
-46-

STRUCTURED TRANSFER OF CONTROL

David Oo Williams
Data Handling Division

CERN, CH-1211 Geneva 23

Abstract

A proposal is presented for the general isat ion of certain control structures by
permitt ing the (opt ional) execution of a block of code:

(i)
(i i)

(i i i)

at each new cycle in a loop
fo l lowing termination of a loop
fo l lowing termination of the "normal" code of a subprogram/procedure.

1. Introduction

In a related paper (Alternate RETURNs) I discuss how I started to invest igate
the arguments for and against the Alternate RETURN concept of FORTRAN-77° As
part of that work I became interested in the reasons why statement labels and
the GOTO statement refuse to die in mainline procedural languages. I
concluded that the poss ib i l i t i e s for structured t ransfer of control offered
by these languages are too p r im i t i ve , and I would l i ke to s ta r t a discussion
on some more powerful concepts.

2. Problems with Present Control Structures

2.1 GOTOs Considered Harmful

A long time has passed since Di jks t ra wrote his famous l e t t e r [D i j ks t ra
68]. I have myself been responsible for part of the development and
maintenance of a 16,000 l ine PASCAL program which contains no GOTO
statement. Why then do the bodies which are responsible for the
de f in i t i on of the mainline procedural languages (ADA, FORTRAN, PASCAL,
for example) s t i l l c l ing to GOTO statements?

Some people w i l l , of course, answer that i t is in inherent in the
conservative nature of these bodies to retain outdated concepts.
However I believe that there is a much more fundamental reason. The
action described by the GOTO statement is a primitive action. Any
existing or future control structure can be decomposed into a series of
GOTO statements, conditionally guarded as appropriate. The reluctance
to f ina l ly condemn the GOTO statement reflects, I believe, a gut feeling
that control structures in existing languages are not suff iciently
powerful, and that we need GOTO statements in order to adequately treat
the problems of the real world.

2.2 Deeply Nested IF-THEN-ELSE Considered Harmful

Many people w i l l , of course, deny the val idi ty of this last remark, and
indeed i t is, formally speaking, incorrect. Any control structure of
arbitrary complexity can be mapped onto the combination of a generalised
LOOP structure, taken together with an appropriate number of IF-THEN-
ELSE conditions. However, when several nested levels of IF-THEN-ELSE
structures are required to express the problem at hand, then the code is
often d i f f i cu l t to write and confusing to read.

SIGPLAN Notices, V19 #I0, October 1984

-47-

There are several interest ing recent papers in SIGPLAN notices [H i l l 82,
den Hertog et al 83, Lakhotia 83, Yuen 83, Rosenbloom 83, Newman 83,
Amit 84, Vuen 84] which address th is issue, or closely related points.
My personal summing-up of the theme of these papers is the fo l lowing:
at the point where the programmer has to "invent" a boolean variable
merely in order to map the problem onto the available control struc-
tures, then th is "invented" variable is as dangerous and confusing as
the poorly regarded GOTO statement° For a clear example of "invented"
variables see STAYINLOOP and CONTROL in [Yuen 84].

2.3 More Powerful Control Structures

Many of the papers mentioned above make proposals fo r resolving the
problem of deeply-nested IF-THEN-ELSE structures. However i t is my
be l ie f that they are not radical enough. The real cause of "invented"
boolean variables, i t seems to me, is that our loop constructs are too
pr imi t i ve , especial ly in the sense of not allowing the programmer
control of the behaviour at loop ex i t time.

FORTRAN-8x current ly proposes to define a generalised loop structure,
with three sub-forms, the indef in i te loop (DO [loop ID]...REPEAT), the
counted loop (DO n TIMES...REPEAT), and the indexed loop (DO
I=...REPEAT). There are related statements EXIT [loop_ID] and CYCLE
[loop_ID] to ex i t the (designated) loop and to cause the next i t e ra t i on ,
respect ively.

The problem that I perceive with th is proposal is that the programmer
sometimes, but not always, wants to execute certain code at the time of
loop ex i t or loop cycl ing. This behaviour is essent ia l ly structured.
To achieve i t in the case of EXIT, a boolean variable w i l l have to be
"invented". For the CYCLE case, things are worse, since not only must a
control variable be "invented", but in addit ion the CYCLE syntax forces
the code to be placed at the head of the loop, rather than at the t a i l ,
where i t probably belongs on logical grounds.

