
The Mocha Algorithm Animation System*

James E. Baker* Isabel F. Cry, z* Giuseppe Liotta* t~oberto Tamassia t

A b s t r a c t We describe the implementation of a new sys-
tem, called Mocha, for providing algorithm animation over
the World Wide Web. Mocha is a distributed system with a
client-server m-chitecture that optimally partitions the soft-
ware components of a typical algorithm an*mate*on system,
and leverages the power of the Java language, an emerging
standard for distributing interactive platform-independent
applications across the Web.

M o c h a We have implemented a prototype of an an-
imation system called Mocha that can be accessed by
any user with a W W W browser supporting Java (cur-
rently Netscape 2.0 and Hot Java) at URL
htep:/lwww, cs. brown, edu/people/j ib/Mocha, heal.

In this paper, we discuss in detail tim implemen-
tation of Mocha. A companion paper [1] describes the
model underlying the architecture and design of Mocha,
provides a comparison between this model and previous
ones, and presents an application to the animation of
geometric algorithms.

D e s i g n G o a l s Our design goals are derived from the
comparison criteria that distinguish Mocha from other
models, see [1].

Security. Java provides support for security on the
user side. On the provider side, security is guaranteed
both by Java and the design of the algori thm servers.

Authoring. Mocha provides full support of the World
Wide Web by being embedded in a Java-compatible
browser. Authors and users of algorithm animations
can simply place the desired animation applet as sinn-
ply another component of an HTM L file, comparable to

*Research supported in part by the National Science Founda-
tion under grant CCR-9423847, by the U.S. Army Research Office
under grants DAAH04-93-0134 and DAAH04-96-1-0013, and by
the N.A.T.Oo-C.N.R. Advanced Fellowships Programme.

1" Department of Computer Science, Brown University,
115 Waterman Street, Providence, RI 02912-1910, USA.
{j ib, gl, rt}@cs, brown, edu

tDepartment of Electrical Engineering and Computer Science
Tufts University, 161 College Avenue, Medford, MA 02155, USA.
isabel@cs, tufts, edu

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
AVI '96, Gubbio Italy

© 1996 ACM 0-89791-834-7196/05.,$3.50

an linage, for example. The use of Java also enables %he
simple use of CGI scripts from the applet itself, image
files (GIF, JPEG) , audio streams, etc. Yet at the same
{;ime, the Java clients can take full advantage of existing
or new services, written in a variety of languages, such
as Cq + or LEDA, as long as they can be written to
use the animation protocol or a wrapper is written to
enable their use.

Communication complexit9, accesdbilitLt, code protec-
tion. Using the client-server paradigm is a well-known
means of localizing functionality, code, and computa-
tlon so that these goals can be achieved.

Responsive feedback. Maintaining high responsiveness
to the user's interaction is especially impor tant in the
case of client-server environment where there is a possi-
bility of network latency; yet it is also impor tant from
the standpoint of accessibility, where we allow users to
have access to potentially very expensive computations.

From tile user's s tandpoint , interaction should pro-
vide responsive feedback. Mocha's support of algorithm
animation provides for multiple levels of feedback, rang-
ing from instantaneous to longer range. Display pointer
correspondence to the user's mouse, or other input de-
vice, should be instantaneous, of course; ideally, any
drag-and-drop or other direct manipulat ion should also
be apparently instantaneous. Additional threads, con-
veniently part of the Java language, provide for other
feedback which may not be instantaneous, such as ser-
vicing the communication of a lengthy geometric com-
putat ion on the server. A third layer of feedback might
be provided by a monitoring thread that observes the
user and suggests further interactional or instructional
possibilities. One simple example of such a thread is an
audio narrative that instructs the user on the use of the
animation if the user has simply been reading the sur-
rounding text without a t tempt ing to interact with tile
animation.

Attractiveness. Although this is subjective, we con-
sider the prototypes to be at tract ive and of interest to
a user seeking to better understand these algorithms.
Here, the ease of authoring, especially from the s t a n d
point of using resources available on the Internet for
creating attractive Web pages, may be the more objec-
tlve criterion.

Support multiple views. Mocha employs a model-view-
controller paradigm that simplifies tile support for mul-

248

http://crossmark.crossref.org/dialog/?doi=10.1145%2F948449.948487&domain=pdf&date_stamp=1996-05-27

tlple views.

