-
ture Proved the most useful, since it allowed identical common
blocks to be chan~ed in a n,.Jmber of Places at once. (In mar,~ en-

vironments, this feature will alread~ be Provided b~ some s~stem

utility.) The new control struct,.Jres z~t hand allowed comPletel~
GOTOless Programs to be Produced, with statement labels onl~ used
for Format statements. There were essentiall~ no Problems with
the PreProcessor itself° All other forms of listin~ were c~uickl~
droPPed in favor on the "recovered" comF, iler listin~ (illustrated
in FiSure 2), as soon as it was available.

The PreProcessor was also used f o r Part of two different
university cl~sses. One class was a liber~l-arts mathematics

class which learned some rudimentar~ ero~rammin~ ,.Jsin~ the
Preprocessor. Because list-directed input-outPut was available,
the students were taught a version of' Fortran with no statement

labels at all! The other class was an engineering-oriented in-
troductor~ Fortran class. The students were introduced to the

PreProcessor for one ero~rammin~ eroJect~ The~ adapted to the
Preprocessor more raeidl~ than was expected and even developed a
very indignant attitude about the lack of an "IF-THEN-ELSE"
statement in the standard Fortran thee had been using. Preproces-

sor source errors which were eroeerl~ identified bet Preprocessor
error messages sometimes caused spurious compiler error messages
which bothered some students.

-I01-

Fortran PreProcessor

C###

C###

C###

C###

C###

C###
C###

C###

FOR I TO 1OO
ERROR ('FOR ~ STMT MISSING 'DO') ###
FOR I TO 1OO DO
FI

ERROR ('FI ~ WITHOUT MATCHING 'IF') ###
E L. S E
ERROR ('ELSE" ENCLOSED BY "DO-OD ') ###
OD
OD
ERROR (~OD' WITHOUT MATCHING ' D O ') ###
EI..SE
ERROR ("ELSE' WITHOUT "IF-FI') ###
F I

ERROR ("FI" WITHOUT MATCHING 'IF') ###
14 ERRORS IN THIS SUBPROGRAM ###
END
15 PREPROCESSOR ERRORS TOTAL ###

FIGURE 3° P reProcesso r e r r o r messages.

V~ CONCLUSIONS

L e t us f i r s t re -examine t he l i s t o f d i s a d v a n t a g e s from s e c -
t i o n I I and see whether t h i s P r e P r o c e s s o r t a k e s c a r e o f them.
The f i r s t t h r e e d i s a d v a n t a g e s r e l a t e t o t h e need f o r doub le
l i s t i n ~ s o With a ' r e c o v e r e d " c o m p i l e r l i s t i n ~ (F i g u r e 2) , t h i s
P r e p r o c e s s o r a l l o w s one to ye t a lon~ ve r~ w e l l w i t h J u s t one
s h o r t , e a s i l y read l i s t i n g ° The l i n e number on the l i s t i n s op-
P o s i t e an ex tended s ta temen t r e f e r s t o t he f i r s t o f t h e sequence
o f g e n e r a t e d s t a t e m e n t s which t r a n s l a t e t he source s t a t e m e n t . I n
P r a c t i c e t h e r e was never ann d i f f i c u l t ~ i n t e r P r e t i n ~ t he l i n e
number r e f e r e n c e s o f a c o m p i l e r e r r o r message° Thus t he a u t h o r
f e e l s t h a t t h i s P reProcesso r ver~ s u c c e s s f u l l ~ e l i m i n a t e d an~
need f o r doub le l i s t i n g s °

F u r t h e r m o r e , i f the e r e e r o c e s s e d t e x t o f a Program i s r i v e n
t o someone f o r use on a n o t h e r machine, i t i s r e a d a b l e i n t h a t
form and a s e p a r a t e l i s t i n ~ o f t he sou rce t e x t i s no t needed.

T h i s P reProcesso r has e x t e n s i v e e r r o r checks and e r r o r mes-
sages (see F i g u r e 3) but does not a t t e m p t an~ e r r o r c o r r e c t i o n .
A c t u a l l y , t he r e f o r m a t t i n g was added as a P a r t i a l e r r o r i n d i c a t o r
s i n c e m is takes i n t he l e v e l o f n e s t i n ~ were among t he most com-

• • • |

mona Wi th t he r e f o r m a t t i r , ~ , t h e r e was n e v e r ar|~ d l f f l c J l t ~
f i n d i n ~ the cause o f P reProcesso r e r r o r s .

- 1 0 2 -

F o r t r a n Preprocessor

To hel~ with disadvantage 5, the Preepocessor copies ~ sm~ll
Part of the Al.~ol &8 s~nt~x0 Ir'~ ~ l~ter version, one ~i~ht
replace ~FI ~ with the ~EN~IIF '~ of" Fortrar~ 77~ However, ~ Problems
with looes would red, sin, since the Fortran 77 ~)[)~ still rec~Jires
a statement label

This Preprocessor had execution time (disadvantage 6)

