
-53-

PASCAL for Operating Software?
A Critical Examination

oy Co .Eo Prael
2106 Monterey Ave.

Menlo Park, CA 94025

&b_a.t~

The general status of PASCAL in the commercial field is described.
Various characteristics of the language are examined critically in
the context of operating software and utility program
implementa tions.

I n t r o d u c t i on

The programming language PASCAL has been the subject of
considerable attention in the last few years. It should be noted
that for a substantial majority of computer science students,
PASCAL is the primary or only high level language with which there
is a working familiarity. The language appears to be taught very
extensively and to be used very heavily in student's project
implementations, klith such a large primary experience background,
it is not surprising to find that PASCAL is so often preferred by
younger project staff as an implementation language.

PASCAL has many attractions as a programming language. Its descent
from ALGOL has resulted in sound structuring of programs and a
useful array of active constructs. The information structure
concepts were quite novel when PASCAL was designed. Further, these
concepts are singularly attractive when viewed as "Ding an Sich'.

In a commercially oriented operating software environment, the
need is for a tool to facilitate the development of products. The
criteria one should apply arez I) The language should be the
simplest that will do the jobl 2) It should implement readily and
impose low maintenance requirements; 3) It should facilitate the
design and manipulation of the information structures used in
developing operating software. As will be seen below, PASCAL fails
to meet these criteria to a significant extent. But it should De
noted that many, if not most, of the faults found with the
language are a matter of the application of PASCAL to situations
for which it was clearly not intended.

Information Primitives

The information primitives are the first elements one usually
considers in a language. In PASCAL one is immediately confronted
with a number of deficiencies.

I n t e g r a l Data

http://crossmark.crossref.org/dialog/?doi=10.1145%2F947912.947915&domain=pdf&date_stamp=1982-03-01

-54-

T y p i c a l l y , the o p e r a t i n g s o f t w a r e imp lemen to r wants to be ab le to
s p e c i f y and use i n t e g r a l data e lements in a numoer of "word"
sizes. Space is always at a premium, no matter how much memory is
available, and the a~ility to oack various sized integers and
manipulate them all as integers is virtually mandatory° PASCAL
effectively limits one to the native memory word size°

Reai Data

A l though the r e a l , o r f l o a t i n g p o i n t , data type i s o c c a s i o n a l l y
encoun te red i n o p e r a t i n g so f tware9 the f requency and n a t u r e of the
occu r rence are such as to make the type q u i t e u s e l e s s . The r e a l
data type i s , t h u s , excess baggage wh ich mere ly comol ica t .es the
language i m p l e m e n t a t i o n and main tenance w i thouL s u f f i c i e n t r e t u r n .

Char Data

Typically, the designer prefers to establish a single format for
s t r i n g s and a p p l y i t u n i f o r m l y to a l l languages and processes t h a t
a system s u o p o r t s . The c o n v e n i e n t t ime t o do t h i s i s in the
i m p l e m e n t a t i o n of the i~np lementa t ion l anguage . By r e s t r i c t i n g the
t e x t u a l da ta type to a s t r i n g e lement , PASCAL f o r c e s the s t r i n g
f o r m a t d e f i n i t i o n to ae s p e c i f i e d i n the d e f i n i t i o n of each
program module i n a system. At bes t t h i s i s an i n c o n v e n i e n c e . J,Jt
i n c o n v e n i e n c e s of t h i s t ype u s u a l l y t r a n s l a t e i n t o f r e q u e n t l y
r e c u r r i n g bugs o r i n c o m p a t i b l e system components.

' r o g r a m Declara tion

In the typical operating software situation one is dealing with
fairly large program modules. These are much more manageable if
they are broken down into a number of suamodules which can be
t r a n s l a t e d , l i n k e d and debugged s e p a r a t e l y . In f a c t , s u b d i v i d e d
i m p l e m e n t a t i o n i s one of the most bas i c t o o l s of the o p e r a t i n g
software implementor. PASCAL's total absence of any orovision for
s u o d i v i d e d i m p l e m e n t a t i o n i s i t s g r e a t e s t s i n g l e impediment to use
i n the o p e r a t i n g so f twa re e n v i r o n m e n t . ;~hi le PASCAL does p r o v i d e
f o r d e c l a r e d s u b d i v i s i o n w i t h t h e - . ' p r o c e d u r e " and " f u n c t i o n "
d e c l a r a t i o n s , i t tends to De e x t r e m e l y w a s t e f u l to have to e d i t
and t r a n s l a t e 10[~0 o r more l i n e s o f program to c o r r e c t a prob lem
in a 2~ or 30 l i n e subprogram. The r e s u l t i s t h a t PASCAL can o n l y
be r e a s o n a b l y used to implement programs so sma l l t h a t t hey can be
of l i t t l e use to the s o f t w a r e e n g i n e e r .

