Check for
Updates

~38-

ON THE DESIGN OF MONITORS WITH PRIORITY CONDITIONS

David E. Boddy
School of Engineering and Computer Science
Oakland University
Rochester Michigan 48063

ABSTRACT

Hoare[1] introduced the monitor as a tool for structuring the design of
concurrent systems such as operating systems. He roposed the use of "priority
conditions" to facillitate certain types of scheduling. However in his proposal
there are no provisions for allowing a "customer" of the monitor to inquire as
to the status of a condition. Such inquiries as "What is the highest priority
process waiting on condition X?" or "How many processes are waiting on condition
X with highest priority?" are not supported in Hoare's design. This paper
investigates the implementation of priority conditions for monitors under UCSD
Pascal and proposes two such status queries which are both useful and efficient.
It is shown that the implementation of Hoare's "alarmclock" monitor is made
simpler and more efficient through the use of these queries.

INTRODUCTION

In [1] is presented a technique for implementing monitors in UCSD Pascal
using "Units" and semaphores. However the discussion in [1] did not go into the
question of the implementation of priority conditions. This paper presents a
technique for implementing priority conditions as priority-ordered lists of
semaphores. Furthermore certain queries on priority conditions are introduced
which simplify certain scheduling applications.

Monitors are used for scheduling concurrent activities such as access to a
shared resource. Figure 1 is a simple monitor for enforcing exclusive access to
resource R. It is assumed that the resource R is only accessible through this
monitor. Within the monitor the condition variable C guards this access. When
a process, seeking access to resource R, executes the procedure WAITC(C) the
process will be delayed until no other process has "rights" to R, A process
releases its rights to use R by executing the SIGNALC(C) procedure.

Priority conditions within monitors facilitate more complex scheduling. If
two processes are waiting on a priority condition, then when the condition is
signalled, that process having greater priority is released. However, 1if both
processes have the same priority then (in the present implementation) the first
process to wait is released. An obvious application of monitors with priority
conditions would be in the scheduling of processes according to priority, as is
commonly done in operating systems for the "ready queue" of processes waliting to
be dispatched.

IMPLEMENTING PRIORITY CONDITIONS

The basic concept of a priority condition implies that processes waiting on
that condition are ordered by priority. It is not clear whether processes
waiting with the same priority should be serviced on a first-come, first-served
basis, though this is frequently the case. Certainly priority conditions could
be implemented in the operating system by means similar to those used to
implement semaphores. But we are concerned here with implementing monitors

SIGPLAN Notices, V19 #2, February 1984

http://crossmark.crossref.org/dialog/?doi=10.1145%2F948566.948568&domain=pdf&date_stamp=1984-02-01

-%0-

under a system (UCSD) which does not directly support priority conditions, only
semaphores. It should be clear that a priority condition queue can be
implemented via an ordered list of semaphores, one semaphore for each active
priority. All processes waiting with a given priority wait in the queue of the
associated semaphore.

Figure 2 gives the data structure used to implement a priority condition.
Each node of the list consists of

a) A priority (integer), with larger numbers
representing greater priority.

b) A semaphore on which all processes having the above
priority wait.

c) A count of the processes waiting on the semaphore.

The waiting-count field is used to enable the system to delete a node which is
no longer in use (i.e., a semaphore on which no proceses are waiting). [Note
that if this were done by the system, the semaphore counter could be used for
this purpose by allowing it to run negative.]

The operations over priority conditions, namely PWAITC and SIGNALC, are
implemented as follows. The PWAITC implies a search of the list to find either
the desired priority upon which to wait or to find where to insert a new node
with the desired priority. The SIGNALC operation simply signals the semaphore
at the head of the list (highest priority) and decrements its waiting-counter.
If this counter is reduced to zero, the node is then deleted. Figure 3 is a
listing of the "Monitor Toolbox" which implements these priority condition
operations. (Refer to [2] for a discussion of the Monitor Toolbox.) Note that
the (non-prioritized) WAITC is realized as a wait on a priority condition, but
with lowest priority. Normally the user would not mix priority and non-priority
waits on a given condition, though it is permitted.

The question arises as to whether the user should be allowed to examine any
features of the priority queue. For example, should there be a function that
returns the length of the queue? This particular query would seem to have two
disadvantages: (1) it presumes some knowledge on the part of the user as to the
internal structure of a priority queue (to interpret the meaning of "length™);
and (2) the realization of the function might require a traversal of the list
(if represented in linked form) which could be costly. A conservative approach
would be to disallow any query which is either costly or discloses internal
structure. But any query which could be answered only by examining the contents
of the first node in the list would be efficient. ' Furthermore, disclosing only
the highest priority value in the list and the number of processes waiting with
this priority does not seem to require knowledge of the representationof the
queue to interpret these values. Thus, in contrast to Hoare's design[1], it is
proposed that the following queries be implemented:

a) maxpri (condition variable) returns the greatest
priority among all processes waiting on the condition.

b) waiting (condition~variable) returns the number of
processes waiting (with maximum priority) on the

condition variable.

