
KalNdoquery: A Visual Query Language for Object
Databases

Norman Murray, Norman Paton and Carole Goble

D e p a r t m e n t o f C o m p u t e r S c i e n c e

Un ive r s i t y o f M a n c h e s t e r

O x f o r d Road , Man ch es t e r , M 13 9 P L , U K

E - m a i l : (m u r r a y n , n o rm , ca ro le) @ c s . m a n . a c . u k

ABSTRACT
In this paper we describe Kaleidoquery, a visual query lan-
guage for object databases with the same expressive power
as OQL. We will describe the design philosophy behind the
filter flow nature of Kaleidoquery and present each of the
language's constructs, giving examples and relating them to
OQL. The Kaleidoquery language is described independent
of any implementation details, but a brief description of a
3D interface currently under construction for Kaleidoquery
is presented. The queries in this implementation of the lan-
guage are translated into OQL and then passed to the object
database 02 for evaluation.

KEYWORDS: Visual query language, OQLi object data-
bases, three-dimensional interface.

INTRODUCTION
The lack of a generally accepted and widely supported query
language has probably had a significant effect in slowing the
uptake of early commercial object-oriented databases. How-
ever, the emergence of the Object Query Language (OQL)
which is being standardised by the Object Database Man-
agement Group (ODMG) and being supported by a growing
number of object database vendors promises to address this
limitation. However, textual query languages exhibit several
problems to the database user including the need to know the
databases classes, attributes and relationship structure before
writing a query, and also the problems of semantic and syn-
tactic errors.

Visual query languages attempt to bridge the gap of usability
for users, and this paper presents a new visual query language
for object databases that depicts the query as a filter flow. The
visual queries produced can be translated into the ODMG
standard OQL. In this way the language can be utilised in
any ODMG compliant database which supports OQL. The
version of Kaleidoquery presented within this paper is for
OQL from version 2.0 of the ODMG standard [7].

This paper is organised as follows. In the next section we
discuss the design philosophy of Kaleidoquery, and specify
the language through examples of the constructs and the cor-
responding OQL queries. This is followed by a brief intro-

duction to one of the query environments that has been im-
plemented for the language, concluding with a discussion of
related work and a summary.

LANGUAGE DESCRIPTION

Graph based query languages tend to use a representation of
the database schema as the starting point for querying the
database. The user selects parts of the schema and constructs
a query from these by combining them with query operators.
A problem with graph based queries is that they depict the
database schema using entity-relationship diagrams or some
other notation that, while readable for a database designer,
exploits an abstract symbolic notation that may at first prove
cumbersome to the casual user of a database and require
some learning. We wanted to depict the query as the user
would visualise it in operation. When performing a query we
start with a mass of information. To this we apply filters or
constraints. Our mass of information passes through these
filters letting through only information that we are interested
in. We wanted to depict this flow and refinement of infor-
mation through the query which is not clearly seen in graph
based queries. An early example of this form of filter flow
was proposed by Shneiderman [19]. Shneiderman used the
metaphor of water flowing through a series of pipes and fil-
ters, where each filter would let through only the appropriate
items and the layout of the pipes indicating the relationships
of and and or.

This filter flow model may prove to be easier to understand
over a graph based data model as the information passes
along a route defined by the model as the query filters the
information. This is in contrast with other graph-based lan-
guages which obtain a obtain a view of the database schema
and apply queries to sections of the schema, where the order-
ing of the query, if there is any, may be hard to distinguish.

Our queries follow this filter flow model with the input to
the queries composed of class instances (extents) entering the
query and flowing through, being filtered by the constraints
placed on the attributes of the class, The output of the query
can then be examined, or it can flow into other queries to
be further refined. A query is therefore composed from the

247

http://crossmark.crossref.org/dialog/?doi=10.1145%2F948496.948529&domain=pdf&date_stamp=1998-05-24

extents of the database that form the primary inputs to the
query, the classes of the database schema and additional con-
structs that together form the query visualisation.

In designing the language the premise that has been adopted
is that the textual equivalent of the language is to be retained,
but with this an iconic or abstract representation may be at-
tached, as studies have shown that icons with a textual de-
scription give better comprehension than textual or pictorial
icons [2, 10, 13]. As the participants become familiar with
the interface they will associate the icon/abstract representa-
tion with the text and in this way will not have to read the full
text to comprehend the query.

We shall now examine the visualisation of the classes and
extents before moving on to the visualisation of the query
constructs.