There are two problems with the manner in Which PASCAL implements
"procedures" and ~functions'. First, PASCAL requires that one
emoed the code of a suoprogram in the calling program. This
requirement is the main source of the proalem mentioned in the
p reced ing pa rag raph , i t a l s o tends to reduce c l a r i t y in the source
code, even i f sound des ign methodology i s f o l l o w e d . The second
prob lem i s i n d i f f e r e n t i a t i n g between a " p r o c e d u r e " s u b r o u t i n e and
a " f u n c t i o n " s u b r o u t i n e in the d e c l a r a t i o n of t he s u b r o u t i n e . Th is
f a i l i n g i s common to most h i g h e r l e v e l l anguages . The o n l y
d i f Z e r e n c e between a "p rocedu res and a " f u n c t i o n " i s and shou ld De

-55 -

in the i n v o c a t i o n which is not i n t r i n s i c to the p rocedure , Th is
v iew of suOrou t ines may seem q u i t e r a d i c a l , but the d i / ~ e r e n t i a t i o n
i s p r i m a r i l y a convenience to the implementor and n e e d l e s s l y
r e s t r i c t i v e to the use~ of the language,

There are other less substantial out undesirable aspects to the
d e c l a r a t i o n d i v i s i o n of PASCAL. /he on l y u t i l i t y to be found in
the r equ i r emen t t ha t a l l l i n e l a b e l s be e x p l i c i t l y d e c l a r e d i s to
ra ise, the u s e r ' s awareness of h i s hav ing broken a r u l e of
s t r u c t u r e d programmino. Th is i s n o t too u s e f u l t o the exper ienced
implementoro The requ i remen t to d e c l a r e and l a b e l a l l c o n s t a n t s
used in a program i s a e s t h e t i c a l l y and p r a c t i c a l l y unsound and
r e s t r i c t i v e . C e r t a i n l y , one wants to be ab le to l a b e l c o n s t a n t s ,
s ince t h i s may enhance program c l a r i t y , but the re are a l s o many
c i r cums tances in which us ing a l a b e l would d e t r a c t from program
c l a r i t y o Th is f e a t u r e appears to be an a t t emp t to s u b s t i t u t e f o r
good judgment on the pa r t of the use r , The s u b j e c t of i n f o r m a t i o n
s t r u c t u r e s i s d iscussed s e p a r a t e l y .

A c t i o n D e c l a r a t i o n

The o p e r a t o r precedence de f i ned f o r exp ress ions i s no t w e l l
des igned , r~hile one r a r e l y f i n d s a s u f f i c i e n t l y s o p h i s t i c a t e d
t r e a t m e n t of o p e r a t o r p recedence, PASCALts l ack of d i f f e r e n t i a t i o n
between a r i t h m e t i c , r e l a t i o n a l , and l o g i c a l o p e r a t o r types i s an
e×treme case. One would s t r o n g l y p r e f e r t o see the t h ree o p e r a t o r
types separated oy precedence. Th is would make the use of
paren theses o p t i o n a l in most mixed mode e x p r e s s i o n s . In PASCAL
parentheses a re r e q u i r e d in any mixed mode exp ress ion i f i t i s to
be parsed c o r r e c t l y . Since mixed mode express ions are p a r t i c u l a r l y
common i n o p e r a t i n g s o f t w a r e , the f e a t u r e becomes a cause of
need less v e r b o s i t y .

The o r g a n i z a t i o n a l s ta tement c o n s t r u c t s , ({~HILE, CASE, e t c .) are
c o n v e n t i o n a l and we l l p roven, fhe p r o v i s i o n of the OOTO c o n s t r u c t
r e q u i r e s some c o n s i d e r a t i o n . In the conven t i ons of pure s t r u c t u r e d
programming, the GOTO i s , of cou rse , not a c c e p t a b l e . However, the
rea l wor ld r e q u i r e s some means o f d e p a r t i n g from the normal
p rocess ing f l o w when an excep t ion c o n d i t i o n i s encoun te red . The
proper q u e s t i o n thus i s the s u i t a b i l i t y o f a s imple OOTO f o r t h i s
purpose. And the answer is no. At a minimum° one should r e q u i r e
t h a t the language p rov ide e x p l i c i t means f o r pass ing a d e s c r i p t i o n
of the excep t i on t h a t caused the d e p a r t u r e from normal f l o w .
PASCAL's GOTO c l e a r l y f a i l s t h i s r e q u i r e m e n t .

