-53 -

Check for
Updates

PASCAL for Operating Software?
A Critical Examination

oy C. E. Prael
2106 Monterey Ave.
Menlo Park, CA 94025

Abstract

The general status of PASCAL in the commercial field is described.
Various characteristics of the language are examined critically in
the context of operating software and utility program
implementations.,

Introduction

The programming language PASCAL has been the subject of
considerable attention in the last few years. It should be noted
that for a substantial majority of computer science students,
PASCAL is the primary or only high level language with which there
is a working familiarity. The language appears to be taught very
extensively and to be used very heavily in student’s project
implementations. With such a large primary experience background,
it is not surprising to find that PASCAL is so often preferred by
younger project staff as an implementation language.

PASCAL has many attractions as a programming language. Its descent
from ALGOL has resulted in sound structuring of programs and a
useful array of active constructs. The information structure
concepts were quite novel when PASCAL was designed. Further, these
concepts are singularly attractive when viewed as “Ding an Sich”’.

In a commercially oriented operating software environment, the
need is for a tool to facilitate the development of products. The
criteria one should apply aret 1) The language should be the
simplest that will do the jobs 2) It should implement readily and
impose low maintenance requirementss 3) It should facilitate the
design and manipulation of the information structures used in
developing operating software. As will be seen below, PASCAL fails
to meet these criteria to a significant extent. But it should bpe
noted that many, if not most, of the faults found with the
language are a matter of the application of PASCAL to situations
for which it was clearly not intended.

Information Primitives
The information primitives are the first elements one usually
considers in a language. In PASCAL one is immediately confronted
with a number of deficiencies.

Integral Data


http://crossmark.crossref.org/dialog/?doi=10.1145%2F947912.947915&domain=pdf&date_stamp=1982-03-01

~54

Typically, the operating software implementor wants to be able to
specify and use integral data elements in a number of “word?
sizes. Space is always at a premium, no matter how much memory is
available, and the apbility to vack various sized integers and
manipulate them all as integers is virtually mandatory. PASCAL
effectively limits one to the native memory word size.

Real Data

Although the real, or floating point, data type is occasionally
encountered in operating software, the frequency and nature of the
occurrence are such as to make the type quite useless. The real
data type is, thus, excess baggage which merely complicates the
language implementation and maintenance without sufficient return.

Char Data

Typically, the designer prefers to establish a single format for
strings and apply it uniformly to all languages and processes that
a system supports. The convenient time to do this is in the
implementation of the implementation language. By restricting the
textual data type to a string element, PASCAL forces the string
format definition to be specified in the definition of each
program module in a system. At best this is an inconvenience. 3But
inconveniences of this type usually translate into frequently
recurring bugs or incompatible system components.

‘'rogram Declaration

In the typical operating software situation one is dealing with
fairly large program modules., These are much more manageable if
they are broken down into a number of submodules which can be
translated, linked and debugged separately. In fact, subdivided
implementation is one of the most basic tools of the operating

sof tware implementor. PASCAL“’s total absence of any provision for
supdivided implementation is its greatest single impediment to use
in the operating software environment.. while PASCAL does provide
for declared subdivision with the “procedure’ and “function’
declarations, it tends to pbe extremely wasteful to have to edit
and translate 100J or more lines of program to correct a problem
in a 20 or 39 line subprogram. The result is that PASCAL can only
be reasonably used to implement programs so small that they can be
of little use to the software engineer.

There are two prooblems with the manner in which PASCAL implements
’procedures’ and “functions”. First, PASCAL requires that one
emoed the code of a subprogram in the calling program. This
requirement is the main source of the problem mentioned in the
preceding paragraph. It also tends to reduce clarity in the source
code, even if sound design methodology is followed. The second
problem is in differentiating between a “procedure’ subroutine and
a “function”’” subroutine in the declaration of the subroutine. This
failing is common to most higher level languages. The only
difference between a “procedure” and a “function’ is and should pe



~55.

ip the invpcation which is not intrinsic to the procedure. This
view of subroutines may seem quite radical, but the diferentiation

is pr@mg;ily a convenience to the implementor and needlessly
restrictive to the user of the language.

There are other less substantial out undesirable aspects to the
declaration division of PASCAL. The only utility to be found in
the requirement that all line laoels be explicitly declared is to
raise the user’s awareness of his having broken a rule of
§tructured programming. This is not too useful to the experienced
implementor. The requirement to declare and label all constants
used in a program is aesthetically and practically unsound and
restrictive. Certainly, one wants to be able to label constants,
since this may enhance program clarity. But there are also many
circumstances in which using a label would detract from program
clarity. This feature appears to be an attempt to substitute for
good judgment on the part of the user. The subject of information
structures is discussed separately.

