
~82-

Even More on Advice on Structuring Compilers
and Proving them Correct~ Changing an Arrow

Ferna~do Orejas
Faoultad de Matem~ticas
Univsrsidad Complutense

Madrid 3, SPAIN

I had just finished the first draft of the paper "On Representation

of Data Types" and I was, once more, thinking on programming languages as

data types (see, for example, Gaudel (1980) or Broy and Wirsing (1980))

and considering translation as representation of data types, when, turning

mY attention to ADJ (1979), I discovered that my concept of representation
correctness was clearly connected with the concept of compiler correctness

in the tetralogy McCarthy and Painter (1967), Burstall and Laudin (1969),
Morris (1973) and ADJ (1979). Even diagrams looked similar. But, suddenly,
I realized that an arrow had a different direction. At first, I thought
that I had to be wrong, as it usually happens in such cases. But, looking
at the problem more carefully, I, finally, decided that I was correct and

they were wrong.

In my paper (Orejas (1980)), representations were defined in terms of

derivers (in a mere genera£ sense than ADJ(1976)). Intuitively, a deriver

from a signature 2 to a signature ~ • , is a pair (f,d), where f is a
function from S to S "~ (S and S" are the sets of sorts of ~ and ~', res-
pectively), and d is a family of functions associating, to each operation

symbol ~w,s, a procedure, written in terms of the operations of ~', witl

f(w) input parameters and f(s) output results.
,• •

Given a -algebra A and a deriver ~ from ~ to ~ , we may define

~he derived C-algebra ~A as the algebra with carriers: ~s~S 6A s = A f(s)
and with operations: ~re ~ ~A is the function computed by the derived

procedure d(~).

In these terms, given data types T~ ,E and T~, ~o a deriver ~ from
to ~ ', is a representation of T21,E by T~, E'' if and only if there

exists a (unique) homomorphism r, making commutative the diagram:

T A Ires

i i.

Ta r Img/ C
,E ~, " ' --

where i and i" are the canonical epimorphisms, mapping every element into

its class of equivalence, g is the unique homomorphism from the initial
-algebra T~ into ~ T~, ~ and ~(=E-) is the k-congruence derived

intuitively from ~ E-. ~ote that r is the usual representation function

of Hoare (1972).

http://crossmark.crossref.org/dialog/?doi=10.1145%2F947825.947831&domain=pdf&date_stamp=1981-03-01

-83-
Newt the compiler cor~ectness diagram (as in ADJ (1979))

sollroe
language

L compile

~I So11roe
semantics

¥

encode

source
meanings

is:

target
language

~ target
T semantics

U
target

meanings

and it is said that the compiler [is correct if the diagram commutes.

If we consider languages as data types, the analogy compiler-represen-
tation is evident. T~ and T Z , are the sintax of the source anti target
languages and T2L~E and T2~,E- are their semantics. Thus, the only problem

is the direction of the encode arrow.

ADJoin their paper, point out a problem: there are degenerate oases
in which the diagram is commutative and [is not a correct compiler, for
example, if T and U are one-point algebras, They suggest to require ~ to
be injective, but that is equivalent to ask for the existence of an inverse

~-i (or r) from a subalgebra of U into M.

Of course, that is not the only reason for changing the arrows we may
prove that there are cases (probably, many) in which ~ is a correct compi-
ler and the diagram fails to be correct because 6 is not a function,since
two or more values of the target meanings are associated to a single value

of the source meanings.

Here is a quite reasonable example, Suppose the source language is
~scal~ it should be obvious that the following programs have the same mea-

ning:

var y,x: integer; vat x~y: integer;
begin begin

z:=l; x:=l;
y:=2; y:=2!
write(x,y) write(x,y)

e~l . en_._d.
_ J •

now, suppose the compiler assigns memory locations to variables following
the order of declaration, ~hen, if we consider the meaning of a machine
program as a function,mapping storage to storage (central plus secondary),
it should also be obvious %hat the meaning of the translations of those

programs is different.

Thus, the correct diagram would be:

SO ~roe target
language

language

~ - " [~I t a rge t
source
emant its semant los

~ @ p target
source

meanin~s meanings

~84-

For more details, as ~oon it is written, see the paper '~Compil~rs as ~
ta Type Representations ~' (0rejas (198?))~

R~F~RENCES

ADJ (J~A~ Goguen, J,W. Thatcher, E~Go Wright), 1976
"An initial algebra approach to the specification, correctness, and
implementation of abstract data types",IBN Eesearch Report RC~6487a

ADJ (J~W~ Thatcher, E~Go Wagner, JoB. Wright)7 1979,
"More on advice on structuring compilers and proving them correct'Jr
IBM Research Report RC-7588o

M. Broy, Mo Wirsing, 1980
"Programming Languages as abstract data types", Proc~ of the 5th
Colloquium on "Arbres en Alg~bre et en Programmation"~

R.M° Burstall, P.J. I~ndin, 1969
"Programs and their proofs: an algebraic approach", Machine Intelli-
gence 4.

~.C. Gaudel, 1980
"G6n~ration et preuve de compilateurs bas6es sum une s6mantique
formelle des langages de programmation", These d'Etat.

C.A.R. Hoare, 1972

"P~oofs of correctness of data representations", Acta Informati~ It
pp.271-281.

J. McCarthy, J. Painter, 1967
"Correctness of a compiler for arithmetic expressions", 5~themati~l
aspects of Computer Science, Proc. of Symposia in Applied Mathematics,
VOlo 19 (J.T. Schwartz, Ed.)Americ~n Math. Soc., Providence R.I.

F.Lo Morris, 1973

"Advice on structuring compilers and proving them correct", Proc.
ACM Symposium on Principles of Programming Languages, Boston.

F. Orejas, 1980

"On the representation of data types", unpublished draft.

F. Orejas, 1987

"Compilers as data type representations", in preparation.