3. Proposed Modif icat ion to Control Structures

I propose that in the fol lowing cases:

(i) next cycle of a loop
(i i) ex i t from a loop

(i i i) return from a subprogram/procedure

the programmer should always be able to specify the (opt ional) execution of a
block of code.

I t is my conviction that th is approach would render unnecessary most, and
probably a l l , cases of the "invention" of boolean variables, and render the
code simpler to understand, both fo r wr i te r and reader. I would be
interested to have someone more knowledgeable than myself in complexity
metrics attempt to j u s t i f y th is statement.

I have attempted to provide a syntax for such control structure ex i ts , in the
s p i r i t of the FORTRAN-8x proposal, in order to give readers a feel ing for the
usefulness, or otherwise, of th is idea. Conversion to other procedural
languages is not very d i f f i c u l t °

3.1

-48-

Ident i f icat ion of the Code Blocks

This is achieved through ON structure, DONE structure, bracketing
keywordso Specif ical ly ON REPEAT, DONE REPEAT for the next cycle of a
loop, ON EXIT LOOP, DONE EXIT LOOP for the exi t of a generalised loop,
and ON EXIT CODE, DONE EXIT CODE for the return from the body of a
subprogram/procedure.

As discussed below, the DONE REPEAT statement is probably better
suppressed, since i t is redundant with respect to END LOOP. I should
also say that I do not feel strongly about the- choice between
DONE_structure and END_structure as the terminating keyword.

3.2 Optional execution of the Code Blocks

The code blocks wi l l be entered when an associated EXIT structure
statement is executed. Specifically EXIT LOOP wi l l cause entry into the
ON EXIT LOOP block, and EXIT CODE wi l l cause entry into the ON EXIT CODE
blo--ck. -The QUIT structure st-atement (where quit implies to me-a fat ter,
less ordered de~rture than exit) leaves the structure without entering
the ON_structure/DONE_structure code block.

I assume that in cases of "normal" structure exit , such as completion of
an indexed or counted loop, execution of the ON structure code block
wi l l usually be what the programmer wants. However for the sake of
generality i t should be possible to avoid this, by appending QUIT to the
END LOOP statement. Note that, in any case, the programmer is not
forced to provide an ON structure code block.

3.3 Loop Control

I would suggest LOOP, END LOOP as the bracketing keywords, REPEAT as the
action statement (in place of CYCLE in the present FORTRAN-8x proposal),
ON REPEAT to introduce the REPEAT code block, which should come at the

I

end of the loop, being terminated by END LOOP. NEXT would be the "fast"
I

action statement causing looping without execution of the ON REPEAT
code.

LOOP [name]
LOOP [name] n TIMES
LOOP [name] index specification

E£iT LOOP [name]

QUiT LOOP [name]

REPEAT [name]

NEXT [name]

ON'REPEAT [name]

END'LOOP [name] [QUIT]

ON EXIT LOOP [name]
I I

DONE'EXIT LOOP [name]
next statement

'. A1 ternates

leaves via ON EXIT LOOP (i f
any such bloc~) -
leaves directly to next
statement
Cycles via ON REPEAT (i f
any such bloc~)
Cycles via END LOOP

Optional ON structure block

QUIT skips to next statement

Optional ON structure block

Closing bracket - ending
"extended. loop"

Example of New Generalised LOOP

-49-

3.4 Yuen's examg!e -

Given the new generalised loop structure above, the example in [Yuen 84]
can be expressed as:

LOOP N TIMES

iF ' (A) THEN
X
EXIT LOOP

ENDIF

iF'(B) THEN
¥
EXIT LOOP

ENDIF

END'LOOP
ON EXIT LOOP

Z
DONE EXIT LOOP

This requires neither GOTO statements, nor "invented" control var iables.
I t seems to me that the complexity of the problem is not susceptible to
fu r ther reduction.

3.5 The Subprogram/Procedure as Control Structure

I did not f ind (perhaps because I did not search hard enough in the
l i t e r a t u r e) any reference to the subprogram/procedure body as a control
structure. I believe that th is is a mistake, since many of the GOTO
statements used in h igh-qual i ty FORTRAN code today are used for pre-
mature rout ine ex i t , via statements labe l l ing small blocks of code that
are used to set f lags which w i l l then be used by ca l l i ng routines to
fu r ther steer the execution sequence. This requirement should be
treated in a structured fashion, and I believe that th is is done in my
proposal. The general form is :

SUBPROGRAM name [parameter l i s t]
[dec larat ions]
CODE

 £iT COOE

RETURN [n]

EN ODE
ON EXIT CODE

RETURN [n]

DOg'EXIT CODE
END

for emphasis

returns to caller via
ON EXIT CODE

' dir-ectTeturn to caller

optional code block

redundant - could be dropped
' closes SUBPROGRAM

Example of New Generalised Subprogram/Procedure

Note that the QUIT CODE statement, which would be equivalent to
QUIT LOOP, is not needed since the present RETURN [n] statement has the
required meaning.

