
-38-

ON THE DESIGN OF MONITORS WITH PRIORITY CONDITIONS

David E. Boddy
School of Engineering and Computer Science

Oakland University
Rochester Michigan 48063

ABSTRACT

Hoare[1] introduced the monitor as a tool for structuring the design of
concurrent systems such as operating systems. He roposed the use of "priority
conditions" to facillitate certain types of scheduling. However in his proposal
there are no provisions for allowing a "customer" of the monitor to inquire as
to the status of a condition. Such inquiries as "What is the highest priority
process waiting on condition X?" or "How many processes are waiting on condition
X with highest priority?" are not supported in Hoare's design° This paper
investigates the implementation of priority conditions for monitors under UCSD
Pascal and proposes two such status queries which are both useful and efficient.
It is shown that the implementation of Hoare's "alarmclock" monitor is made
simpler and more efficient through the use of these queries.

INTRODUCTION

In [I] is presented a technique for implementing monitors in UCSD Pascal
using "Units" and semaphores. However the discussion in [I] did not go into the
question of the implementation of priority conditions. This paper presents a
technique for implementing priority conditions as priority-ordered lists of
semaphores. Furthermore certain queries on priority conditions are introduced
which simplify certain scheduling applications.

Monitors are used for scheduling concurrent activities such as access to a
shared resource. Figure I is a simple monitor for enforcing exclusive access to
resource R. It is assumed that the resource R is only accessible through this
monitor. Within the monitor the condition variable C guards this access. When
a process, seeking access to resource R, executes the procedure WAITC(C) the
process will be delayed until no other process has "rights" to R. A process
releases its rights to use R by executing the SIGNALC(C) procedure.

Priority conditions within monitors facilitate more complex scheduling. If
two processes are waiting on a priority condition, then when the condition is
signalled, that process having greater priority is released. However, if both
processes have the same priority then (in the present implementation) the first
process to wait is released. An obvious application of monitors with priority
conditions would be in the scheduling of processes according to priority, as is
commonly done in operating systems for the "ready queue" of processes waiting to
be dispatched.

IMPLEMENTING PRIORITY CONDITIONS

The basic concept of a priority condition implies that processes waiting on
that condition are ordered by priority. It is not clear whether processes
waiting with the same priority should be serviced on a first-come, first-served
basis, though this is frequently the case. Certainly priority conditions could
be implemented in the operating system by means similar to those used to
implement semaphores. But we are concerned here with implementing monitors

SIGPLAN Notices, Vi9 #2, February 1984

http://crossmark.crossref.org/dialog/?doi=10.1145%2F948566.948568&domain=pdf&date_stamp=1984-02-01

-39-

under a system (UCSD) which does not directly support priority conditions, only
semaphores° It should be clear that a priority condition queue can be
implemented via an ordered list of semaphores, one semaphore for each active
priority° All processes waiting with a given priority wait in the queue of the
associated semaphore°

Figure 2 gives the data structure used to implement a priority condition.
Each node of the list consists of

a)

b)

c)

A priority (integer), with larger numbers
representing greater priority.

A semaphore on which all processes having the above
priority wait.

A count of the processes waiting on the semaphore.

The waiting-count field is used to enable the system to delete a node which is
no longer in use (i.e., a semaphore on which no proceses are waiting). [Note
that if this were done by the system, the semaphore counter could be used for
this purpose by allowing it to run negative.]

The operations over priority conditions, namely PWAITC and SIGNALC, are
implemented as follows. The PWAITC implies a search of the list to find either
the desired priority upon which to wait or to find where to insert a new node
with the desired priority. The SIGNALC operation simply signals the semaphore
at the head of the list (highest priority) and decrements its waiting-counter.
If this counter is reduced to zero, the node is then deleted. Figure 3 is a
listing of the "Monitor Toolbox" which implements these priority condition
operations. (Refer to [2] for a discussion of the Monitor Toolbox.) Note that
the (non-prioritized) WAITC is realized as a wait on a priority condition, but
with lowest priority. Normally the user would not mix priority and non-priority
waits on a given condition, though it is permitted.

The question arises as to whether the user should be allowed to examine any
features of the priority queue. For example, should there be a function that
returns the length of the queue? This particular query would seem to have two
disadvantages: (I) it presumes some knowledge on the part of the user as to the
internal structure of a priority queue (to interpret the meaning of "length");
and (2) the realization of the function might require a traversal of the list
(if represented in linked form) which could be costly. A conservative approach
would be to disallow any query which is either costly or discloses internal
structure. But any query which could be answered only by examining the contents
of the first node in the list would be efficient. Furthermore, disclosing only
the highest priority value in the list and the number of processes waiting with
this priority does not seem to require knowledge of the representation of the
queue to interpret these values. Thus, in contrast to Hoare's design[l], it is
proposed that the following queries be implemented:

a) maxpri (condition variable) returns the greatest
priority among all processes waiting on the condition.

b) waiting (condition variable) returns the number of
processes waiting~with maximum priority) on the

condition variable.

