
A Framework for User-Interfaces to Databases

Kenneth J Mitchell, Jessie B Kennedy and Peter J Barclay
Computer Studies Department, Napier University

Canal Court, 42 Craiglockhart Avenue, Edinburgh EH14 1LT, Scotland, UK
e-mail: <kenny,jessie,pete>@dcs.napier.ac.uk

phone: +44-0131-455-5340 ; fax: +44-0131-455-5394

Abstract
A framework for user-interfaces to databases (IDSs) is proposed
which draws from existing research on human computer
interaction (HCI) and database systems. The framework is
described in terms of a classification of the characteristic
components of an IDS. These components, when progressively
refined, may be mapped to a conceptual object-oriented language
for the precise specification of the IDS. A prototype system is
presented, showing the potential for automated mapping of a
language specification to a fully functional implementation. As
well as providing general support to any database interface
developer, we believe that the framework will prove useful for
researching a number of IDS issues.

Keywords: User-Interfaces to Databases, Human-Computer
Interaction (HCI), Conceptual Modelling, Direct Manipulation
Interfaces.

1. Introduction

Addressing the problem of designing interfaces to databases
requires an inter-disciplinary approach. The results of research
on both databases [44] and human-computer interaction (HCI)
[23] require integration in a framework to promote organised
mutual exploitation [20]. Therefore, this work takes existing
models of databases and user-interfaces and fuses them in a
conceptual framework for user-interfaces to databases (IDSs).

Although, models exist for user-interfaces in general and are
applicable to IDSs, there is an imperative for models which
address the particular needs of databases. Numerous recent
workshops show that database researchers are concentrating
efforts on developing interfaces from a database perspective [2,
3, 24, 26, 28]. In common with these efforts, this work is
principally concerned with database issues for interfaces.

The primary organisational step for the creation of this
framework is to determine the characteristic components of IDSs.
A general framework requires detailed specification for practical
application. Recognising this, our framework relates both
abstractly to the general features of an IDS and in depth to its
atomic components.

It is shown how a detailed classification of components under
this framework may be mapped to a conceptual language which
embodies the relationships and dependencies among the
components of an IDS. The organisation of components in a well-
defined framework represented in a concise conceptual language
provides a sound foundation for further research on interfaces to
databases.

With this framework, existing interfaces can be analysed and
new interfaces can be designed. The detail provided in resulting
language descriptions is sufficient to define a functional IDS
implementation. A prototype is described which demonstrates the
automatic generation of database interfaces from language
definitions.

The following section describes the necessary background to
provide a context for this work. Section 3 presents a framework
defining the characteristic components of IDSs. Section 4 details
the mapping from this framework to the conceptual language.
Section 5 describes the prototype and demonstrates the practical
realisation of this framework to innovative interface styles.
Finally, conclusions and some further work are discussed.

2. Background

In applying IDS and HCI models with their own particular
emphases, an overall structure is beneficial to localise their
placement and therefore, gain a better appreciation of the scope
of their application. In attempting to solve this problem of
context, interaction frameworks may be of use.

The execution-evaluation cycle, by Norman [33] considers the
interactive process as being a cyclic sequence of seven stages,
from execution (1:establishing a goal, 2:forming an intention,
3:specifying a sequence of actions, and 4:executing the action), to
evaluation (1:perceiving the system state, 2:interpreting the
system state and 3:evaluating the perceived system state with
respect to the goals and intentions of the user). Although, this
influential framework provides a clear distinction of the stages in
an interactive sequence, it does not address the details of the
system, with respect to the actual system’s state.

In extension to Norman’s framework, Abowd and Beale’s [1]
interaction framework identifies system and user components
which communicate via the input and output components of an
interface (figure 1). This communication follows a similar cyclic
sequence of steps from the user’s articulation of a task, through
the system’s performance and presentation of the task, to the
user’s observation of this task’s results, upon which the user can
formulate further tasks.



Models in the field of HCI have covered many aspects of the
user-interface towards the goal of satisfying various usability
principles, such as, learnability, flexibility, and robustness [23].
Such models emphasise particular components of user-interfaces,
thus determining their scope and how they are applied. Figure 1
shows the particular emphasis of some existing HCI models in
the context of Abowd and Beale’s interaction framework. The
goals, operators, methods and selection (GOMS) model [17],
cognitive complexity theory (CCT)[14] and task analysis
(TA)[21] are all applied specifically to modelling users of
interactive systems. Task action grammars (TAG)[37] are used to
model a user’s articulation of a task and the program, input and
effect (PIE) model [22] emphasises the input and output of an
interactive system.

If usability principles are to be applied in a database domain,
models which emphasise data oriented components must be
addressed, in particular, the role of data visualisation.