-40-

These functions are implemented in the Monitor Toolbox shown in Figure 3. Note
that in this implementation, waitimg also applies to non-priority conditions.
This can simplify monitors which do not use priority conditions and meets the
need filled by the function empty(condition) which is defined for monitors under
Euclid[4].

APPLICATIONS OF PRIORITY CONDITIONS

Figure 4 illustrates the use of priority conditions in the design of a
monitor for scheduling disk accesses using the "scan" algorithm. This design is
a modification of the algorithm presented in [3]. In this version the RELEASE
algorithm is simpler due to the use of an array of condition variables indexed
by the current direction.

Hoare[1] presented an "Alarmclock" algorithm to illustrate the application
of priority conditions in the design of monitors. Inhis algorithm a process
can delay itself until a desired time by waiting on a conditionwith priority
based on the time at which it is to awake. Each "tick" of the clock signals
this condition to awaken the highest priority condition. But the awakened
process must then go back to sleep again if it is not yet time to awake. Hoare
argues that this is a relatively minor source of inefficiency. Figure 5
presents an algorithm that does not suffer from this kind of inefficiency. By
checking the maximum priority among processes in the queue, this algorithm will
only signal the condition if it is indeed time to awaken the next process. The
while loop in the "tick" procedure signals the alarm condition exactly as many
times as there are processes due to be awakened at the current time. The
Alarmclock algorithm of Figure 5 is presented to illustrate the fact that the
inquiry maxpri (condition) is useful and can contribute to the efficiency of
certain monitors.

Figure 6 gives a program which employs the scan and alarmclock monitors in
a simulation of a number of processes randomly accessing a disk. Each process
performs the following:

repeat
delay a random time period
request a random cylinder on the disk
delay a random time period
release the cylinder
forever

The results of this simulation show the "elevator" like scheduling of disk
accesses imposed by the scan algorithm.

CONCLUSIONS

This paper has presented a technique for implementing monitors with
priority conditions in UCSD Pascal. A priority condition is implemented as a
linked list of semaphores, where each semaphore has an associated priority. It
is argued that the user should be able to access certain features of a priority
condition variable, provided such access is efficient and does not disclose
internal implementation details. It is demonstrated that access to the both the
maximum priority of processes waiting on a condition and the number of processes
waiting with maximum priority are useful.

ACKNOWLEDGMENT

The author is indebted to Bill Halchin for his suggestion regarding the
inclusion of the "gate" type in the Monitor Toolbox interface., By means of

different variables of type "gate", several instances of a given monitor can be
executed concurrently.

REFERENCES

[1] C.A.R. Hoare, Monitors: an operating system structuring concept. CACM V17
#10, October 1974.

[2] D. E. Boddy, Implementing Data Abstractions and Monitors in UCSD Pascal,
SIGPLAN Notices, V18 #5, May 1983,

[3] R. C. Holt, G. S. Graham, E. D. Lazowska and M. A. Scott, STRUCTURED
CONCURRENT PROGRAMMING WITH OPERATING SYSTEM APPLICATIONS, Addison-Wesley
1978.

[4] R. C. Holt, CONCURRENT EUCLID, THE UNIX SYSTEM, AND TUNIS, Addison-Wesley
1983 .

-47-

Figure 1.

unit AccessControlMonitor;

{ Enforces mutually exclusive access
interface uses MonitorToolBox;

procedure

procedure
procedure

raguest
release
initAccess

(var
{var
{var

implementation

var
in_use:
free:

booleans
Condition;

procedure request {var fence:
begin
EnterMonitor (fence);
if in_use then waitC
in_use:= true;
ExitMonitor (fence);:

end;

procedure release {var fence:
begin
EnterMonitor (fence);
in_use:= false;
signalC (fence,
ExitMonitor (fence);
end;

procedure initAccess {var fence:

begin
create (fence);
initC (fence,
in_use:= false;

free);

end;

end {AccessControlMonitor?.