These functions are implemented in the Monitor Toolbox shown in Figure 3o Note
that in this implementation, waiting also applies to non-priority conditions°
This can simplify monitors which do not use priority conditions and meets the
need filled by the function empty(condition) which is defined for monitors under
Euclid[4].

APPLICATIONS OF PRIORITY CONDITIONS

Figure 4 illustrates the use of priority conditions in the design of a
monitor for scheduling disk accesses using the "scan" algorithm° This design is
a modification of the algorithm presented in [3]. In this version the RELEASE
algorithm is simpler due to the use of an array of condition variables indexed
by the current direction.

Hoare[1] presented an "Alarmclock" algorithm to illustrate the application
of priority conditions in the design of monitors. In his algorithm a process
can delay itself until a desired time by waiting on a condition with priority
based on the time at which it is to awake. Each "tick" of the clock signals
this condition to awaken the highest priority condition. But the awakened
process must then go back to sleep again if it is not yet time to awake. Hoare
argues that this is a relatively minor source of inefficiency. Figure 5
presents an algorithm that does not suffer from this kind of inefficiency. By
checking the maximum priority among processes in the queue, this algorithm will
only signal the condition if it is indeed time to awaken the next process. The
while loop in the "tick" procedure signals the alarm condition exactly as many
times as there are processes due to be awakened at the current time. The
Alarmclock algorithm of Figure 5 is presented to illustrate the fact that the
inquiry maxpri (condition) is useful and can contribute to the efficiency of
certain monitors.

Figure 6 gives a program which employs the scan and alarmclock monitors in
a simulation of a number of processes randomly accessing a disk. Each process
performs the following:

repeat
delay a random time period
request a random cylinder on the disk
delay a random time period
release the cylinder

forever

The results of this simulation show the "elevator" like scheduling of disk

accesses imposed by the scan algorithm.

CONCLUSIONS

This paper has presented a technique for implementing monitors with
priority conditions in UCSD Pascal. A priority condition is implemented as a
linked list of semaphores, where each semaphore has an associated priority. It
is argued that the user should be able to access certain features of a priority
condition variable, provided such access is efficient and does not disclose
internal implementation details. It is demonstrated that access to the both the
maximum priority of processes waiting on a condition and the number of processes
waiting with maximum priority are useful.

-4i-

ACKNOWLEDGMFE~T

The author is indebted to Bill Halchin for his suggestion regarding the
inclusion of the "gate" type in the Monitor Toolbox interface. By means of
different variables of type "gate", several instances of a given monitor can be
executed concurrently~

REFERENCES

[I] C.A.R. Hoare, Monitors: an operating system structuring concept. CACH V17
#10, October 1974.

E2]

E3]

D. E. Boddy, Implementing Data Abstractions and Monitors in UCSD Pascal,
SIGPLAN Notices, V18 #5, May 1983.

R. C. Holt, G. S. Graham, E. D. Lazowska and M. A. Scott, STRUCTURED
CONCURRENT PROGRAMMING WITH OPERATING SYSTEM APPLICATIONS, Addison-Wesley
1978.

[4] R.C. Holt, CONCURRENT EUCLID, THE UNIX SYSTEM, AND TUNIS, Addison-Wesley
1983 •

-4Z-

Figure i. Simple Monitor for Exclusive Access

unit AccessControlMonitor;

{ Enforces mutually exclusive access to some resource }

interface uses MonitorToolBox;

procedure request (var fence: gate);
procedure release (vat fence: gate);
procedure initAccess (vat fence: gate);

implementation

v a r
in_use: boolean;
free: Condition;

procedure request {vat fence: gate};
begin

EnterMonitor (fence);
i f in_use then waitC (fence, f ree);
in_use:= true;
ExitMonitor (fence);

end;

procedure release {vat fence: gate};
begin

EnterMonitor (fence);
in_use:= false;
signalC (fence, f ree);
E×itMonitor (fence);

end;

procedure initAccess {vat fence: gate};
begin

create (fence);
in i tC (fence, f ree);
in_use:= false;

end;

end {AccessControIMonitor}.