Recent work on interfaces from the database community has
recognised the lack of data oriented models of visualisation [27]
and have proposed a formalism for the process of visualising data
in a system. This model makes particular concern for the use of
metaphor in the visual representation of the data model
constructs. Further, Catarci et al [18] have further specified this
approach with consideration of the application domain and the
transparency of metaphor used.
The framework presented in this paper draws from user,
interaction, visualisation and data models where appropriate, but
is primarily influenced by Abowd and Beale’s [1] general
interaction framework.

3. A Framework of Interfaces to Databases

Figure 2 shows the proposed framework defining the major
characteristic components of an IDS adapted from Abowd and

Beale’s original. In addition, the lower boxes extend this
framework by defining specialised features of each component,
which are identifiable when applying the interaction framework
specifically to databases.

The revised framework contains database, interaction,
visualisation and user components which are derived from
Abowd and Beale’s system, input, output and user components,
respectively.

Input is replaced with interaction, because in many modern
direct manipulation interfaces the user’s articulation of a task is
involved with the simultaneous input and output of a system. For
example, the classical drag-and-drop operation is performed by
using a mouse (input) to move an icon (output). In this way, the
framework regards the articulation of a task as a communative
dialogue in conveying the intention of the user, such as,
querying, browsing or updating. Importantly, this permits a more
directed approach to realising a database user’s articulation in
this framework. System is replaced with database, allowing the
framework to deal specifically with the interaction between the
user and the elements of the database. Output is replaced with
visualisation, which concentrates the framework on presenting
the elements of the database. This permits the separation of the
concerns of data visualisation as a distinct component from the
interaction component. Clearly, the issues currently (and
foreseeably) pertinent to IDSs are explicitly represented within
the components of this framework.

The specialised features of each component have a bearing on the
features of other components. Typically, the features of the user
and database will determine a particular choice of interaction and
visualisation component. Each component is detailed below with
further explanation of their features.

An important property of this framework is that it is applicable to
both general abstraction and concrete specification of the

Fig 1 Abowd and Beale's interaction framework with the
context of existing interaction models  shown according to their

particular emphasis.

Fig 2 A framework for the characteristic components of user-
interfaces to databases



particular IDS in question. For example, the intention of an
interaction component may be conceptualised at a general level
to provide data retrieval by means of interactively specifying a
query, or at a detailed level to specify the intention of an atomic
interaction component, such as pushing an ‘ok’ button to confirm
the deletion of an object. In this way, each of the four major
components may be sub-divided, in a step-wise refinement
fashion, to specify aspects of an IDS at successive levels of
detail. A direct mapping to the conceptual language is achieved
when the atomic sub-components of the database, user,
interaction and visualisation components are specified.

3.1 Database

Depending on the purpose of the IDS, the database component
may relate to a representation of the data model, the schema
described under the data model, the objects instantiated from
classes in the schema or some combination of these.

Data Model. Data models define the types of data, constraints
and operations that can legally be represented in a database.
The set of data modelling constructs present in any
particular data model determine the flexibility, behaviour,
expressiveness and level of integrity possible in the data
described. For certain purposes it may be appropriate to
visualise the data model supported by the database, eg. to
understand precisely the semantics of the schema [27].

Schema. A database schema precisely defines the structure and
meaning of the data in a database, in terms of the data
model. Typically, the design of database schemata entails
the definition of the classes of objects to be stored and the
relationships among them. The complexity and structures
inherent in a schema will have an impact on the design of an
interface. Providing an interface based on the schema may
be advantageous for new users to the database to use as a
’map’ of the database. In addition, it may be useful to a
database administrator to visualise and update the schema.
Thus, the stability of such schemata is also an item for
consideration.

Objects. Objects are the basic units of information in a database
and it is important to provide appropriate interfaces to this
information. Elementary objects might hold one atomic item
of information, whereas complicated objects typically have a
variety of properties, operations, constraints and related
objects. In designing an interface depicting the contents of
the database a variety of issues will affect the appearance of
an object. For example, it may not be practical to visualise a
huge number of complicated objects given a limited amount
of screen space. Alternatively, novel techniques may be
applied to accommodate such large numbers [39]. The
genericity of an object is also of concern, eg. an object
which represents something tangible in the real world may
yield a more concrete visual metaphor than one which
represents a generic abstract concept. An object which
changes only occasionally may not require constant visible
representation in the interface.

These features combine to describe the database component,
which may determine the purpose of the interface and affect the
choice of features of user, interaction and visualisation
components of the framework. For example, the WINONA [39]
interface which combines schema and object information is
suitable for browsing, querying, data entry and manipulation,
whereas the NIOME [29]  and OPOSSUM [27] interface which
concerns only the schema information is not designed for
querying data.