The Database Schema and Extents
For the examples in this paper we will use the classes and ex-
tents shown in Figure 1. This consists of the Person class that
has the properties name, age, children, parent, employer and
salary, and the Company class having the properties name,
location and employees. The only visible information on the
exterior of the class is the iconic representation of the class
and its name. All other information pertaining to the class
is accessible when the participant selects the class and then
chooses to view its attributes. The ODL (Object Definition
Language) for the two classes is:

class Person
(extent People)
[

attribute string name;
attribute int age;
relationship set<Person> children

inverse Person::parents;
relationship list<Person> parents

inverse Person::children;
relationship Company employer

inverse Company::employees;
attribute real salary;

class Company
(extent Companies)
{

attribute string name;
attribute string location;
relationship set<Person> employees

inverse Person::employer;
};

Person Company

Figure 1: Example Schema

The database extents can consist of all the instances, or a
subset of the instances of a particular class. The visualisa-
tion of the extents, here shown to the right of their respective

classes in Figure 1, consists of the extent name and the icon
associated with the class of the extent, surrounded by an oval
box. In this database there are two extents, one for each class
in the schema. The extent allows the participant access to
the group of instances, which may be viewed by selecting
the extent. As queries are constructed on the schema, the
extent group chosen as input to the query will flow through
the query and be filtered according to the constraints placed
on it. Results from a query or a sub query have the new
extents, representing the results, placed after the class con-
straints, and these extents can be used to provide access to
the results or as input to other sections of the query.

ResuRs Selection
The simplest form of query allows us to selectively view cer-
tain attributes of interest of an instance rather than obtaining
the complete instance details.

With Kaleidoquery the initial type of the data will be defined
by the extent that flows into the query. It is this type that will
be passed along the filter flow pipes, visualised as upward
pointing arrows, t, to the results. The type of the filter flow is
not altered by the query constraints - the only time the filter
flow can be altered is when it flows into a results box. Along
the filter flow it is the instances of the type that are filtered
by constraints placed along the filter flow. We shall see how
constraints are visualised later.

(a) (b)

Figure 2: Selecting attributes

In Figure 2 we see two versions of the visualisation of the
filter flow type where certain attributes of the class Person are
selected for output. In Figure 2 (a) the class has the attributes
that have been selected for output in the results placed to the
right of the class icon. The instances from the People extent
flow towards the new results extent but only the attributes
shown selected in the results box are allowed to enter the
results, here consisting of the name and age attributes of the
Person class. This query is the same as the select statement
of OQL, the OQL for this query being:

select tuple(name:p.name, age:p.age)
from p in People

I f many attributes of the class have been selected to appear in
the results the user may choose not to view them as part of the
query but show that some of the attributes have been selected
by having a tick placed next to the class, as shown in Figure
2 (b). The attributes that have been selected for inclusion
can be examined by selecting the results and choosing to see

248

the result's attributes. If a query is placed on the class and
none of the attributes have been selected for inclusion then
the default is to view all the attributes of the class, as can be
seen in our next query in Figure 3. Towards the end of this
section we shall see how we can structure, order and group
the query results.

Simple Query Constructs
The query shown in Figure 3 includes a simple constraint that
restricts the results to include only persons who are aged less
than 20. In this case no attributes in the person class have
been selected for viewing so by default the results consist of
the group of people satisfying the query. Any of the operators
= , > , > = , < , < = and like can be used in these queries. The
OQL for this query is:

select p
from p in People
where p.age < 20

age < 20

Figure 3: A simple query

We shall now look at how simple queries can be combined
using boolean expressions.

And,Or and Not
The filter flow model described by Shneiderman [19] was
chosen to visualise the and and or relations of the query as
it has been previously shown that boolean logic has proven
difficult for large sections of the population. Errors range
from improper use of and and or between the English and the
boolean logic interpretations of their operation, to the diffi-
culties of using parenthesis to express the rules of precedence
on the boolean operators, especially when building complex
queries, [3, 11, 15]. Preliminary results have shown that the
filter flow representation has proven to be more favourable
than a text only SQL interface [22]. We shall now examine
how and and or can be specified in a query. Figure 4 shows
four different query visualisations. Figure 4 (a) shows the
and-ed visualisation of the OQL query:

selec5 p
from p in People
where p.age < 20 and p.name = "Smith"

The instances from the input extent flow through the query
and are filtered through each constraint in turn. Figure 4 (b)
shows how an or is visualised by the extent instances flowing
into each part of the or query and combining at the top of the

?
name = Smith

age < 20 age < 20 name = Smith

l People
(a) (b)

ate " - - *

I name=Smith ~name[= Smith

a g ~ T ~
(c) (d)

Figure 4: Visualising and, or and not

query to produce one group of results. The OQL of the query
is the same as the above example except that the constraints
have been or-ed. In Figure 4 (c) we see a more complex
query using both and and or expressions. The OQL for this
is as follows:

select p
from p in People
where (p.age < 20 and p.age > 16) or (p.name = "Smith")

With not we can either select an individual constraint or we
can select a group of Constraints that we wish to apply the
negation operation to. If a single constraint is chosen then
this constraint is highlighted by darkening or inverse video-
ing the constraint. If whole branches of the query have been
selected for the Not operation then in addition to the con-
straints of that branch being shown in inverse colour, the
flows linking the constraints can be highlighted also, in this
case shown as dashed lines, see Figure 4 (d).