~enerali~ sofYaewhat less thar', c:omPile time, but still si~r~ificant~
The ereerocessor has ver~ elabormte mechanisms designed to cut
down on this extra PreProcessor execution time~ Un?ortunatel~,

these mechanisms eroved to be ~ little too elaborate to be

desirable in ever~da~ use. Halfwa~ through the development, when
the 'recover ~ mode was thought of, the idea was not to start al-

ways with the source as input to the PreProcessor. A Program
development environment was visualized with frequent ~.ro~ram u e -
dates~ Sueeose the eree~rocessed text is maintained ~s the main
ero~ram text~ Then ereerocessin~ would not be needed it onl~ a

compilation was desired~ Simple ued~tes not involvin.~ extended
features could also be made without rur:nin~ the ereerocessor at
all~ Certain other sim~ie updates might allow the ereerocessor to

be run in "normal ~ mode, where it would raeidl~ skie over an~
ereerocessed text. For a comv.iicated update the ere~rocessor
could alwa.~ss be run in 'recover = mode. Notice that for a run in

"recover = mode, chan~es and additions could be made to the
ereerocessed text without regard to the location of an~ generated

standard Fortran, since this would all be deleted anyway+ In
summar.~, the author feels that these elaborate features would
eliminate much ot the ereerocessor execution time. However the
simmlicit~ of startin~ from the original source each time seemed
to outwei.~h an~ saying, s obtained in this wax+

Disadvantage 7, the t a c t t h a t a ~ re~rocessor eroduces non-
oe t im ized code, would have to be l i v e d w i t h - - in the same wa~
t h a t we l i v e w i t h the i n e f f i c i e n c i e s o f a h i ~ h - l e v e l language
compared w i th assembler language+ (Of course we can always hand-
code i n d i v i d u a l s e c t i o n s .)

PL/I was chosen because ot its strin~-erocessin~ features

and because it ~ave ~ood access to the machine in our environ-
ment. Also this Provides a de~ree of eortabilit~ as PL/I becomes

more widel~ imelemented~ In fact, an implementation in Portable
Fortran or in Snobol might Prove rather unacceetabl~ slow. (In
our env i ronment , PL / I i s much t a s t e r f o r s t r i n ~ e rocess in~ than
s tandard Fo r t ran+)

In conclusion, Fortran can become almost eleasant when
statement labels are needed onl,~ f o r Format statements. (Fortran
77 eliminates this need, but unfortunatel~ does not have label-
free loops.) In a large ero~ram environment, special routines to
eosterocess comeiler listings seem earticularl~ valuable and

could be nicel~ combined with the t.~ee of ereerocessor discussed
here. Finall~, automatic formattin~ seems eseeciall~ desirable
for ero~ram develoement, and with this ereerocessor, usin~ its

'recover' feature, the source itself can be reformatted and not
Just the compiler listin~

-103-

Fortran Preprocessor

[I] Do E0 Bodd~,
PreProcessor,"
APril 19770

I " $ REFERENCES

" S t r u c t u r e d F o r t r a n -- with or without a
SIG£L~N Wotices, vol. 12, r,o+ 4, ~P~ 34-39,

[2] R~ Bond, ~Free-form s t r u c t u r e d For t ra r , t ra r , s l ~ t o r , "
~o~ i~es , vol+ i 0 , no+ 10, ~ + 12-15, Oct+ 1975+

[3] So Charmor, mar, and J0 L° WaQener, "Or , s t r u c t u r e d wro~rammin~
i n F o r t r a n , ' S IG~U~ ~ewsle££ez, vo l0 i 0 , no° i , pp0 21-23 ,
Oct° 1975.

[4] F'o Di rksor , and Io McPhee, ' S t r u c t u r e d WATFIV and WATFOR-II, '
Wa~oews, Jan+ 1977+

[5] L. Eo Gales, " S t r u c t u r e d F o r t r a n w i t h no e r e ~ r o c e s s o r , '
~LO~ ~o~ ioes , vol0 10, no. 10, Oct° 19750

SIG-

[6] D° S+ Hi~Qir, s, "A s t r u c t u r e d F o r t r a n t r a n s l a t o r , "
~ o ~ i c e s , v o l ° 10, no+2, ew+ 42-48, Feb° 1975.

SZG~L~

[7] E° H o r o w i t z , ' F o r t r a n - - car, i t be s t r , J c t u r e d Br',d s h o u l d i t
be?' in ~ac£ical S~ate~ies £or Deueloeim~ La~e So£~wa~e
S~s~ems, ed+ b~ E° Horowitz, Reading, HA: Addison-Wesley,

1975+

[8] B. W0 Kerni~ham, 'RATFOR - - a e reProcessor f o r a
F o r t r a n , " B e l l L a b o r a t o r i e s , i n t e r n a l memorandum°

r a t i o n a l

[9] C° L. McGowan and Jo R. Ke l l ew , Ioe-dowo S ~ u c t u ~ e d
mim~ IecbD i~ues , New York: P e t r o c e l l i / C a r t e r , 1975°

[i 0] G. J° M~ers, So££ua~e ~ e l i a b i l £ ~ w : B r i m c i e l e s sod B~ac~ice,
New York: Wilew, 1976.

[I I] A° Ra l s t on and J° L0 Wa~ener, ' S t r u c t u r e d F o r t r a n - - an
e v o l u t i o n of s tandard F o r t r a n , " IEEE I zaos° So£hwa~e
Eo~ i~eez io~ , v o l . SE-2, PP. 154-176, SePt° 1976°

[1 2] Do Jo R e i f e r , "The s t r u c t u r e d F o r t r a n d i lemma," SIGBL~W
No~ices , vo lo 11, noo 2, PPo 30-32, Feb. 1976o