As a result, an IDS may be specifically involved with the
visualisation of the database schema or alternatively, an IDS
might require data entry for the objects of the database. Indeed, it
may be useful to manipulate aspects of the data model through
the interface, although this is less common.

3.2 User

Although user modelling is possible through a variety of
sophisticated techniques, such as, TAGs, CCT, GOMS, etc.,
their specific relevance to database issues is limited. Therefore,
an approach which facilitates such analyses, but remains
particular to the requirements of a database user, was chosen.
The major characteristic features of a user affecting the IDS are
his/her sophistication, task, and authority.

Sophistication. The user’s sophistication is defined in terms of
his/her knowledge of the components of the framework, ie.
the objects, schema or data model of the database, the style of
interaction and the meaning of the visualisation. Clearly, the
perceived sophistication of the user by the interface designer
will affect the choice of data to present to the user. It is
doubtful that a user with no database design experience will
understand the meaning of a schema diagram using abstract
symbols, but s/he may be comfortable with concrete visual
representations of the objects in the database, eg.
representing a person object by his/her photograph. A user’s
experience with a particular style of interaction may guide
the designer towards providing that style. Conversely, a
chosen style of interaction may preclude a group of potential
users who are not proficient in that style.

Task. The general tasks which users must perform are pertinent
to interface design. A user who has to perform frequent,
verbose tasks would choose a more efficient, minimal
interface in preference to a more deliberate, elaborative
interface where many actions require confirmation. A wide
range of tasks expected from a given user requires frequent
reminders of the meaning of the interaction operations
available. Individual tasks may be modelled using TAGs,
CCT, GOMS, etc. to provide a detailed analysis of the
functionality required by the interface, eg. the task of
querying a database may be broken down into smaller
component tasks, such as, defining the query, executing, and
browsing the result.

Authority. A user’s authority is defined by the level of access to
data provided by the interface, eg. the permission to read,
write or update this information. An end-user may only merit



a limited view of the data, whereas administrators frequently
require a full view permitting updates of the schema as well
as the objects. A user’s view in database terms is a desirable
feature of secure database systems [8].

These features combine to describe the user component, any of
which may affect the choice of features of database, interaction
and visualisation components. Authority is orthogonal to
sophistication, eg. a managing director may be granted authority
over the entire contents of the database, but still have a low
degree of sophistication in the use of a particular interface.

3.3 Interface

In this framework, an interface is composed of visualisation and
interaction components. A visualisation component is preferred
to the more general output component in deference to the
extensive body of research on data [19] and database [12, 15, 16,
30, 39, 43, 45] visualisation.

3.3.1 Visualisation

A visualisation component refers to the output of graphical
information particular to the current purpose of the database
application. The user’s observation of and the database’s
presentation of this visualisation component is determined by the
chosen layout and metaphor.

Multi-media databases storing sounds may be classified where
the visualisation metaphor is interpreted as an audible noise. In
such cases, the word visualisation can be interpreted broadly as a
multi-modal presentation component.

Referent. The purpose of a visualisation is simply to
communicate to the user some component of the database
user interface, ie. the referent which the current visualisation
is representing. Typically, this concerns the visualisation of
the database’s contents, from concrete visualisation of
database objects [30] to abstract visualisation of schemata
[29] or queries [45]. At a lower level of detail the
visualisation is required to represent nested interaction
components, eg. a menu or window. Indeed, it is sometimes
useful to visualise user components representing other users
[12].

Metaphor. A metaphor defines the symbol used to represent the
component being visualised. A metaphor may range from the
direct representation of the component, to an abstract symbol
in some way related to the component in question. Formal
definition of the mapping from the referent to the metaphor
may be possible [18, 27].

Layout. A layout is defined as the position of interface
components relative to other components in a common
environment. This is particularly important in communicating
the structure of the data to the user. Types of visual layouts
include linear, circular [39], form, grid, hierarchical [43],
scatter plot and graph [15] structures. Clearly, the structure of
the schema in the database component will frequently

determine the designer’s choice of visual layout. When the
referent of visualisation is to represent an interaction
component issues may be drawn from their functionality,
sequence, and frequency [23], eg. a frequently repeated
interaction operation should be located close to hand and not
obscured.

3.3.2 Interaction

An interaction component refers to the input of information
articulating the user’s intention to the interface. This intention is
communicated through the interaction component’s medium and
performed to achieve a specified effect.

Intention. A major feature of an interaction component is its
intention, ie. the specific interface action which satisfies
some goal. This concerns both the subject of the interaction
component and its practical function. The subject will be
some selection of database, user and interface components
and its use may concern the entry, manipulation, browsing, or
querying of data. For example, a form may concern a new
object in the database and its function may be for entering the
information required for this object.