-50-

3~6 Restr ict ions on ON structure Blocks

I t seems per fect ly legi t imate to allow completely general code
structures inside the ON REPEAT, ON EXIT LOOP and ON EXIT CODE blocks.
The val id range of EXIT LOOP and QUITLOOFis the LOOPZENDTOOP bracket.
The val id range of REPEA-T is LOOP/ON REPEATo The val id ran-ge of NEXT is
e i ther LOOP/ON REPEAT or LOOP/END_LOOPo The val id range of EXIT CODE is
the CODE/END CODE bracket.

4. Final Thoughts

4.1 Impact_on Compilers

There seems to be no reason why the proposed constructs would be
d i f f i c u l t to compile, or execute i n e f f i c i e n t l y .

4.2 EXIT LOOPs from nested LOOPS

4.3

An EXIT LOOP [outer loop name] statement executed from inside an inner
loop would presumably pass d i r ec t l y to the ON EXIT LOOP [outer loop
name] st ructure, by-passing the ON EXIT LOOP [i~ner loop name]
structure. The a l ternat ive approach appears-to require too much context
to be kept, and would have bad ef fects on e f f i c iency .

History

Af ter completing most of th is paper I discovered the December 1974
edi t ion of the ACM Computing Surveys, which was devoted to structured
programming. In par t i cu la r there is a long and in terest ing survey by
Knuth [Knuth 74] with an in terest ing discussion of the h istory of the
subject, and an extensive set of references. One reference, [Bochmann
73], does contain a short discussion of the subprogram/procedure as a
control s t ructure, which inval idates my claim in 3.5 above.

Both Bochmann and Zahn [Zahn 74] have made proposals for handling loop
ex i ts . My present proposal t reats the loop ex i t in a rather simpler
way, with one language-defined ex i t s t ructure, in place of mul t ip le
user-defined structures (events fo r Zahn, labels for Bochmann). I t also
aims at a wider f i e l d , covering, in addi t ion, the loop repeat action and
the subprogram/procedure ex i t . However, I am more concerned that some
more powerful structures should be adopted, as an aid to the humble
programmer t o i l i n g to map problems on today's pr imi t ive o f fer ings, than
to claim that my ideas are the best. Let us hope that the time is ripe
fo r some progress.

REFERENCES

[Amit 84]
A d i f fe ren t solut ion fo r improving the readab i l i t y of deeply nested
IF-THEN-ELSE control structures

ACM SIGPLAN Notices 19(1), January 1984

[Bochmann 73]
Multiple exits from a loop without the GOTO

CACM 16(7), July 1973

[den Hertog et al 83]
DO-SELECT reconsidered

ACM SIGPLAN Notices 18(3), March 1983

[Di jkstra 68]
GOTO Statemetn Considered Harmful

CACM 11(3), pp 147-148, March 1968

[Hi l l 82]
An improvement over deeply nested IF-THEN-ELSE control structures

ACM SIGPLAN Notices 17(8), August 1982

[Knuth 74]
Structured Programming with GOTO statements

ACM Computing Surveys 6(4), December 1974

[Lakhotia 83]
An improvement over "An improvement over deeply nested IF-THEN-ELSE
control structures"

ACM SIGPLAN Notices 18(5), May 1983

[Newman 83]
IF-THEN-ELSE, again

ACM SIGPLAN Notices 18(12), December 1983

[Rosenbloom 83]
Deeply nested IF-THEN-ELSE's

ACM SIGPLAN Notices 18(10), October 1983

[Yuen 83]
The programmer as navigator - a discourse on program structure

ACM SIGPLAN Notices 18(9), September 1983

[Yuen 84]
Further comments on the premature loop exi t problem

ACM SlGPLAN Notices 19(1), January 1984

[Zahn 74]
A control statement for natural top-down structured programming

Symposium on Programming Languages, Paris, 1974