V a r i a b l e Typ ing

The i tem t y o i n g f e a t u r e s are g e n e r a l l y cons ide red t o be a
p r i n c i p l e s e l l i n g p o i n t of PASCAL r e l a t i v e to o the r descendants o f
ALGOL, The arguement advanced is t h a t t h i s a b i l i t y to c l a s s i f y
operands i s a power fu l t o o l in r educ ing m l s r e f e r e n c i n g in a c t i v e
s t a t e m e n t s . Yet ..many imp lemen ta t i ons f a i l t o p r o v i d e the t ype
check ing w i t h o u t which the argument i s u n j u s t i f i e d . C e r t a i n l y , one
can f i n d a s u b s t a n t i a l a e s t h e t i c p leasu re in these f e a t u r e s (which

-56-

happens less often than it should), but their utility is very
limited, This violates the simplicity criterion,

Information Structure Declarations

The method o f d e c l a r i n g an a r r a y i s r e f r e s h i n g l y n o v e l ° I t a p p e a r s
t o have much to recommend i t as a t o o l f o r t e a c h i n g modern
a l g e b r a . Bu t f o r e v e r y day use9 t he c o m p l e x i t y does n o t seem t o me
an i m p r o v e m e n t ove r t he method f i r s t seen in FORTRAN, w h i c h has
the twin advantages of simplicity and sT1fficiencyo (An atractive
alternative is to treat arrays as a case ol = a record deciaration~
but this too violates the simplicity requirement in use°)

The r e c o r d i s the most u s e f u l and f r e q u e n t l y used i n f o r m a t i o n
structure concept in the operating software field. The design of
record formats and their relationships usually rules the quality
of processes and the modification capacities of systems. The
declaration of records is, th~Js, a question o~t particular concern.
The method of declaring records is a natural extension of the
typing features, and is quite reasonable for the environment
established Oy the features. However, simpler and more flexible
concepts can De found by eliminating the typing features. The
apparent inability of RASCAL to treat a record as a field (or
fields) of a record is also a handicap.

The set types feature is a nice extension of the item typing
features. The philosophy behind the feature is, however subject to
the same objections expressed on the whole body of typing features
(see 5, above). The same criticism applies to the provision of the
pointer type.

In general, on the question of variable management, one would
strongly prefer to see the philosophy found in BLISS in an
operating software language. ~hile the BLISS philosophy may
require that the programmer pay a little more attention to things,
its greater power and fle×iOility is well worth the trouble. This
preference seems even more desirable in the teaching application
for which PASCAL was originally intended. The purpose of a higher
level language should not De to insulate the implementor from his
machine, but to 1~acilitate access to and enable full use of the
machine, while improving portability of the software.

Files in PASCAL

F i l e a c c e s s methods a r e an a r e a in w h i c h the r e q u i r e m e n t s i n t h e
o p e r a t i n g s o f t w a r e i m p l e m e n t o r a re d i r e c t l y opposed t o t h e
r e q u i r e m e n t s o f t h e r e s t o r the p r o g r a m m i n g w o r l d . Most w i l l
p r o b a b l y f ind_ t h e f i l e a c c e s s methods o f PASCAL t o o r u d i m e n t a r y
f o r t h e i r needs . , The i m p l e m e n t o r o f o p e r a t i n g s o f t w a r e p r e f e r s t o
leave file access methods completely out of a language. There are
significant reasons for this. First, one does not want one
language to impose a single structure on a component which will
probably have to support the requirements of a number of lang~ages
and facilities. Second, the file access subsystem is usually one

- 57 -

of the t h i n g s one i s imolement ing~ so the imp lemen ta t i on language
should no t impose the imp lemen ta t i on of f a c i l i t i e s which w i l l not
be used. Th is requ i remen t tends more than any o t h e r to set
o p e r a t i n g so f twa re s p e c i a l i z e d languages apa r t from those used oy
the r e s t o# the comp~iting f i e l d .

Su mma ry

As was noted in the i n t r o d u c t i o n , PASCAL was never in tended to be
a p p l i e d to the imp lemen ta t i on of o p e r a t i n g s o f t w a r e . Since the
in tended area o# a p p l i c a t i o n i s q u i t e d i s t a n t from t h a t o#
o p e r a t i n g so f tware9 i t i s no t s u r p r i s i n g t o f i n d t h a t the langauge
is significantly deficient in this use. The alterations which
would make PASCAL acceptable in this application are so extensive
that the result would not De recognizable as a dialect of PASCAL.
Y~hile this critique deals only with the original PASCAL, the
various extensions which have been implemented generally fail,
with some exceptions, to correct the problems discussed here.

H e f e r e n c e , Ko Jensen and N. f i r t h , E~.~A/. ~ ~a[iLLal. ~ E ~ r _ t ,
Springer-Verlag, New York, 1978

Christopher E. Prael
2106 Monterey Ave.
Menlo Park, CA 94025