Joins
In Figure 5 (a) we see a query utilising more than one extent
and comparing attributes of the class of each extent. Here we
have introduced another extent called NewPeople. The query
obtains the names of the people in the extent People that have
the same salary as people in NewPeople.

select p. name
from p in People, q in NewPeople

where p.salary = q.salary

A self join can be performed by using the same extent as
input to the two flows, as seen in Figure 5 (b). The OQL for
this query is:

249

t
Salary = Salary

People ~] ~Peop£~l

(a)

Salary = Salary

L_ eople

(b)

Figure 5: A join and a setf join

select p.name
from p in People, q in People
where p.salary = q.salary

Aggregates
Aggregate functions, such as count, sum, avg, etc, can be ap-
plied to collection results or collection extents as shown in
Figure 6. The extent to be aggregated is selected and then
the aggregate function is applied to the extent. The aggre-
gate function is then surrounded by another results box. The
query in Figure 6 computes the number of persons in the ex-
tent People. The corresponding OQL for the visual query
is:

count(People)

(

i count [People

f-People 1
Figure 6: Evaluating the size of the extent People

Aggregates can also be applied to derived collections and
collection attributes of a class. The collection attributes of
a class are selected and the aggregate operators applied to
them. For example, Figure 12 finds the maximum salary in a
set of people's salaries.

Arithmetic
Figure 7 shows an arithmetic expression. The participant can
select attributes in a class and apply arithmetic operators to
them. In Figure 7 the attribute weight of person has been
multiplied by 2.205 to change it from kg to lbs. The partic-
ipant also has the option of naming their expression, and as
can be seen in Figure 7 (b), the new attribute lbs has been
selected for inclusion in the results.

The OQL representations for the queries in Figures 7 (a) and
(b) are as follows:

select (p,weight*2.205)
from p in People

select st~act(ibs:p~weight*2.205)
from p in People

~--~ weight * 210~5

(a)

(--~7 tbs(weight ; 2.205--il

(b)

Figure 7: Arithmetic

More complex arithmetic expressions could be built using at-
tributes from differing classes. This would be accomplished
using paths which are discussed in the following section.

Path Expressions
In Figure 8 we see how a query that has been formed through
navigation from one class to another related class can be vi-
sualised.

t

People

Figure 8:

employer
- ~ name = ADL

Path expressions

To place a constraint on a person's company, the user has to
navigate ti'om the Person class to the Company class. The
navigation along the relation is visualised as a horizontal ar.-
row with the relation name located above the arrow. After the
arrow the related class is displayed. From the Company class
we can select the attribute name and place the constraint that
it be equal to "ADU', with the equivalent OQL tbr this query
being:

select p
from p in People,
where p.employer.name = "ADL"

Here we have shown how a one to one relationship is visu-
alised. In the next section we will see how a one to many
relationship is visualised as well as seeing how multiple con-
straints on a related class are treated.

Paths with Multiple Constraints
In Figure 8 we only added a single constraint to the related
class's attribute. In Figure 9 we see how multiple constraints
over related attributes are visualised in the same way as was
done previously in the section on boolean operators. We have
navigated from the Company class to the set of employees of
that company. As before this relation is visualised as an ar-
row going to the left with the relation name placed above
the attribute. As this is a one to many relationship, in that

250

many employees work for a company, the Person icon is sur-
rounded by an oval box to show that there are a group of Per-
~ons rather than a single entity. To the members of this set
we apply constraints to find the employees that are aged over
60 or who have salaries of equal or greater value than 25000.
If a company does have an employee that satisfies these con-
straints then the name of the company is retrieved. From this
example we can see how queries using and or combinations
of and and or would be handled. The OQL follows:

select c,name
from c in Companies, e in c.employees
where e.age > 60 or e.salary >= 25000

• age D 60 sala~ > = 25{)00

Figure 9: Path expression utilising or

Membership Testing and Universal and Existential Quan-
tification
For membership testing and universal and existential quan-
tification we have introduced a new ar row, / -~- . , , that links
the function with the two operators of the expressions. As
subqueries are evaluated, the results of these queries can be
used as input to other queries. Figure 10 shows this in ac-
tion. The query finds all employees that work for compa-
nies located in England. A membership test is performed on
the results of the query "what companies are located in Eng-
land".