Medium. When communicating a user’s intention, the medium
through which this is achieved is important in the design of
an interface. This medium concerns both physical and logical
aspects of the interface; physical aspects being the mouse or
keyboard and logical aspects being buttons, scroll bars,
menus, text fields, dialog boxes and objects. The logical
aspects of an interaction component’s medium is directly
associated with a visual component’s referent in the
interface.

Effect. The effect of an interaction component can change any
aspect of any component in the IDS framework. For example,
the effect of a button whose intention is to delete an object in
the database will (obviously) remove an object from the
database.

This model of interaction proposed is similar in concept to the
PIE model [22], where the effect of a particular input may change
the internal state of the system and/or the visible system’s state.
The removal of an object from the database component may be
displayed by a change in the visualisation component, eg. a
decrease object counter or the disappearance of a shape
previously used to represent the object. Whereas the PIE model
is a black-box model with concern for only external behaviour,
our model is necessarily concerned with the specification of
internal changes in state in order to map the identified
components of an IDS to a database implementation. However, at
an abstract level the predictability and observability of a
database’s state can be formally analysed with respect to this
model.

3.3.3 Style and Complexity

A combination of visualisation and interaction components
determines the style and complexity of the database user



interface. Both these features are themselves abstracted from the
above features of visualisation and interaction components.

Style. The style of an interface to a database can be classified in
abstracts terms as textual, forms-based, graph-based, three
dimensional, etc. In forms-based interfaces the form can act
as a medium for both input and output (in the terms of this
framework, interaction and visualisation). This is an example
of the style being determined by a combination of
visualisation and interaction components. Within this
framework, the style of an interface component may be
characterised by the metaphor and layout of its visualisation
component and the medium used by its interaction
component.

Complexity. The number, size, and frequency of recurrence of
visualisation and interaction components combine to define
the complexity of the interface component. For example, a
large number of different symbols densely arranged will be
confusing to a user. However, visualisations of large numbers
of objects can be simplified by representing objects in
conjunction with schema information [39]. The frequency of
recurrence concerns how often and in what sequence in time
interface components are accessed, eg. if a form is expected
to be frequently accessed, then it should provide a means for
rapid processing by the user. Alternatively, if a form is rarely
used, then its features may require explanation. In general,
the complexity of an interface may be measured
quantitatively using Olsen’s [34] interface quality metrics
and applied as an issue in the design of IDSs in this
framework.

4. Mapping an IDS Classification to a
Conceptual Language

For this purpose, we have chosen the Napier Object Oriented
Data Language (NOODL) for IDS specification. NOODL is a
combined data definition language, data manipulation language
and query language for object oriented data. It is based on the
modelling approach described in [4]; it has been used to model
[5] and to support the implementation [7] of novel database
applications, and also for the investigation of specific modelling
issues such as declarative integrity constraints and activeness [6]
and the incorporation of views [8] in object oriented data models.
It also includes a query language [10].

A NOODL schema contains a list of class definitions, which

show the name and ancestors of each class. A class definition
also includes the names, sorts, and, optionally, definitions of the
properties of each class. A class definition may also contain
operations, constraints, and triggers. NOODL will be further
introduced later through examples; full details may be found in
[9].

In Abowd and Beale’s interaction framework, each of the four
components may be defined using its own language and it is
suggested that the ease of translation between these languages
determines the efficiency of the interface. However, given a
complete detailed classification of an IDS according to the
framework proposed here, each atomic component has a direct
mapping to a construct in NOODL. Therefore, one integrated
language is used for all components. This achieves a uniform,
natural way of describing databases and their interfaces. The use
of NOODL for specifying the framework provides the following
advantages:

• as a data modelling language it is immediately applicable to
data definition and manipulation

• it eliminates a potential impedance mismatch, which arises if
different languages are used for each IDS component

• it permits the application of object oriented concepts to the
modelling of interface and user components

• interface and user components may be stored and retrieved
along side database components in a persistent system.

• as a conceptual language it promotes communication between
users and IDS designers

The resulting NOODL schema defines the relationships and
dependencies among the database, user, interaction and
visualisation components embodying any IDS.

Figure 3 depicts the classes and properties of a meta-model of
the framework using NOODL constructs. In mapping the
framework to NOODL, certain components are depicted as
NOODL classes, some as properties, while other are modelled
using operations, constraints or triggers, examples of these are
shown in sections 4.1-4.3. An example schema based on the
above template is given in the appendix.