Simple Monitar for Exclusive Access

to some resource 3

fence:
fencea:
fence:

gatels
gate);
gate);

gatel;

{(fence, free);

gatel;

free);

gatels;

Figure 2. Structure of the Priority Queue
[[}
Queue H H H : :
Node i Priority ! { Semaphore | Link |
H { Count | H H
H H H H H
L T H H HE L H i LI [
Head—> 198! 3i89! ++—>146] 11831 +—>i13} 2:845 '
I D D N SO B B :__:__:_T.__.
Process Process fFrocess
Process Process

|

Process

-43-

Figure 3. The Monitor Toolbox Unit >
unit Monitor Toolbox; {(version & 3
interface
type
z:;g:;z: = 0..m:x1nt; {maximum priority = maxint}
recor. { a semaphore waitin ueue
waiting: integer; 99 »owith counter
sem: semaphore;
end;

gate = “gate_record;
gate _record = record {to control access to monitored data)
main: semaphore;
reentry: semQue;
end;
Pque_cell = record
pryority: priority;
waiting: integer;
sem: semaphore;
next: “Pque_cell;
end;
Candition = ~Pque_cell;

{a node in a priority queue)

{a priority queue)

procedure Create {var fence: gqatelj
procedure Entermonitor (var fence: gate)s
procedure ExitMonitor (var fence: gatel;
procedure signalC (var fence: gate; var ci Condition);
procedure waitC {var fence: gate; var c¢: Condition)y
procedure initC (var fence: gate; var c: Congition)j
proce@ure Puait; {var fence: gate; var c: Condition; pris priority)
function maxpri (first_cell: Condition): integer ; v
function waitingC (first_cell: Condition): integerj
implementation

procedure EnterMonitor {(var fence: gatel;
¢ seek to enter via the main gate
begin wait (fence~.main) end;

p:ocedure ReenterMonitor (var fence: gate) -
seek to enter via the reentry gate. Called D 1
en] y a stgnaller)
with fence~.reentry do begin
wa?tinq:= waiting + 13
uaft(sam); {wait for signal from proc. exiting monitor)
waiting:= waiting ~ 1j
end;
end;

procedure ExitMonitor (var fence: gated;
begin
with fence~ do
if (reentry.waiting > 0) then
signal (reentry.sem)
else signal(main)
ond (Exit Monitorl};

procedure cleanup! var c: Condition)y

{delete unused queue nade, if any?
var temp: Condition
begin
if c~.waiting = O then begin

tempi=)
cr= ct.next;
dispose(temp);
end;

and {(cleanuplj

procedure PwaitC {var fence: gate; var € 1 Condition; pris priority};
{priority wait on a condition variable?

var curser, trailer, temp: Conditionj
found, done: booleans

begin
trailerit= nil; curser:= cj found:= false;
repeat

i# curser = nil then dones= true (end of list?
else it pri = curser®.pryority then begin
found:= true; (found cell te wait on}
tempt= curseri f{wait on this celll
done:= true; {(exit loop)
end
else if pri > curser~,pryority then
done:= true (insert new cell before curser)
else begin {advance curser?
trailert= curser;
curser:= curser”.next
end;
until done;
if not found then begin (create
newltemp)y
with temp~ do begin {initialize and link)
pryarity:= prig seminit (temp”™.sem,0) g
waitingi= O3
nexti= curser;
end;
i€ trailer = nil then (temp is new first cell}
cim temp
else {link temp after trailer)
trailer~.next:= temp
endy { create new cell)
temp~.waiting:= temp~.waiting + 13
ExitMonitor (fence)s
wajt (teap™~.semd); { wait aon temp {(whether new or ald))
¢...Signaller lets me back into monitor}
temp~.waiting:= temp~.waiting = 13
cleanupic);
end {(PwaitC};

a new cell)

{link temp before curser)

procedure waitC {var fence: gatey var ci ConditionXy
{non-priority wait on a condition variable}
begin
PwaitC (fence, <,
end {(waitC};

0)j{wait with least priority)

procedure signalC ¢ var fence! Qate; var c3 Condition);
{wake up a highest-priority process waiting on a condition variable)
begin
if ¢ <> nil then begin
signal (c~.sem);
ReenterMonitor (fence)j
end;
end {signalC2;

function maxpri { first_cell:s Conditionl;
{returns greatest priority of any process waiting on the condition or
else a negative integer if no process is waiting?
begin
if first_cell = nil then maxpriz= —1
else maxpris= first_cell”.pryorityy
endj

ta non-priority valuel

function waitingC ¢ first_cellt Conditiong prit priority Js
{returns no. of processes waiting with maximum priority}
begin if first_cell = nil then waitingCi= O
else waitingCi= first_cell”.waiting
endg

procedure initC¢ var c: Conditionlg
¢initialize a condition variabla (to empty queua)?
begin «i= nil end}

rocedure create {var foncei gatedg
¢ allocate and initialize fence data 2
begin
new (fencalsy
with fence” do begin
seminit (main ,1)}
seminit (reentry.sem, o)
reaentry.waitings= [+]1
ends
and {initds

begin
end {Monitor _Toolbox unitd.