@
¢

location = England
¢

(Companies ~

Figure 10: Membership testing

The OQL for the query shown in Figure 10 is as follows:

select p
from p in People
where p.employer in

(select c
from c in Companies
where c.location = "England"))

Figure 11 depicts two queries using the f o r all and exists op-
erators of OQL. These queries are very similar to the one
shown in Figure 9, except that the filter flow arrow that leaves
the employee set is annotated with the all or exists operation.
To highlight that these functions have been applied to the fil-
ter flows we could alter the colour of the filter flow.

age>60 salary >= 250E0 age>(~ salary>=250C~

(a) (b)

Figure 11: Universal and existential quantification

The OQL queries that are equivalent to Figures 1 l(a) and
1 l(b) respectively are as follows:

select c.name
from c in Companies
where for all e in c.employees:

e.age>60 or e.salary>=25000

select c.name
from c in Companies
where exists e in c.employees:

e.age>60 or e.salary>=25000

Combining operators
A more complex query is shown in Figure 12 that uses a
combination of the operators that have been introduced so
far. This query finds the names of companies that have em-
ployees older than 60 or that receive salaries greater than the
maximum salary obtained by the Smiths that work for com-
panies located in England. In this query we combine related
classes, and and or, aggregates, and membership testing to
create the visual query. The OQL that equates to the query in
Figure 12 is:

select c.name
from c in Companies, e in c.employees

where e.age>60 or e.salary>=
max(select p.salary
from p in People
where p.name = "Smith"

and p.employer in

(select e
from c in Companies
where c.location = "England")))

Selecting the results that we wish to view was dealt with pre-
viously. In the next three sections we shall see how we can
manipulate the structure, ordering and the grouping of the

results.

251

[] r --- 2172~ age > 60 salary >=1 max I V ~'arj H
. L..YL_____J)

location = England
name : Smith _ _ . ~ _ _ _ _

C~ompanies ~ i

(Z
~Companies ~ ~

Figure 12: Complex Query

Structuring Results
One of the problems with writing an OQL query is that as
you write your query, you must also concentrate on how you
want the results to be structured. In Kaleidoquery we have
tried to remove this complication by separating the two tasks.
The participant first builds their query, with the results being
visualised above the query. The participant can then select,
from the available options, how the results are to be struc-
tured. When satisfied they can then view the results by ex-
amining the output.

Salary = Salary Salary = Salary

\ /

(a) (b)

Figure 13: Structuring the results

With the queries in Figure 5 we may wish to view the results
as pairs of related people with the same salary or as individ-
uals listed with a group of people with the same salary. In
OQL this is possible with the operators struct or tuple (both
of which have the same behaviour) and correct nesting of the
query. The OQL for obtaining pairs of related people is as
follows:

select tuple(pPeople:p, qPeople:q)
from p in People, q in People
where p,salary = q.salary

The visual equivalent of this OQL query is shown in Figure
13 (a). Here we see that we wish to link each instance on
the left of the query with each corresponding instance on the
right that have equivalent salaries, i.e. we want to link them
on aper item basis. This operation has been visualised with a
structure linkage arrow, ~ , with the style of structuring
that we require, in this case item placed over the structure
linkage arrow. At the top of Figure 13 we see a visualisation
of the final structure of the results° Figure 13 (b) presents
the visualisation for generating people with groups of people
with equivalent salaries. The OQL for this query is:

select struct(thePerson:p,
thePeople:(select q
from q in People
where p.salary = q,salary))

from p in People

By comparing each of the OQL queries we can see how dif-
ferent in nature they are. If we wish to obtain nested results
then we can see that in OQL the queries require to be nested.
With Kaleidoquery we can see that to change between the
two queries is simply a matter of changing the structure op-
eration; no other changes need to be made to the queq¢ as
we have separated the two tasks of writing the query and
structuring the results. This will allow for easier evolution
of queries than OQL, where the user needs to reorganise the
complete query to alter the structure of the results.