Action Declaration

The operator precedence defined for expressions is not well
designed. While one rarely finds a sufficiently sophisticated
treatment of operator precedence, PASCAL“s lack of differentiation
between arithmetic, relational, and logical operator types is an
extreme case. One would strongly prefer to see the three operator
types separated py precedence. This would make the use of
parentheses optional in most mixed mode expressions. In PASCAL
parentheses are required in any mi xed mode expression if it is to
pe parsed correctly. Since mi xed mode expressions are particularly
common in operating software, the feature becomes a cause of
needless verposity.

The organizational statement constructs, (WHILE, CASE, etc.) are
conventional and well proven. The provision of the GOTO construct
requires some consideration. In the conventions of pure structured
programming, the GOTO is, of course, not acceptable. However, the
real world requires some means Of departing from the normal
processing flow when an exception condition is encountered. The
proper question thus is the suitability of a simple GOTO for this
purpose. And the answer is no. At a minimum, one should require
that the language provide explicit means for passing a description
of the exception that caused the departure from normal flow.
PASCAL’s GOTO clearly fails this requirement.

Variable Typing

The item typing features are generally'considered to be a
orinciple selling point of PASCAL relative to other descendants of
ALGOL. The arguement advanced 1is that this ability to c%assify
operands is a powerful tool in reducing misreferencing in active
statements. Yet many implementations fail to provide the type
checking without which the argument 1s unjustified. Certainly, one
can find a substantial aesthetic pleasure in these features (which



—56-

ha ppens less often than it should), but their utility is very
limited. This violates the simplicity criterion,

Information Structure Declarations

The method of declaring an array 1s refreshingly novel. [t appears
to have much to recommend it as a tool for teaching modern
algeora. But for every day use, the complexity does not seem to De
an improvement over the method first seen in FORTRAN, which has
the twin advantages of simplicity and sufficiency. (An atractive
alternative is to treat arrays as a case ol a record declaration,
but this too violates the simplicity requirement in use.)

The record is the most useful and frequently used information
structure concept in the operating software Tield. The design orf
record formats and their relationships usually rules the quality
of processes and the modification capacities of systems. The
declaration of records is, thus, a question of particular concern.
The method of declaring records is a natural extension of the
typing features, and is quite reasonable for the environment
established by the features. However, simpler and more flexible
concepts can pbe found by eliminating the typing features. The
apparent inability of PASCAL to treat a record as a field (or
fields) of a record is also a handicap.

The set types feature is a nice extension of the item typing
features. The philosophy behind the feature is, however supbject to
the same oojections expressed on the whole body of typing features
(see 5, above). The same criticism applies to. the provision of the
pointer type.

In general, on the question of variapble management, one would
strongly prefer to see the philosophy found in BLISS in an
operating software language. while the BLISS philosophny may
require that the programmer pay a little more attention to things,
its greater power and flexibility is well worth the troupnle. This
preference seems even more desirable in the teaching application
for. which PASCAL was originally intended. The purpose of a higher
level language should not be to insulate the implementor from his
machine, put to facilitate access to and enable full use of the
machine, while improving portaoility of the software.

Files in PASCAL

File access methods are an area in which the requirements in the
operating software implementor are directly opposed to the
requirements of the rest or the programming world. Most will
probaply find. the file access methods of PASCAL too rudimentary
for their needs. The implementor of operating software prefers to
leave file access methods completely out of a language. There are
significant reasons for this. First, one does not want one
language to impose a single structure on a component which will
probably have to support the requirements of a number of languages
and facilities. Second, the file access subsystem is usually one



-57-

of the things one is imnlementing, so the implementation language
should not impose the implementation of facilities which will not
pe used. This requirement tends more than any other to set
operating software specialized languages apart from those used by
the rest of the computing field.

Summary

As was noted in the introduction, PASCAL was never intended to be
applied to the implementation of operating software. Since the
intended area of application is quite distant from that of
operating software, it is not surprising to find that the langauge
is significantly deficient in this use. The alterations which
would make PASCAL acceptable in this application are so extensive
that the result would not pe recognizable as a dialect of PASCAL.
While this critique deals only with the original PASCAL, the
various extensions which have been implemented generally fail,
with some exceptions, to correct the problems discussed here.

referencet K. Jensen and N. Wirth, PASCAL User Manual and Keport,
Springer—Verlag, New York, 1978

\

Christopher E. Prael
2106 Monterey Ave.
Menlo Park, CA 94025