In common with Rumbaugh’s user interface modelling approach
[41] multiple interface objects are associated with each data
object. This permits database updates to be broadcast to each
relevant interface object. Thus realising the facility for multiple-
coordinated views [42]. Much work in the field of HCI reflects
this conceptual organisation. Conceptual architectures for user
interface management systems (UIMS) typically involve the
identification of the system (data) in separation from input and
output (interface) components. This is evident in the archetypal
Seeheim workshop model with application interface, dialogue
control and presentation components; Smalltalk’s model, view,
and controller (MVC) paradigm; and the presentation,
abstraction and control model (PAC)[35].

Of particular concern to IDSs is the presentation of large
amounts of data. With VDU real-estate at a premium, the layout
of interface components is increasingly important. The above

  referent

 interfaces
 interface

metaphor

 components

 interfaces

 users
DATAUSER INTERFACE

VISUALISATION

AUTHORITY

SOPHISTICATION

 sophistication

 user

 user

 authority

 composite

Fig 3 A NOODL meta-model of the IDS framework



model caters for layout organisation through the use of interface
object composition. Each interface object may contain a set of
other interface objects, which may be arranged algorithmically.

In addition, consideration for IDS users are explicit in this
model. This enables applications to provide user specific
interfaces, based on the details of the particular user model
thereby realising the role of the database user in the interface.
The following describes the mapping of each feature of the
components in the framework to a set of constructs in NOODL.

4.1 Mapping Database Component Features to NOODL

In an IDS there must be some mechanism for presenting the
information stored within the database to the user, ie. it must be
possible to present each of the features identified in the database
component. This is achieved by linking each database component
to an appropriate interface component. In NOODL, this
corresponds to a pair of obverted properties in both data and
interface classes [30] (using the ref keword). A data class
represents the features of a database component. Likewise, an
interface class represents the features of an interface component
(described later). In its simplest form, a data class is equivalent
to a class in the database’s schema, where the interface property
defines the link which binds this data class to an interface class,
eg. representing a museum artefact in a NOODL database would
be defined as below,

class Artefact
properties

interface : Artefact_Interface ref referent
name : Text
catalog_id : Number

As mentioned in section 3.1, it is sometimes necessary to
visualise the database schema. In this case it is not the individual
artefact that requires presentation, but the general concept of an
artefact. This requires a meta-representation of the database
component’s schema, eg. representing an artefact’s class in
NOODL would give,

class Artefact_Class
properties

interface : Artefact_Class_Interface ref referent
class_name : Text
property_details : #Text

Again, an interface property defines the link to an interface class.
If the IDS is providing a manipulation of the features of the
database component’s data model, the information defining
concepts such as, class, property, operation, constraint, etc., must
be specified. This requires a meta-representation of the database
component’s data model, eg. representing the data model’s
concept of a class gives,

class Class
property

interface : Class_Interface ref referent

4.2 Mapping User Component Features to NOODL

An individual user is mapped to an object in the NOODL data
model. A group of users with common features may be defined in
a user class (Figure 4). The accessor property defines the set of
interface objects accessible to the user.

class User
properties

accessors : #Interface ref users ;
sophistication : Sophistication ref user ;
authority : Authority ref user

operations
task1 is self.task1a, self.task1b ;
task1a is self.interface.intention1 ;
task1b is self.interface.intention2

class Sophistication
property

user : User ref sophistication

class Authority
property

user : User ref authority

Fig 4 A user class template with access to interface class

The sophistication and authority of a user are specified by
obverted properties. These are abstract classes, which may be
derived for a particular user model. Related to this is the task of
the user, ie. the set of possible tasks a user can carry out are
limited by the extent of his/her view of the IDS. If a user’s task is
necessarily represented explicitly (eg. for modelling the user
through hierarchical task analysis [23]), a structured sequence of
intentions may be defined as shown in the operations of the
above class.

4.3 Mapping Interface Component Features to NOODL

Modelling of interface components based on an object oriented
data model is well established, eg. the user interface design
environment (UIDE) [25]. Recent work has shown that it is
possible to use NOODL for this purpose [30]. As in section 4.1, a
NOODL interface description can associate each class in the
database’s schema with an interface class, which defines the
appearance and interface actions related to the data. A
description of how the features of a NOODL interface class can
be derived from the features of an interface component in the
framework follows.



The referent of a visualisation component corresponds to the
object referenced by the obverted referent property (figure 5).
This property may specify either a data, user or interface class,
allowing a visual representation of a database, user or interface
component. In a direct manipulation interface [42], interface
classes will mainly reference data classes. The visualisation
metaphor is defined by the Visualisation class referenced through
the metaphor property. This separation of visualisation classes
from interface classes allows flexible linkage for alternative
visualisations.

The interaction component’s intention is defined by the
operation, intention. The interaction medium corresponds to the
sequence of events listed in intention definition, eg.

 self. metaphor.select

The interaction effect is defined by the interface class’ trigger
action, eg.

self. referent.update

An example NOODL schema, based on the mappings described
above, for the interface shown in figure 7 is detailed in the
Appendix.