Ordering the results
In OQL, the results of a que O, can be sorted via the OQL op-
eration order by. Visually, this can be performed by selecting
the order that the results are to be presented by annotating the
results with an order. If the results are nested then the order-
ing inside the nested results is independent of the ordering
outside the results. In Figure 14 we see how the sort oper-
ator has been applied to the results of a query obtaining the
name and location of companies with a list of their employee
names and ages. The results of the query can then be anno-
tated with numbers showing the order in which they are to
be sorted. Along with this number is the ordering associated
with the attribute. At present in OQL, results can be ordered
in ascending, asc, or descending, desc order. These are vi-
sualised by an upward pointing arrow, 1", for ascending and
a downward pointing arrow, $, for descending. An advan-
tage of this method of sorting over OQL is that the user can
perform all the sorting at the final stage. With OQL, nested
results need to be sorted before they are used in a join, as can
be seen in the following OQL for the query of Figure 14.

select struct(name:c.name, location:c.location,
employee:(select struct(name:p.name, age:p.age)

from p in c.employees)
order by employee.age desc)

from c in Companies
order by company.name asc,company,location asc

252

iOrder by[~ name, loc~ttoln l '~' name, l~age ~'~1

L

 name,ocati ame 'e
i employees

C~mp!ies ~ -~

Figure 14: Ordering the results

Grouping Results
The results of a query can be partitioned into groups by ap-
plication of conditions on the results. The results set is then
split into subsets that satisfy the relevant partitioning condi-
tions. Results can overlap between partitions, and there can
also be results that satisfy none of the partition queries.

age > 40
name = "Smith"

l age i 65 ____

Igroup~ name, age, salaryl 1

_ i

Figure 15: Grouping the results

Figure 15 shows a query where the name, age and salary
of company employees are selected. We can then apply the
group by operation to the results. This allows us to separate
the results into distinct groups depending on the conditions
that they satisfy. With two queries this means that the results
could be partitioned into a minimum of one partition and a
maximum of four partitions depending on whether the indi-
vidual results satisfy none, one or both of the conditions.

The two partitionings cause the results set to become a set of
results sets, as seen at the top of Figure 15.

select struct(name:p.name, age:p.age, salary:p.salary)
from p in People
group by

partl:x.name = "Smith",
part2:x.age > 40 and x.age < 65

After the results have been converted into partitions, a hav-
ing clause can be used to filter the results using aggregation
functions that operate on each of the partitions. In the fol-
lowing query (the same as the above except for the last line)
the having clause calculates the average age of each of the
partitions and only where this value is less than 50 will the
partitions be present in the results. The visualisation of the
having clause of the query can be seen at the top of Figure
16.

age > 40
name = "Smith"

$

_ _ _ l age i 65

lgroup [~ name, age, salaryl I

Figure 16: Filtering partitions

select struct(name:p.name, age:p.age, salary:p.salary)
from p in People
group by

partl:x.name = "Smith",
part2:x.age > 40 and x.age < 65

having avg_salary:avg(select x.salary from
x in partition) > 50000

IMPLEMENTATION
The Kaleidoquery language has been described independent
of any implementation details. In this section we briefly de-
scribe Kaleidoscape, the 3D implementation of Kaleidoquery
that has been designed using the framework in [16]. We have
chosen to implement the language in a three dimensional en-
vironment as we wanted to examine the impact of the utili-
sation of differing forms of hardware ranging from the stan-
dard monitors and desktop mice to head mounted displays,
3D mice and auto-stereoscopic displays: A belief exists that
conventional direct manipulation interfaces i.e. WIMP (win-
dows, icons, menus, pointers) while working well for some

253

tasks are a limiting factor for other tasks. Interface design-
ers are comfortably stuck in a rut, building WIMP interfaces
when there is an opportunity for searching for new interlace
paradigms and utilising them in the creation of the next gen-
eration of interfaces [18, 21]. The interface hardware of to-
day's computers is increasingly allowing gesture and speech
recognition. We wished to research this area and examine
any advantages and disadvantages of presenting the query in-
terface in a 3D environment, rather than following the stan-
dard line of generating a windows interface, and in doing
so inheriting the disadvantages as well as the advantages of
such an interface style. A more thorough description of the
database query and browsing interface will be presented in a
future paper, but a brief outline is given now.

Currently the database schema is displayed as 3D icons com-
posed of a class visualisation and the class's name. We have
not displayed the database schema using ER diagrams or
similar notations as novice users may not be familiar with
such notations, although this does not rule out the examining
the use of ER diagrams for displaying the database schema
and query to users familiar with such notations in the future.

The participant has the option of specifying the layout and
grouping of these classes, or a graph algorithm can be used
to manage the layout. Above each of the database classes
may be placed an extent associated with that class. To ex-
amine either a class or an extent the participant selects the
visualisation. On selection they are brought to the location
of the class or the extent and see either the attributes of the
class, or will move inside the extent, and move to a different
environment where they are able to browse over the instances
in the extent.

