Check for
Updates

82

Even MHore on Advice on Structuring Compilers
and Proving them Correct: Changing an Arrow

Fernando Orejas
Facultad de Mateméticas
Universidad Complutense

Madrid 3, SPAIN

I had just finished the first draft of the paper “On Representation
of Data Types" and I was, once more, thinking on programming languages as
data types (see, for example, Gaudel (1980) or Broy and Wirsing (1980))
and considering translation as representation of data types, when, turning
ny attention to ADJ (1979), I discovered that my concept of representation
correctness was clearly connected with the concept of compiler correctness
in the tetralogy McCarthy and Painter (1967), Burstall and Landin (1969),
Morris (1973) and ADJ (1979). Even diagrams looked similar. But, suddenly,
I realized that an arrow had a different direction. At first, I thought
that I had to be wrong, as it usually happens in such cases. But, looking
at the problem more carefully, I, finally, decided that 1 was correct and
they were wrong.

In my paper (Orejas (198C)), representations were defined in terms of
derivors (in a more general senmse than ADJ(1976)). Intuitively, a derivor §
from a signature 2. to a signature , is a pair (f,d), where f is a
function from S to S" (s and 8° are the sets of sorts of Z and Z', resg-
pectively), and d is a family of functions associating, to each operation
symbol V‘éZw gy & procedure, written in terms of the operations of Z ', wit!
£f(w) input parameters and £(s) output results.

Given & 2 -algebra A and a derivor § from Z to Z ", we may define
the derived J —algebra §A as the algebra with carrierss VseS S4ig = af(s
and with operations: Vaoe Z 0:; p is the function computed by the derived
procedure d(g ).

In these terms, given data types Ty g and T,+ gy & derivor & ¢€rom
to 2 ', is a representation of Tz_,E by Ty E‘: if and only if there
exists a (unique) homomorphism r, making commutative the diagram:

i i
T In = C
IEe . Ing/§ (25.) S 8Tp o

where i and i’ are the canonical epimorphisms, mapping every element into
its class of eguivalence, g is the unique homomorphism from the initial
L -algebra 7, into Ty’ . and §( =;-) is the J_ -congruence derived
intuitively from = ,-. Note that r is the usual representation function
of Hoare (1972).


http://crossmark.crossref.org/dialog/?doi=10.1145%2F947825.947831&domain=pdf&date_stamp=1981-03-01

-83~
Now, the compiler corectness diagram (as in ADJ (1979)) is:

8OUTrCe target
language language
L compile » T
k1
©| source target
semantics ¥ semantics
M » ¢]
sourcs target
meanings meanings

and it is said that the compiler § is correct if the diagram commutes.

If we consider languages as data types, the analogy compiler-represen-
tation is evident. TZI anc TZI' are the sintax of the source and target
languages and TZL,E and TZ“,E' are their semantics. Thus, the only problem
is the direction of the encode arrov.

ADJ,in their paper, point out a problem: there are degenerate cases
in which the diagram is commutative and !/ is not a correct compiler, for
example, if T and U are one-point algebras. They suggest to require & to
be injective, but that is eguivalent to ask for the existence of an inverse
&=l (or r) from a subalgebra of U into M.

Of course, that is not the only reason for changing the arrow, we may
prove that there are cases (probably, many) in which ¥ is a correct compi~
ler and the diagram fails to be correct because & is not a function,since
two or more values of the %arget meanings are associated to a single value
of the source meanings.

Here is & quite reasonable example. Suppose the source language is
Pascal, it should be obvious that the following programs have the same mea-
ning:

var Xx,y: integer; var yyx: integer;
begin begin

x3=1j; xt=13

yi=2; y2=23

write(x,y) write(x,y)
ond. end.

now, suppose the compiler assigns memory jocations to variables following
the order of decleration, then, if we consider the meaning of a machine

program as & function,mapping storage to storage (central plus secondary),
it should also be obvious ibat the meaning of the translations of those

programs is different.

Thus, the correct diagram would be:

gource target
langnage language
L compile > Y(Lb)y € T
source ¥ ¥ target
semantics semantics
E ¢ ___decode Y(y(uy)su
source £ target
meanings

meanings



B

For more details, as soon it is written, see the paper “Compilers as dg
ta Type Representations” (Orejas (198%)).

ADJ (J.A. Goguen, J,Y. Thatcher, E.G. Wright), 1976
“An initial algebra approach to the specification, correctness, and
implementation of abstract data types",IBM Research Report RC-6487.

ADJ (J.W. Thatcher, E.G. Wagner, J.B. Wright), 1979,
"More on advice on structuring compilers and proving them correct®,
IBM Research Report RC-7588,

M. Broy, M. Wirsing, 1980
"Programming Languages as abgtract data types", Proc. of the 5th
Collogquium on "Arbres en Algebre et en Programmation®.

R.M. Burstall, P.J., Landin, 1969
"Programs and their proofs: an algebraic approach”, Machine Intelli-
gence 4,

M.C. Gaudel, 1980
"Génération et preuve de compilateurs basées sur une sémantique
formelle des langages de programmation'", These d°Etat.

CeAlRe Hoare’ 1972
"Proofs of correctness of data representations", Acta Informatica 1,
Pp.271-281.

J. McCarthy, J. Painter, 1967
"Correctness of a compiler for arithmetic expressions", MNathematical
aspects of Computer Science, Proc. of Symposia in Applied Mathematics,
vol. 19 (J.T. Schwartz, Ed.) American Math. Soc., Providence R.I.

F.L. Morris, 1973
"Advice on structuring compilers and proving them correct", Proc.
ACHM Symposium on Principles of Programming Languages, Boston.

P. Orejas, 1980
"On the representaticn of data types", unpublished draft.

F. Orejas, 19872
"Compilers as data type representations", in preparation.



