
-93-

FURTHER COMMENTS ON THE PREMATURE LOOP EXIT PROBLEM

C.K. YUEN
COMPUTER CENTRE

UNIVERSITY OF HONG KONG

Following the distribution of my earlier contribution to SIGPLAN
Noticesl£1] several collegues commented to me that they can
produce better code for the "premature loop exit" program than
what were shown in the article and that my discussion was too
lenient to GOTO statements. Since such a reaction is likely to
be quite common among the readers of this publication, I feel
it would be useful to present a few brief comments here that
serve to highlight the main thrust of the article.

The first solution presented to me is as follows:

STAYINL00P := TRUE: I := 1:
WHILE STAYINLOOP DO
BEGIN

• e •

IF A THEN
BEGIN

STAYINL00P := FALSE:
X;

END ELSE
BEGIN

o • •

IF B THEN
BEGIN

STAYINLOOP := FALSE:
Y;

END ELSE
BEGIN

I := 1+I ;
IF (I'-N) THEN
BEGIN

STAYINLOOP := FALSE;
Z:

END
END

END
END

As is required, the program will enter the loop, carry out some
processing and then test for condition A, whose presence causes
loop exit to perform action X. In its absence further processing
and testing for condition B occur, possibly leading to loop exit
and action Y. After N repetitions without A or B occurring
loop termination takes place with action Z.

However, I believe a better solution is the following:

Present address: Dept of Computer Science, National University
of Singapore, Kent Ridge, Singapore 0511.

SIGPLAN Notices, Vi9 #i, January 1984

http://crossmark.crossref.org/dialog/?doi=10.1145%2F948415.948426&domain=pdf&date_stamp=1984-01-01

-94-

CONTROL := O; I :: I;
WHILE (CONTROL=O) DO
BEGIN

IF A THEN CONTROL := I ELSE
BEGIN

o o .

IF B THEN CONTROL := 2 ELSE
BEGIN

I := 1+I;
IF (I>N) THEN CONTROL := 3;

END
END

END
CASE CONTROL OF

I : X;
2 : Y;
3 : Z;

END

For, in solution 2 the text of the program fragment indicates
very clearly the three loop exit conditions and the alternative
actions they lead to out of the loop. In the case of solution I,
it takes a bit of mental effort to realize that actions X, Y or
Z are not repeated despite their inclusion inside the loop.

It will be quite fair to conclude from the above discussion that
the maxim "we can do anything you do with GOTOs without GOTOs"
has been reaffirmed yet again. Satisfying as this might be, !
think it would be more fruitful to return to the main point of
the earlier article in light of the new examples:

If a program is to be easily comprehensible, then it needs to
display in a fairly obvious fashion the links between the occurrences
of conditions and their consequent actions. Such links can be
provided in a variety of ways, and our aim should be to employ
program constructs whose form matches the underlying "topological"
structure. Solution 2 above works well because of just that: CONTROL,
the "link" used here, has four alternative values which, when
used in conjunction with the WHILE and the CASE, selects four
alternative actions (stay in loop, X, Y or Z). Because of the
good structural match, it does not matter very much that the
values are themselves not meaningful. (There would have been
little improvement to make CONTROl, a special ordinal variable
with, say, values like (STAYINLOOP, ACTIONX, etc), though in a
larger loop this might be of some value.)

So we need not be surprised that GOTO statements, which can be
quite effective for the purpose of creating a simple point to
point link in the program, are very bad for implementing complex
structures, just as Boolean control variables can be overused
and produce a mess. The question is not whether the "geometric"
structures are themselves good or bad; it is how well they match
the required topology.

[I] C.K. Yuen, "The programmer as navigator", SIGPLAN Notices,

18,9 (Sept. 1983) , p.70