To build a query, the participant must first select the class
with which they wish to begin querying. They are brought
to the class and the visualisation of the class alters to show
its attributes. I f simple attributes of a class are chosen, e.g.
strings, numbers, etc. then they can select operators to apply
to that attribute depending on the attribute type, e.g. =, >,
> = , <, < = and like. After the operator is selected they can
then either enter a value, select an attribute for comparison or
build any other form of condition that is valid for completing
the constraint.

For example, in Figure 17 we see a simple database schema
composed of several classes. In this figure we also see a vi-
sualisation of the participant's hand that is controlled with a
3D mouse. This virtual hand allows the participant to nav-
igate through the environment and also to select artifacts in
the environment. The participant does not need to use the
3D mouse but could use the keyboard and desktop mouse for
navigation and selection. When the participant selects the
Person class with their virtual hand or mouse pointer, the
display zooms into the Person class, until in Figure 18 the at-
tributes are presented. From these the participant can select
an attribute to apply a constraint to. The participant selects

/ ~1 ~

Figure 17: Database Schema

i??~,~7~,~ i ~!~,~

Figure 18: Person attributes

the attribute age and some operations that can be applied to
the attribute appear, as shown in Figure 19. The participant
can then select the less than operation, <, and enter the value
20 at the keyboard. On completion of this, the query in Fig-
ure 20 is shown (this is the same as the query in Figure 3).

f l " ~
f

/ " .

f

Figure 19: Age operations

At present the interface chooses the People extent as the input

254

to the query as no other extent over the class Person exists.
The participant can then select to view the results by select-
ing the results visualisation at the top of the query. As with
examining extents, the participant is transferred to another
environment to view the results, with the ability to alter the
query while they are in the results space and so alter the re-
sults visualisation. Alternatively, they can continue adding
more constraints to the query, or specifying which attributes
they wish the results to contain.

i~i~iiiiiii~ii!iii!

__ i i N
-::--7 ~ 7 [.~.2""~Z227.k-- - ~ z - ~::~]L- ~ > - . _

. i . i - " - ~) i """ "1::~ - - / '-, "-~'~ ~ 2

......... ? N I
/ ~ ~ I i :::>':.ii,7:~.}.;~::Ii!

Figure 20: Simple query

If the participant were to select a complex attribute, i.e. one
that relates to another class, then the participant is moved to
that class and the attributes of the related class come into
view. They can then proceed as before, selecting simple
attributes to be used in constraints or selecting complex at-
tributes and being navigated towards them.

Figure 21: Visualising and and o r

If we continue and add some further simple constraints on
the attributes of the Person class, we could build the query
as shown in Figure 4 (c). The equivalent of this query in our
present 3D environment is shown in Figure 21.

As can be seen from the screenshots, the display of attributes
and operations available to the participant is limited to a sim-

pie textual menu-like display. At present we are implement-
ing the Kaleidoquery language in the 3D environment. When
this is completed we shall concentrate our efforts on enhanc-
ing the 3D interface, the interaction techniques and partici-
pant support within the environment.

Preliminary prototypes and evaluation of the Kaleidoquery
interface were undertaken using VRML (Virtual Reality Mod-
elling Language) version 2.0. We then progressed to im-
plementing the Kaleidoscape interface on Silicon Graphics
workstations using the 3D graphics library Openlnventor and
C++. The environment currently supports the use of 3D mice,
desktop mice, and keyboards for user input, with output be-
ing displayed via stereo projectors, head mounted displays,
auto-stereoscopic displays, or normal monitors. Audio out-
put is achieved through the use of a midi library. Queries con-
structed in Kaleidoscape are translated into OQL and these
are then passed via the network to the database. The query
is evaluated by the database, and the results returned over
the network to be displayed in the Kaleidoscape environ-
ment. We are currently using the 02 object database to obtain
the schema information that is displayed in the environment
Kaleidoscape, and also to execute the OQL queries that are
generated from the visual queries constructed in the Kalei-
doscape environment.

RELATED WORK
Visual query languages have attempted to bridge the gap of
usability for users (for a survey see [6]). Forms based query
languages such as QBE [23], present the database structure
as tables or forms into which queries can be placed. Graph
based query languages (e.g. Guidance [12], Gql [17]) have
the advantage over forms style interfaces in that they can
directly represent relationships within the structure of the
database and the query. Icon based languages (e.g. Iconic
Browser [20]) represent database concepts pictorially and can
allow for the direct manipulation of icons to represent queries.
Multi paradigm query interfaces also exist to allow the user to
pick and choose or alternate between interface styles, [9, 5].
Visual query languages are now also incorporating three di-
mensional aspects into the query language (e.g. AMAZE [4])
but with AMAZE constraints are still specified via a forms
interface. In addition AMAZE is much less powerful than
Kaleidoscape lacking such features as aggregation. Many
advances are being made in the area of dynamic query visu-
alisation (e.g. Spotfire [1]) though these tend to be limited in
the expressive power of their queries and the range and type
of information they can query.