-44-

Figure 4. The SCAN Monitor 3

unit scan_monitor;
{ monitor for scheduling a disk using “SCAN" algorithm}

interface uses MonitorToolbox ;
const max_cyl = 200; { cylinders numbered 0..200}

procedure initDisk (var fence: gate);
procedure acquire (var fence: gate; cyl: integer)g
procedure release (var fence: gate);

implementation

type
direction = (up, down);

var
in_use: boolean; {records state of the disk drive}
queue: array [directionl of condition; {Note array of conditions?
current_direction: direction; { of disk head motion)
current_cylinder: integer;

procedure initDisk {var fence: gatel;
{ allocate and initialize fence semaphores, and initialize conditions}
begin
create (fence);
in_use:= false;
current_direction:= upj;
initC (fence, queuelupl};
initC (fence, queueldownl);
end;

procedure switch(var d: direction); { change direction of motion?
begin
if d = up
then d:= down
else di= up
end;

procedure acquire { var fence: gate; cyl: integerl;
{acquire access rights to a cylinder 3}
begin
EnterMonitor (fence);
if 1in_use then
i¥ (cyl < current_cylinder)
or ((cyl = current_cylinder) and (current_direction = up))
then PwaitC (fence, queue f[downl, cyl)
else PwaitC (fence, queue [upl, max_cyl-cyl);
in_use:= true;
current_cylinder:= cyl;
ExitMonitor (fence);
end {acquirel;

procedure release {fencelj;
{release access rights to current cylinder)
begin
EnterMonitor (fence);
in_use:= false;
if 0 = waitingC (queuelcurrent_directionl)
then switch (current_direction)g
signalC (fence, queue [current_directionl);
ExitMonitor (fence);
end {releasel}j;

begin
end {scan_monitor monitor}.

-45-

[

Figure 5. The Alarmclock Monitor

unit alarmclock;
interface uses Monitor_Toolbox {version &6 };

function time (var clock: gate):integer;

procedure tick (var clock: gate; print_time: boolean);
procedure delay(var clock: gate; t: integer);
procedure init (var clock: gate)s

implementation
var alarm: Condition;g
counter: integer ; {count—down from maxint}

function time { var clock: gate J;
begin
EnterMonitor (clock)g
time:= maxint-counter;
ExitMonitor (clock);
end;

procedure tick { var clock: gate; print_time: booleanl;
begin
EnterMonitor (clock)g
if counter <= O then begin
writeln(Timer runout. Execution terminates.’)j
exit (program);
end
else counter:= counter—1j;
if print_time then writeln('time = ymaxint-counter);
while counter <= maxpri (alarm) do signalC (clack, alarm)j
ExitMonitor (clock);
ends

procedure delay { var clock: gate; t: integerl;
var setting: priority;
begin
if t»0 then begin
EnterMonitor (clock);
setting:= counter-t;
PwaitC(clock, alarm, setting);
ExitMonitor (clock);
end;
end;

procedure init { var clock: gate I;
begin
Create (clock)j
initC ¢ clock, alarm)3

counter:= maxintj
end}
begin
end {alarmclock?.

~46-

{ Figure &. A Simulation Using the SCAN and ALARMCLOCK Monitors
program progé4b; {disk-arm scheduling via "scan” alg.>’
uses MonitorToolbox, scan_monitor, alarmclocks

const
stack_size = 3500
fileSize = 20;
proc_priority = 1283
type
file_index = 0..19;
S_file = file of packed arrayl0..5%9] of chary
var
infile: S_+iles
pid: processidg
seed: reals
ks integer;
clock, disk: gate;

function rand(range: integer): integer;
begin
seed:= seed#31.415927;
seed:= seed - trunc (seed); {delete integer part?
rand:= 1 + trunc {(seed * range);
end;

process F;
var rec: file_index ;
begin
repeat
rec:= rand{(fileSize)}
acquire{disk, rec);
seek (infile, rec)y
getlinfile)
writeln('Read record ’,rec,’: ‘,infile™);
delay (clock, rand(S));
release (disk);
delay (clock, rand(9));
until time {(clock) »= Q00
end {process Fl;

begin {main progl

initClock (clock)y

initDisk (disk);

seed:= 0.71123;

reset(infile, ‘datad’);

for k= 1 to 10 do

start(P, pid, stack_size, proc_priority);

repeat tick (clock, true) until time (clock) = 1000

end.