5. Prototype Interface to a Database

Given such schema specifications a prototype interface may be
generated automatically by applying the above mapping
systematically to an implementation. The realised prototype
interface may be used in empirical studies of its effectiveness or
in practical applications. This has been partially fulfilled in the
DRIVE (database representation independent virtual
environment) user interface development environment (UIDE).
Although it is beyond the scope of this paper to detail the process
of automatically mapping a NOODL schema to a working
interface, the architecture of the resulting interface is shown in
figure 6; full details may be found in [31].

It has been implemented on a PC-platform under Microsoft
Windows in C++, using the Borland’s ObjectWindows Library
(OWL)[35] and Criterion Software’s RenderWare [40] graphics
dynamic link library for the 3D representation of visualisation
objects. A NOODL data model layer (similar to ObjectStore’s
Meta Object Protocol [32]) implemented with the POET [13]
persistent C++ extension provides a means of dynamically
creating persistent database interface schemata together with
their data.

Data, user, interface and visualisation classes are linked and
maintained by the environment model. This model contains a
scheme for handling interaction events and mapping them to the
appropriate interface object. A visualisation may be derived in
conjunction with existing interface widgets, such as OWL
windows, and advanced interface widgets, such as the 3D widget
set’s (TDW)[16] access widget.

Figure 7 shows a display from the prototype IDS specified in the
appendix within the DRIVE UIDE. The display shows various
views of the museum which may be altered interactively with the
mouse in designer mode. The dialog box in the upper middle of
the display shows the list of objects of an artefact’s data class.
The dialog box in front of this one displays the object’s
information together with a set of buttons intended for editing its
properties, operations, constraints, triggers or associated
interface class.

6. Conclusion

This paper has presented a specialised framework for interfaces
to databases. The definition of the components of an IDS within
this framework provides a means of mapping to a concise
conceptual language (NOODL). In adapting Abowd and Beale’s
general interaction framework [1] to database interaction, we
have identified the major features and components of an interface
with particular relevance to database issues. This promotes
advances in IDS research whilst remaining in the context of
existing research in the field of HCI.

Given an IDS specification in NOODL, we have demonstrated
the potential for its realisation using an interface prototyping tool
(DRIVE). This results in a fully functional, practical interface to
an object oriented database. Although this framework is

class Interface
properties

referent : Data ref interface
metaphor : Visualisation ref interface
users : #User ref accessors
composite : Interface ref components
components : #Interface ref composite

operation
intention is medium

trigger
intention => effect

class Visualisation
properties

interface : Interface ref metaphor

Fig 5 NOODL interface class templates

InterfaceUser

DRIVE

DB (POET) Windows
NOODL Data Model

OWL
RenderWare

Environment Model
TDWData  Visualisation

Example IDS Design Environment

Fig 6 Layered IDS architecture generated with the DRIVE UIDE



presented for an object oriented database, it is broadly applicable
to interfaces to databases supporting any data model.

The use of a framework for interfaces to databases supports the
investigation into the salient features of systems providing
interaction with data. Issues arising in such interactions are
clearly identified within this framework. Comparisons between
IDSs using this framework can be made with the potential for
highlighting the applicability of particular interface styles. This
promises the expression of well defined solutions and rules for
the design of future IDSs.

7. Further Work

Both interface style and complexity are abstractly defined by a
combination of all the above mappings. However, it may possible
in the future to specify an interface style and generate the
appropriate interface classes accordingly; particularly in the case
of environment classes.

The use of meta modelling to represent the features of a database
component enables a possible mapping to the language.
However, future extensions to this language with specific meta
modelling constructs may provide a more direct mapping and
therefore further facilitate the visual representation a database’s
data model and schema components.

The range of database components accessible to a given class of
user may be specified by a database view. Barclay and Kennedy
[8] have presented a scheme for modelling a view as an object,
defined by a NOODL view class. Each user class may define a
view in a similar manner. This technique may be used to
determine the presence of related interface classes when the user
is using the IDS, defining his/her authority.

A formal definition of the mappings from the framework to the
NOODL and from NOODL to an IDS implementation would
provide a rigorous definition of this work. Theoretical rules and
limitations regarding this framework may be identified

8. References

1. G.D. Abowd & R. Beale (1991) Users, systems and
interfaces: A unifying framework for interaction, HCI’91: People
and Computers, 4, 73-87.

2. ASV (1992) International State-of-the-Art Conference on
Animation and Scientific Visualisation, Hursley Park, UK.

3. AVI (1994) AVI’94, Workshop on Advanced User
Interfaces, Bari, Italy.

4. P.J. Barclay & J. Kennedy (1991) Regaining the
conceptual level in object oriented data modelling. In:
Proceedings of BNCOD (Jackson and Robinson, eds).
Wolverhampton: Butterworths. 9, 269-305.