Current graphical query languages to ODMG compliant ob-
ject databases are limited to Quiver [8] and GOQL [14]. Only
two simple examples of the Quiver query language are given
in [8], but preliminary evaluations have shown that it is eas-
ier to use than the standard textual OQL interface. GOQL
is a graph style query language and a complete description
of its constructs is given in the paper. Neither of the query

255

languages describe the interface that has been implemented
to support the visual language.

g ~ , , ,

N"l

Figure 22: Filter flow interface

The filter flow model for depicting the boolean a n d and or re-
lations bad a prototype constructed and evaluated, [22], see
Figure 22. The prototype was not connected to a real data-
base but used a single relation over which users could select
the attribute they wished to constrain. From this operation
they would obtain a list of all the instances of that attribute in
the table. Instances that the user was interested in could then
be selected. Figure 22 depicts an and-ed query. It can also be
seen in the figure how they altered the thickness of the data
flow to reflect the size of the results, although with the proto-
type actual values were not'used but rather the thickness was
determined heuristically. The early evaluations of this form
of depiction of the boolean operators has shown promise, and
so was adopted for the Kaleidoquery language and extended
so as to be used with a real database.

CONCLUSION
We have described the design of Kaleidoquery, a graphical
query language for the querying of object databases. We have
described the features of OQL and shown how they are sup-
ported by Kaleidoquery. Queries produced by Kaleidoquery
are translated into OQL and then submitted to an object data-
base so the Kaleidoquery interface should be compatible with
any ODMG compliant database requiring minimal modifica-
tions.

The design philosophy behind Kaleidoquery has been to build
a language that can be used by any database user without re-
quiring any knowledge of database diagrams such as entity
relationship diagrams. Although the users will have to learn
the constructs of Kaleidoquery, and the metaphor behind the
filter flow design of the queries, we hope this will be easier
to master than a textual OQL interface with its well known
problems of:

1. steep learning curve,

2. semantic and syntactic errors,

.

4.

o

the structure of database classes, attributes and rela-
tionships is not readily available to the users,

the increasing complexity of specifying the order of
boolean operators with parenthesis as the query grows,

the differences in meaning between the English and
boolean logic meaning behind the a n d and o r func-
tions.

By creating a visual query language and generating a display
of the database schema with interactive help, and utilising
the filter flow technique for representing boolean operations,
we have produced an interfiace that attempts to alleviate these
problems and provides:

.

.

.

4.

.

a powerful visual query language for OODBs, support-
ing the capabilities of the OQL language. In this pa-
per we have examined the main concepts of OQL and
shown their equivalent visual representation in Kalei-
doquery. A more formal specification of the language
is under development.

compliance with the ODMG model version 2.0 and
consistency with OQL with its well understood lan-
guage constructs plus direct support for evaluation,

a filter flow oriented visual model,

an implementation in 3D, much more expressive than
earlier 3D interfaces to databases,

a separation of the tasks of writing the query constraints
and organising the structure and ordering of the results,
that supports a more dynamic evolution of queries than
OQL.

We also hope that the filter flow approach to query construc-
tion will make the task of building and understanding queries
easier than graph based queries, although we shall of course
need to test this hypothesis with some user evaluations.

At present few visual query languages for object databases
exist and even fewer query languages are implemented in a
3D environment. Many visual query languages have been
implemented under WIMP (window, icon, menu, pointer)
environments. As well as creating a visual query language
for object databases we wish to examine the advantages and
disadvantages of a 3D environment for query construction,
and to examine how we can use the added dimension to aid
the user in understanding and navigating the database schema,
composing a 3D query, visualising and manipulating the re-
sults.

Much work is being undertaken in the visualisation of com-
plex data in a 3D environment. We wish to extend this by
testing a 3D query environment and furnishing it with ap-
propriate tools to ease the task of querying a database, and

256

removing the need for the user to learn the syntax of a com-
plex textual language.

REFERENCES
I~ Christopher Ahlberg. Spotfire: An Information Explo-

ration Environment. SIGMOD Record, 24(4):25-29,
December 1996.

2. W. L. Bewley, T. L. Roberts, D. Schroit, and W. L. Ver-
plank. Human Factors Testing in the Design of Xe-
rox's 8010 'Star' Office Workstation. In Proceedings
ACM CHI'83 Conference, pages 72-77, Boston, MA,
December 1983.

3. Christine L. Borgman. The User's Mental Model of
an Information Retrieval System; An Experiment on
a Prototype Online Catalog. International Journal of
Man-Machine Studies, 24:47-64, 1986.