F r a m e w o r k s Architectural frameworks [3, 5] provide
for the reusability of the design and implementation of
a set of cooperating classes over a given application do-
main. The advantage that frameworks provide over a
mo~_olit, h ic API is that they define the interactions, col-
laboratior~s, and responsibilities of the components, in-
ciuding the novel parts, in the framework. Frameworks
thus provide for "generic software architectures" [5].

Java provides a GU! framework in terms of its
j ava . a~t p~ckage and especially the applet class. Users
of this GUI framework are constrained to how the frame-
work dispatches events, such as mouse events or re-
paints. This simplifies the programming of the com-
ponent written in Java, as well as its integration on a
Web page, potentially with other Java components.

However, the Java framework does not address such
issues as the use of the Model-View-Controller (MVC)
paradigm or a client-server architecture. In fact, client-
server architectures exist outside of Java since they in-
troduce non- java components, as well as the interfaces
and protocol that connect these components. Mocha
is thus both a implementation framework - - in terms
of support for MVC by animation clients and common
mediator code - - as well as a design framework for in-
tegrating algorithm services.

T h e M o d e l - V i e w - C o n t r o l l e r P a r a d i g m The
Model-View-Coat,viler paradigm [4] separates the task
of modeling fl'om that of displaying the model (view)
and of interacting with the model (controller). A con-
ventlonal implementat ion of algorithm animation with
MVC would then separate the geometric structures, say
of a Voronoi diagram as a planar graph with the nodes
marking the Voronol sites, versus the display which may
render the nodes as shaded balls. The controller pro-
vides facilities for interacting with the display, such as
drag and drop, which then is updated in the model.

Note that as the at tr ibutes of interest in the ani-
mated geometric objects increase, or as we distinguish
the abstract characterization of a geometric object from
its implementation as a data structure, it is possible to
derive several interesting views. By using MVC we can
ensure the correspondence of each view to the model
without increasing the complexity of the design (at least
beyond the design's initial incorporation of MVC). The
importance of this for algorithm animation was intro-
duced by BALSA [2].

Mocha extends this conventional use of MVC by
partitioning both the model and the controller between
the client and the server. Both the client and the server
model the geometric structures used in the algorithm
animation, althm~gh the client will typically employ im-
plementations of these structures optimized for render-
ing and user control, whereas the server maintains struc-

tares for efficient use by the supported algorithms. The
animation protocol supports the maintenance of the cor-
respondence between these models. Some interesting
results occur when this correspondence is not fixed in-
stantaneously, as with a transactional protocol, but is
instead allowed to lag or to be incremental, to account
for the effects of network latency or lengthy computa-
tions.

Because the animation protocol is a messaging pro-
tocol, the servers can also provide control. This is not
the same as a peer model because clients always make
the initial connection to the service, and not vice versa,
but once initiated, the server can asyI~chronousty intro-
duce animation events.

M e d i a t o r s a n d P r o t o c o l S u p p o r t A client-server
architecture is the result of a decomposition, or parti-
tioning, of the system that crosses all of tile gross de-
scriptions of tile design of the system. Partitioning is
not arbitrary, but rather chosen to localize fimctional-
try or responsibility. This may be to provide for bet-
ter performance, increase security, or enhance reusabil-
ity, or some other reason. For example, an applica-
tion for maintaining a warehouse inventory might have a
GU1 client for interacting with tile user and a back-end
database. This can increase performance by reducing
network traffic, performing display operations only on
tile client; security, by limiting the database to a more
secure machine; and reuse by enabling other component
to be replaced, perhaps dynamically, as long as the in-
terfaces remain compatible, such as through a published
open application interface (API).

However, naive application partitioning can result
in high maintenance costs and even a lack of openness
if each client-server pair has its own interface. As the
number of clients n and the number of servers rn expand,
the number of potential relationships is of course n x rn.
Mediators [6] are a well-known mechanism for reduc-
ing this interoperability problem. Mediators are used
in the commonly-used (and mentioned) three-tiered ar-
chitecture model in business applications of presenta-
tion logic, business rules, and database backend; this
could be realized through a windows GUI, a transac-
tion monitor, and a database server for the example
of maintaining a warehouse inventory. The transaction
monitor would ensure that all participating databases
were consistent. The mediator isolates the commonal-
ity between the interaction of the client and the server;
it may be running on another machine - - to enable fault
tolerance or security, for example - - but this is a result
of the partitioning, not a necessary condition. Indeed,
it would often be undesirable to make the mediator the
hot spot of communication, but instead to provide it as
part of the system design. Mocha provides a mediator
as part of the framework for both the GUI clients and
algorithms servers. This mediator then supports the

249

animation protocol.