5. P.J. Barclay & J.B. Kennedy (1992) Modelling
Ecological Data. In: Proceedings of International Working
Conference on Scientific and Statistical Database Management.
Ascona. 6, 77-93.

6. P.J. Barclay & J.B. Kennedy (1992) Semantic Integrity
for Persistent Objects, Information and Software Technology,
34:8, 533-541.

Fig 7 A prototype interface to a museum database created within the DRIVE UIDE



7. P.J. Barclay, C.M. Fraser & J.B. Kennedy (1992) Using a
Persistent System to Construct a Customised Interface to an
Ecological Database, 1st International Workshop on Interfaces to
Database Systems, 1:14.

8. P.J. Barclay & J.B. Kennedy (1993) Viewing Objects, In:
Proceedings of BNCOD, 11, 93-110.

9. P.J. Barclay (1993) Object oriented modelling of complex
data with automatic generation of a persistent representation.
Phd Thesis. Edinburgh: Napier University.

10. P.J. Barclay & J.B. Kennedy (1994) A conceptual
language for querying object-oriented data, British National
Conference on Databases, 12:13, 187-204.

12. S. Benford & J. Mariani (1994) Populated Information
Terrains, 2nd International Workshop on Interfaces to
Databases, 2:9, 159-169.

13. B.K.S. Software (1994) POET (Version 2.1) -
Programmer’s & Reference Guide. B.K.S. Software.

14. S. Bovair, D.E. Kieras & P.G. Polson (1990) The
acquisition and performance of text-editing skill: A cognitive
complexity analysis. Human-Computer Interaction, 5:1, 1-48.

15. J. Boyle, J.E. Fothergill & P.M.D. Gray (1994) Amaze: a
three dimensional graphical user interface for an object oriented
database, 2nd International Workshop on Interfaces to
Databases, 2:7,117-131.

16. J. Boyle & K. Mitchell (1995) Embedding three
dimensional graphics inside a user interface development
framework, Technical Report submitted for publication. Robert-
Gordon University, Aberdeen.

17. S.K. Card, T.P. Moran & A. Newell (1983) The
Psychology of Human Computer Interaction. Lawrence Erlbaum
Associates.

18. T. Catarci, M.F. Costabile, A Massari, & G. Santucci
(1994) Database Interaction: 3D or not 3D, Proceedings of
FADIVA Workshop, 1,8.

19. B.M. Collins (1992) Data Visualisation - Has it all been
seen before? International State-of-the-Art Conference on
Animation and Scientific Visualisation, 1-33.

20. R. Cooper (1993) The interaction between DBMS and
User Interface Research, editorial of, Interfaces to Database
Systems 1992, 1-5.

21. D. Diaper ed (1989) Task Analysis for Human-Computer
Interaction, Ellis Horwood.

22. A.J. Dix (1991) Formal Methods for Interactive Systems,
Academic Press.

23. A.J. Dix, J. Finlay, G.D. Abowd & R. Beale (1993)
Human-Computer Interaction. Prentice-Hall.

24. FADIVA (1994) 1st FADIVA Workshop, Seeheim,
Germany.

25. J. Foley, W. Kim, S. Kovacevic, & K. Murray (1989)
Defining Interfaces at a High Level of Abstraction, IEEE
Software, 6:1, 25-32.

26. G. Grinstein ed (1993) Workshop on Database Issues for
Visualisation, San Jose, California.

27. E.M. Haber, Y.E. Ioannidis & M. Livny (1994)
Foundations of Visual Metaphors for Schema Display, Journal of
Intelligent Information Systems, 3.

28. IDS (1994) 2nd International Workshop on User-
Interfaces to Databases, Ambleside, UK.

29. K.J. Mitchell (1994) Schema visualisation. MSc Thesis.
Edinburgh: Napier University.

30. K.J. Mitchell, J.B. Kennedy & P.J. Barclay (1995) Using
a Conceptual Language to Describe a Database and its Interface,
British National Conference on Databases, 13:7, 101-119.

31. K.J. Mitchell & J.B. Kennedy  (1996) DRIVE: An
Environment for the Organised Construction of User-Interfaces to
Databases, Technical Report, submitted for publication. Napier
University, Edinburgh.

32. M.O.P. (1994) ObjectStore : Meta Object Protocol.
Object Design Ltd.

33. D.A. Norman (1988) The Psychology of Everyday
Things. Basic Books.

34. A.M. Olson (1992) Object-oriented Analysis of Visual
Computer-Human Interfaces, Journal of Visual Languages and
Computing, 3, 399-414.