Figure 2. Structure of the P r i o r i t y Queue

Queue

Node

I I I I I

I I Wait I I I
I P r i o r i t y I I Semaphore I Link I
I I Count I I I
I I I I I

I I I I I

Head)1981 31S91 II
I__I_ I_ I__I

t
P r o c e s s

1
P r o c e s s

1
P r o c e s s

1 I I I l

)14bl 11S31 II
l l I I I

Process

) : 1 3 1 2 : $ 4 1 i t

l
P r o c e s s

l
Process

F igu r~ 3. The Moni tor T o o l b o x Un i t }

u n l t Moni tor Toolbox; { ve rs l on 6 }
i n t e r f a c e

t y p e
p r i o r l t y = 0 . . m a x l n t ; (maximum D r i o r l t y = max in t }
~emQue = record { a semaphore w a i t l n g queue, w i th coun te r }

H a ; r i n g : i n t e g e r ;
semi semaphore;

end;
gate = ^gate record ;
gate record = record { t o c o n t r o l access t o monitored data}

main: semaphore;
r e e n t r y : semQue;

end;
P q u e c e l l = record {a node i n a p r i o r i t y queue)

p r y o ~ i t y : p r i o r i t y ;
w a i t i n g : i n t e g e r ;
sem: semaphore;
n e x t : ~Pque_ce l l ;

end;
Cond i t i on = ^Pque_ce l l ; {a p r i o r i t y queue}

procedure Create (va t fence: g a t e) ;
procedure En te rMon l to r (va t fence: g a t e) ;
procedure E x i t M o n i t o r (va t fence; g a t e) ;
procedure s igna lC (va t fence: ga te ; va t c; C o n d i t i o n) ;
procegure wai tC (var fence : gate ; var c: C o n d i t i o n) ;
procedure i n i t C (vat fence ; gate ; var c: C o n d i t i o n) ;
p rocedure PwaitC (va t fence: gate ; va t c: Cond i t i on ; p r i : p r i o r i t y) ;
f u n c t i o n maxpri (f i r s t _ c e l l : C o n d i t i o n) : i n t e g e r ;
f u n c t i o n ~a i t i ngC (f i r s t c e l l : C o n d i t i o n) : i n t e g e r ;

imp lementa t ion

procedure En te rMon i to r {var fence: g a t e } ;
{ seek t o e n t e r v i a the main gate }

begin ~ a i t (fence^.main) end;

procegure ReenterMoni tor (va t fence: g a t e) ;
{ seek t o e n t e r v i a the r e e n t r y gate. Ca l led gy a s lgna lZ 'e r }

beg in
w i t h f e n c e ^ . r e e n t r y do beg in

w a i t i n g : = w a i t i n g + 1;
wa i t (sem) ; {wa i t f o r s i g n a l from prec. ex l~ Ing moni tor }
w a i t i n g : = w a i t i n g - I ;
end;

end;

procedure E~ i tMon i to r (var f ence l g a t e) ;
begin

w i t h fence ̂ do
i f (r e e n t r y . w a i t i n g > 0) then

s i g n a l (r e e n t r y . s e m)
e l s e s i g n a l (main l ;

end { E x i t M o n i t o r } ;

procedure c leanup(va t c : C o n d i t i o n) l
{ d e l e t e unueed queue node, i f any}

vat temp; C e n d i t i o n ;
begin

i f c ^ . w a i t i n g = 0 then begin
tempz= c;
¢1~ c ~ . n e x t ;
d iepose(temp) ;
end;

end { c l e a n u p } ;

procedure Pwa~tC {va t fence: ga te ; vat c : Cond i t i on ; p r l l p r l o r i t y) ;
(p r i o r i t y w a l t on a c o n d i t i o n v a r i a b l e }

var c u r s e r , t r a i l e r , temp: Cond i t l on ;
found, done: boolean;

begin
t r a i l e r l = n i l ; o u t s e t : = c; found:~ f a l s e ;
repea t

i f cu rser ~ n i l then done: = t r u e {end of l i s t }
e l s e i f p r i = c u r s e r ^ . p r y o r i t y then beg ln

found:= t r u e ; (found c e l l to wa i t on}
t e m p : ~ c u r s e r ; { w a l t o n ~ h l s c e l l }
done:= t r u e ; { e x i t loop}
end

e l~e i f p r i > curser^.pryori ty then
done:= t r u e (i n s e r t new c e l l before c u r s e r }

e l s e beg ln (advance c u r s e r)
t r a i l e r l = o u t s e t ;
c u r s e r : = c u r s e r ^ ° n e x t