4. J. Boyle, S. Leishman, and P. M. D. Gray. From WlMP
to 3D: the development of AMAZE. Journal of Visual
Languages and Computing, 7:291-319, 1996.

5. T. Catarci, S. K Chang, and G. Santucci. Query Repre-
sentation and Management in a Multiparadigmatic Vi-
sual Query Environment. Journal of lntelligent Infor-
mation Systems, 3(3):299-330, 1994.

6. Tiziana Catarci, Maria E Costabile, Stefano Levialdi,
and Carlo Batini. Visual Query Systems for Databases:
A Survey. Journal of Visual Languages and Comput-
ing, 8:215-260, 1997.

7. R. G. G. Cattell, Douglas Barry, Dirk Bartels, Mark
Berler, Jeff Eastman, Sophie Gamerman, David Jordan,
Adam Springer, Henry Strickland, and Drew Wade. The
Object Database Standard: ODMG 2.0. Morgan Kauf-
mann Publishers, Inc., 1997.

8. Manoj Chavda and Peter Wood. Towards an ODMG-
Compliant Visual Object Query Language. In Matthias
Jarke, Michael J. Carey, Klaus R. Dittrich, Freder-
ick H. Lochovsky, Pericles Loucopoulos, and Man-
fred A. Jeusfeld, editors, Proceedings of 23rd Inter-
national Conference on Very Large Data Bases, pages
456-465, 1997.

9. D. K. Doan, N. W. Paton, and A. C. Kilgour. De-
sign and User Testing of a Multi-paradigm Interface to
an Object-Oriented Database. ACM SIGMOD Record,
24(3): 12-17, September 1995.

10. C. Egido and J. Patterson. Pictures and Category Labels
as Navigational Aids for Catalog Browsing. In Pro-
ceedings A CM CHI'88 Conference, pages 89-91, 1988.

11. S. Greene, S. Devlin, P. Cannata, and L. Gomez. No
IFs, ANDs, or ORs: A Study of Database Querying. In-
ternational Journal of Man-Machine Studies, 32:303-
326, 1990.

12. David Haw, Carole Goble, and Alan Rector. GUID-
ANCE: Making it Easy for the User to be an Expert. In
Proc. 2nd Int. Workshop On Interfaces to Database Sys-
tems, pages 19--43. Springer-Verlag, 1994. P. Sawyer
(Ed).

13. C. J. Kacmar and J. M. Carey. Assessing the Usability
of Icons in User Interfaces. Behaviour and Information
Technology, 10(6):443-457, 1991.

14. Euclid Keramopoulos, Philippos Pouyioutas, and Chris
Sadler. GOQL, a Graphical Query Language for
Object-Oriented Database Systems. In Basque Inter-
national Workshop on Information Technology, pages
35-45, 1997.

15. A. Michard. Graphical Presentation of Boolean Expres-
sions in a Database Query Language: Design Notes and
an Ergonomic Evaluation. Behaviour and Information
Technology, 1 (3):279-288, 1982.

16. Norman Murray, Carole Goble, and Norman Paton. A
Framework for Describing Visual Interfaces to Data-
bases. To be published in the Journal of Visual Lan-
guages and Computing.

17. A. Papantonakis and P. J. H. King. Syntax and Seman-
tics of Gql, a Graphical Query Language. Journal of
Visual Languages and Computing, 6:3-25, 1995.

18. Jef Raskin. Looking for a Humane Interface: Will
Computers Ever Become Easy to Use? Communica-
tions of the ACM, 40(2):98-101, 1997.

19. Ben Shneiderman. Visual user interfaces for informa-
tion exploration. In Proceedings of the 54th Annual
Meeting of the American Society for Information Sci-
ence, pages 379-384, Medford. NJ, 1991. Learned In-
formation Inc.

20. K. Tsuda, M. Hirakawa, M. Tanaka, and T. Ichikawa.
Iconic Browser: An Iconic Retrieval System for Object-
Oriented Databases. Journal of l, Tsual Languages and
Computing, 1(1):59-76, 1990.

21. Andries van Dam. Post-WIMP User Interfaces. Com-
munications of the ACM, 40(2):63-67, 1997.

22. Degi Young and Ben Shneiderman. A Graphical Fil-
ter/Flow Representation of Boolean Queries: A Pro-
totype Implementation and Evaluation. Journal of the
American Society for Information Science, 44(6):327-
339, 1993.

23. M. Zloof. Query-By-Example: A Data Base Language.
IBM Systems Journal Vol. 4, pages 324--343, Decem-
ber 1977.

257