35. O.W.L. (1994) ObjectWindows (Version 2.0) for C++ -
Programmer’s Guide. Borland International Inc.

36. N.W. Paton, R.L. Cooper, D. England, G. al-Qaimari &
A.C. Kilgour (1994) Integrated architectures for database
interface development, IEE Proceedings of Computers and
Digital Technology, 141:2, 73-78.

37. S.J. Payne & T.R.G. Green (1986) Task-action
grammars: a model of mental representation of task languages.
Human-Computer Interaction, 2:2, 93-133.

38. G. Pfaff & P.J.W. ten Hagen eds. (1985) Seeheim
Workshop on User Interface Management Systems.



39. M.H. Rapley (1994) Three dimensional interface for an
object oriented database, 2nd International Workshop on
Interfaces to Databases, 2:8, 133-158.

40. RenderWare (1994) RenderWare API : Reference Guide.
Criterion Software.

41 J.Rumbaugh (1995) Modelling models and viewing
views: A look at the model-view-controller framework, Journal
of Object Oriented Programming, , 14-22.

42. B. Shneiderman (1983) Direct Manipulation: a Step
Beyond Programming Languages, IEEE Computer, 16, 57-69.

43. F. Steinfath, K. Bohm, B. Lange (1994) Evaluation of
Complex Information Processing Systems in 3D-Space, FADIVA
Workshop, 1:2.

44. S.B. Zdonik & D. Maier eds. (1989) Readings in Object-
Oriented Database Systems, Morgan-Kaufmann.

45. M.M. Zloof (1975) Query by Example, Proceedings of
the National Computer Conference, 431-437.

9. Appendix - Example IDS Specification

This schema specifies the prototype IDS shown under the DRIVE
UIDE in figure 7. The specification concerns a museum’s
database which is interacted with through a desktop virtual
reality user interface. The data of the database is specified by the
Artefact class, which holds its name, description and
reference_id. This information is displayed through the linked
interface classes, Artefact Interface and Artefact Detail Interface.

Users of this system are modelled by the class Visitor.
Sophistication and authority properties have been omitted,
because no particular sophistication or authority is appropriate to
this example. The user interacts with a number of Window
Interface instances, through which s/he may browse the artefacts
of the museum.

Each window uses a 3D window metaphor, which provides a
virtual environment for the to navigate. The referent of all a
particular user’s windows, is a Museum Interface object, which
uses a Shape metaphor.

The museum interface is composed of a collection of Artefact
Interfaces and an Artefact Detail Interface. Each Artefact
Interface also uses a Shape metaphor and the position of its
shape must lie within the bounds of the museum’s shape. If the
user’s intention is to browse a particular artefact, then the
artefact detail interface’s referent will be set to the selected
artefact’s referent. This has the effect of showing a form
describing the details of the currently selected artefact.

schema Virtual_Museum

class Artefact (* Data Class *)
properties

interface : Artefact_Interface ref referent ;
detail_interface : Artefact_Detail_Interface ref referent ;
name : Text ;
description : Text ;
reference_id : Number

class Visitor (* User Class *)
property

accessors : #Window_Interface ref users
operation

browse is self.accessors.museum.artefacts.browse

class Window_Interface (* Interface Class *)
properties

museum : Museum_Interface ref interfaces ; (* referent *)
users : #Visitor ref accessors ;
metaphor : 3DWindow ref interface ;

class Museum_Interface (* Interface Class *)
properties

interfaces : #Window_Interface ref referent ;
metaphor : Shape ref interface ;
artefacts : #Artefact_Interface ref museum;(*components*)
detail : Artefact_Detail_Interface ref museum

class Artefact_Interface (* Interface Class*)
properties

referent : Artefact ref interface ;
metaphor : Shape ref interface ;
museum : Museum_Interface ref artefacts (* composite *)

operation
browse is self.metaphor.select

constraint
self.metaphor.position.is_inside(self.museum.metaphor.extent)

trigger
browse => self.museum.detail.referent(referent)

class Artefact_Detail_Interface (* Interface Class *)
properties

referent : Artefact ref detail_interface ;
metaphor : Form ref interface ;
museum : Museum_Interface ref detail (* composite *)

class Shape (* Visualisation Class*)
properties

interface : Artefact_Interface ref metaphor ;
name : Text ;
position : Position ;
extent : Extent ;
orientation : Orientation ;
colour : Colour

operations
select ;
move

class Form (* Visualisation Class *)
properties

interface : Artefact_Detail_Interface ref metaphor ;
fields : #Text

class 3DWindow (* Visualisation Class *)
properties

interface : Window_Interface ref metaphor
...

end (* Virtual Museum *)