end;
u n t i l done;
i f not found then begin { c rea te a new c e l l }

new(temp);
~ i t h temp ̂ do begin (i n i t l a l i z e and l i n k }

p r y o r i t y : = p r i ; semin i t (temp^.sem, 0) ;
w a i t i n g : = 0;
n e x t l = ou tse t ; (l i n k temp before c u r s e r }
end;

i f t r a l l e r = n i l t hen (tLemp i s new f i r s t c e l l)
c := temp

e l s e { l i n k temp a f t e r t r a i l e r }
t r a i l e r S , n e x t : = temp

end; { c rea te new c e l l }
t e m p ^ . w a i t i n g : = t emp^ .wa i t i ng + 1;
Exx tMon i to r (f e n c e) ;

~ai t (temp~.sem)) { w a i t On tQmp (whether new or o l d) }
{ . . . S i g n a l l e r l e t s me back i n t o mon i to r }
t e m p ~ a ; ¢ i n g : = temp~ .wa l t i ng - I ;
c l e a n u p (c) ;

end {P~a i tC} ;

procedure waitC (var fence: ga te ; var c : C o n d i t i o n } ;
{ n o n - p r i o r i t y wa i t on a c o n d i t i o n v a r i a b l e }

begin
PwaitC (fence, c , 0) ; { w a i t w i t h l e a s t p r i o r i t y }

end (wa i tC } ;

procedure s igna lC { va t fence: gate ; va t c; C o n d i t i o n } ;
{wake up a h i g h e s t - p r i o r i t y process w a i t i n g on a c o n d i t i o n v a r i a b l e }

begin
i f c <> n i l then begin

s i g n a l (c^.sem);
ReenterMoni tor (f ence) ;
end;

end { s i g n a I C } ;

f u n c t i o n maxpri { f i r s t _ c e l l ; C o n d i t i o n } ;
{ r e t u r n s g r e a t e s t p r i o r i t y of any process w a i t i n g on the c o n d i t i o n o r
e l s e a nega t i ve i n t e g e r i f no process i s N a i t i n g }

begin
i f f i r s t _ c e l l = n i l then maKpri: ~ --i {a n o n - p r i o r i t y v a l u e }
e l s e maxpr i := f i r s t _ c e l l ^ . p r y O r i t y ;

end;

~unct ion wa i t i ngC { f i r s t _ c e l l l C a n d i t i o n l p r l l p r i o r i t y } !
{ r e t u r n s no. of processes w a i t i n g w i t h ma~Imum p r i o r i t y }

begin i f ~ i r ~ t _ ¢ e l l = n i l t hen ~a i t i ngC ; = 0
e l s e w&i t ingC := f i r s t , c e l 1 ^ ' w a i t l n g

end;

pro~:edure i n i t C { va t c : C o n d i t i o n } ;
{ i n i t i a l i z e a c o n d i t i a n v a r i a b l e (re empty queue)}

beg in ¢1= n i l end;

procedure c rea te (va~ fence l g a t e } ;
(a l l o c a t e and i n i t i a l i z e fence data }

begin
new (f e n c e l ;
w i t h fence ~ do begin

s e m l n i t (main + I) ;
semJni t (reentry .sem+ o)1
r e e n t r y , w a i t i n g l = O;
end;

end { i n ; t } ;

b e g i n
end { M ~ i t o r T e o l b o x u n i t) .

-44-

Figure 4. The SCAN Monitor }

un i t scan_monitor;
{ monitor f o r scheduling a disk using "SCAN" a lgo r i t hm}

i n te r f ace uses MonitorToolbox ;

const max_cyl = 200; { cy l i nde rs numbered 0~.200}

procedure i n i t D i s k (vat fence: ga te) ;
procedure acquire (vat fence: gate; cy l : i n t e g e r) ;
procedure re lease (vat fence: ga te) ;

implementation
type

d i r e c t i o n = (up, down);
vat

in_use: boolean; {records s t a t e of the d isk d r i ve }
queue: array [d i r e c t i o n] of cond i t i on ; {Note array of cond i t i ons }
c u r r e n t _ d i r e c t i o n : d i r e c t i o n ; { of d isk head motion }
cu r ren t_cy l i nder : i n tege r ;

procedure i n i t D i s k {vat fence: ga te} ;
{ a l l o ca te and i n i t i a l i z e fence semaphoresv and i n i t i a l i z e cond i t ions}

begin
create (fence);
in_use:= f a l s e ;
c u r r e n t _ d i r e c t i o n : = up;
i n i t C (fencer queue{up]);
i n i t C (fence, queue{down]);