C l i e n t I m p l e m e n t a t i o n Clients are composed of the
following components to create a coherent fYamework
for easily creating new interactive algorithn~ animations:

Java-enabled WWW browser. Hot Java from Sun and
Netscape both provide support for Java; others will
likely do so in the future because of the appeal of inter-
active content.

GUI. The GUI supports the view and controller of the
MVC paradigm. This is written in terms of Java and
its GUI framework.

Animator. The animator maintains the model in re-
sponse to both the user and the annotated algorithms
(through the animation protocol).

We implement our framework for the Java clients
on top of the existing applet /panel GUI framework. An
alternative choice, to be a content handler for a novel
protocol, has limited flexibility at this time because in-
teraction is entirely of the request-reply class.

The internal architecture of the Java tYamework
is based on a conta iner /component pattern that is be-
coming widely adopted, such as in OLE, OpenDoc, and
other systems. Containers distribute events (r e p a i n t ,
mouseDown, mouseDrag) to their components through
event handlers that can be further derived through in-
heritance, in the Mocha framework, we introduce the
additional events and handlers corresponding to the ap-
plication domain instead of mouse clicks or redraws be-
cause the window of the animation is now exposed. Al-
though this is not always realizable, the Mocha frame-
work is structured so that only events in terms of geome-
try and animation are dispatched to derived animation
clients. (Overrides of the framework provide for rare
c a s e s where it is necessary for the client to know the
current position of the mouse, for example.)

Our support for point sets illustrates the capabil-
ities of our framework° We support the entry of point
sets through movepoin t and addPoinl: events. These
events are then routed through the geometry manager
(a mediator), which supports the animation protocol
between the client and the geometry services.

MVC on the client supports a high degree of par-
allelism, which can be exploited through the use of
threads on the client. Additional parallelism is through
the client-server partitioning. We exploit MVC's paral-
lelism by allocating one or more threads to each task:
modeling (interacting with the server), viewing (ren-
dering the display), and interaction (controller). Fur-
thermore, through Java's provision for interthread corn-
rnunication, the interaction thread can simply signal a
modeling thread that there is new input, while also
requesting a redraw to simulate direct interaction by
changing part of the input model. When the compu-
tation has finished, perhaps after a lengthy server call,

this can trigger again the display thread to make the
consistent again. An example of this for Delaunay tri-
angulation is to enable the user to input and edit a point
set without latency, while the triangulation is performed
in the background and redrawn as available.

S e r v e r I m p l e m e n t a t i o n The simplest component of
our architecture are the servers. Servers are created
from the following:

Session manager. This element supports the creation
of context or state through the use of processes. As new
clients attach to the session manager through the sock-
ets protocol, additional processes are forked t,o handle
the desired service.

Protocol manager. Supports the anirnation protocol.

Model rnanager. Model support of geometric objects.
Typically this is a large component of the service, as it is
with LEDA which has rich support for robust geometric
objects.

Service implementation. The actual annotated algo-
rithms, such as Voronol or ~-proximity.

We support two services at this time~ based on the
libraries that they were built on: proximity and LEDA.
Other services will become useful in future versions of
this architecture. A database of interesting geometric
objects that are created and viewed with these tools is
an example of a service that, could be readily accommo-
dated in this architecture.

Sirnple services are easy to construct with exist-
ing libraries or filters through the wrapping with a thin
socket dispatcher and model translator. We anticipate
quickly adding a large library of existing geometric al-
gorithm filters to Mocha .

R e f e r e n c e s
[1] Jo E. Baker, I. F. Cruz, G. Liotta, and R. Tamassia.

Algorithm animation over the World Wide Web. In
Proc. Int. Workshop on Advanced Visual b~terfaces.
ACM Press, 1996.

[2] M. H. Brown. Algorithm Animation. MIT Press,
Cambridge, 1988.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, Reading, MA,
1995.

[4] G. E. Krasner and S. T. Pope. A cookbook for using
the model-view-controller user interface paradigm in
Smalltalk-80. Journal of Object-Oriented Program-
mint, l(3):26-49, Aug. 1988.

[5] O. Nierstraz and T. D. Meijler. Research directions
in software composition. Computing Surveys, 27(2),
1995.

[6] G. Wiederhold. Mediation in information systems.
Computing Surveys, 27(2), 1995.

250