end;

procedure swi tch(vat d: d i r e c t i o n) ; { change d i r e c t i o n of motion}
begin

i f d = up
then d: = down
else d:= up

end;

procedure acquire { vat fence: gate; cy l : i n t e g e r } ;
{acqui re access r i g h t s to a c y l i n d e r }

begin
EnterMonitor (fence);
i f in_use then

i f (cyl < cu r ren t_cy l i nder)
or ((cy l = cu r ren t_cy l i nde r) and (cu r ren t_d i rec t i on = up))

then PwaitC (fence, queue Cdown], cy l)
e lse PwaitC (fence, queue {up] , max_cy l -cy l) ;

in_use:= t rue ;
cu r ren t_cy l i nde r := cy l ;
Ex i tMoni tor (fence);

end {acqu i re } ;

procedure re lease { fence};
{ re lease access r i g h t s to cu r ren t c y l i n d e r }

begin
EnterMonitor (fenceS;
in_use:= f a l se ;
i f 0 = wait ingC (queue{cur ren t_d i rec t ion])
then switch (c u r r e n t _ d i r e c t i o n) ;
signalC (fence, queue { c u r r e n t _ d i r e c t i o n]) ;
Ex i tMon i to r (fence);

end { re lease } ;

begin
end {scan_monitor moni tor } .

-45-

Figure 5. The Alarmclock Monitor }

un i t alarmclock;
in te r face uses Monitor_Toolbox {version 6 };

funct ion time (var clock: gate) : in teger ;
procedure t i c k (var clock: gate; pr int_t ime: boolean);
procedure delay(var clock: gate; t : in teger) ;
procedure i n i t (var clock: gate);

implementation
var alarm: Condition;

counter: integer ; {count-down from maxint}

funct ion time { var clock: gate };
begin

EnterMonitor (clock);
t ime:= maxint-counter;
Exi tMonitor (clock);

end;

procedure t i c k { var clock: gate; pr in t_t ime: boolean};
begin

EnterMonitor (clock);
i f counter <= O then begin

wr i te ln ('T imer runout. Execution t e rm ina tes . ') ;
exi t(program);
end

else counter:= counter- I ;
i f pr in t_t ime then w r i t e l n (' t i m e = ,maxint-counter);
while counter <= maxpri (alarm) do signalC (clock, alarm);

Exi tMonitor (clock);
end;

procedure delay { vat clock: gate; t : in teger } ;
var se t t ing : p r i o r i t y ;
begin

i f t>O then begin
EnterMonitor (clock);

se t t ing := counter- t ;
PwaitC(clock, alarm, se t t i ng) ;

ExitMonitor (clock);
end;

end;

procedure i n i t { var clock: gate } ;
begin

Create (clock);
i n i tC (clock, alarm);
counter:= maxint;

end;
begin
end {alarmclock}.

-46~

Figure 6. A Simulation Using the SCAN and ALARMCLOCK Monitors

program prog4b; {disk-arm scheduling via "scan" algn}

uses MonitorToolbox, scan monitor, alarmclock~

const
s tack_s ize = 500;
f i l e S i z e = 20;
p r o c _ p r i o r i t y = 128;

type
f i l e _ i n d e x = 0 . .19 ;
S _ f i l e = f i l e of packed a r ray [O . .59] of char;

v a r

i n f i l e : S _ f i l e ;
p id : processid;
seed: r e a l ;
k: i n tege r ;
c lock , d isk : gate;

func t ion rand(range: i n t e g e r) : i n tege r ;
begin

seed:= seed*31.415927;
seed:= seed - t runc (seed); { de le te i n tege r pa r t }
rand: = I + t runc (seed * range);

end;

process P;
vat rec: f i l e _ i n d e x ;
begin

repeat
rec := r a n d (f i l e S i z e) ;
a c q u i r e (d i s k , rec) ;
seek (i n f i l e , rec) ;
g e t (i n f i l e) ;
writeln('Read record ',rec,
delay (c lock , rand(5)) ;
re lease (d isk) ;
delay (c lock, rand(5)) ;

u n t i l t ime (clock) x- 9001
end {process F'};

": ,infile");

begin {main prog}
i n i t C l o c k (c lock) ;
i n i t D i s k (d i sk) ;
seed:= 0.71123;
r e s e t (i n f i l e , ' d a t a 4 ") ;
f o r k:= 1 to 10 do

s t a r t (P, p id , s tack_s ize , p r o c _ p r i o r i t y) ;
repeat t i c k (c lock, t rue) u n t i l t ime (clock) = 1000;

end.

