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ABSTRACT 

Hoare[1] introduced the monitor as a tool for structuring the design of 
concurrent systems such as operating systems. He roposed the use of "priority 
conditions" to facillitate certain types of scheduling. However in his proposal 
there are no provisions for allowing a "customer" of the monitor to inquire as 
to the status of a condition. Such inquiries as "What is the highest priority 
process waiting on condition X?" or "How many processes are waiting on condition 
X with highest priority?" are not supported in Hoare's design° This paper 
investigates the implementation of priority conditions for monitors under UCSD 
Pascal and proposes two such status queries which are both useful and efficient. 
It is shown that the implementation of Hoare's "alarmclock" monitor is made 
simpler and more efficient through the use of these queries. 

INTRODUCTION 

In [I] is presented a technique for implementing monitors in UCSD Pascal 
using "Units" and semaphores. However the discussion in [I] did not go into the 
question of the implementation of priority conditions. This paper presents a 
technique for implementing priority conditions as priority-ordered lists of 
semaphores. Furthermore certain queries on priority conditions are introduced 
which simplify certain scheduling applications. 

Monitors are used for scheduling concurrent activities such as access to a 
shared resource. Figure I is a simple monitor for enforcing exclusive access to 
resource R. It is assumed that the resource R is only accessible through this 
monitor. Within the monitor the condition variable C guards this access. When 
a process, seeking access to resource R, executes the procedure WAITC(C) the 
process will be delayed until no other process has "rights" to R. A process 
releases its rights to use R by executing the SIGNALC(C) procedure. 

Priority conditions within monitors facilitate more complex scheduling. If 
two processes are waiting on a priority condition, then when the condition is 
signalled, that process having greater priority is released. However, if both 
processes have the same priority then (in the present implementation) the first 
process to wait is released. An obvious application of monitors with priority 
conditions would be in the scheduling of processes according to priority, as is 
commonly done in operating systems for the "ready queue" of processes waiting to 
be dispatched. 

IMPLEMENTING PRIORITY CONDITIONS 

The basic concept of a priority condition implies that processes waiting on 
that condition are ordered by priority. It is not clear whether processes 
waiting with the same priority should be serviced on a first-come, first-served 
basis, though this is frequently the case. Certainly priority conditions could 
be implemented in the operating system by means similar to those used to 
implement semaphores. But we are concerned here with implementing monitors 
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under a system (UCSD) which does not directly support priority conditions, only 
semaphores° It should be clear that a priority condition queue can be 
implemented via an ordered list of semaphores, one semaphore for each active 
priority° All processes waiting with a given priority wait in the queue of the 
associated semaphore° 

Figure 2 gives the data structure used to implement a priority condition. 
Each node of the list consists of 

a) 

b) 

c) 

A priority (integer), with larger numbers 
representing greater priority. 

A semaphore on which all processes having the above 
priority wait. 

A count of the processes waiting on the semaphore. 

The waiting-count field is used to enable the system to delete a node which is 
no longer in use (i.e., a semaphore on which no proceses are waiting). [Note 
that if this were done by the system, the semaphore counter could be used for 
this purpose by allowing it to run negative.] 

The operations over priority conditions, namely PWAITC and SIGNALC, are 
implemented as follows. The PWAITC implies a search of the list to find either 
the desired priority upon which to wait or to find where to insert a new node 
with the desired priority. The SIGNALC operation simply signals the semaphore 
at the head of the list (highest priority) and decrements its waiting-counter. 
If this counter is reduced to zero, the node is then deleted. Figure 3 is a 
listing of the "Monitor Toolbox" which implements these priority condition 
operations. (Refer to [2] for a discussion of the Monitor Toolbox.) Note that 
the (non-prioritized) WAITC is realized as a wait on a priority condition, but 
with lowest priority. Normally the user would not mix priority and non-priority 
waits on a given condition, though it is permitted. 

The question arises as to whether the user should be allowed to examine any 
features of the priority queue. For example, should there be a function that 
returns the length of the queue? This particular query would seem to have two 
disadvantages: (I) it presumes some knowledge on the part of the user as to the 
internal structure of a priority queue (to interpret the meaning of "length"); 
and (2) the realization of the function might require a traversal of the list 
(if represented in linked form) which could be costly. A conservative approach 
would be to disallow any query which is either costly or discloses internal 
structure. But any query which could be answered only by examining the contents 
of the first node in the list would be efficient. Furthermore, disclosing only 
the highest priority value in the list and the number of processes waiting with 
this priority does not seem to require knowledge of the representation of the 
queue to interpret these values. Thus, in contrast to Hoare's design[l], it is 
proposed that the following queries be implemented: 

a) maxpri ( condition variable) returns the greatest 
priority among all processes waiting on the condition. 

b) waiting ( condition variable) returns the number of 
processes waiting~with maximum priority) on the 

condition variable. 



These functions are implemented in the Monitor Toolbox shown in Figure 3o Note 
that in this implementation, waiting also applies to non-priority conditions° 
This can simplify monitors which do not use priority conditions and meets the 
need filled by the function empty(condition) which is defined for monitors under 
Euclid[4]. 

APPLICATIONS OF PRIORITY CONDITIONS 

Figure 4 illustrates the use of priority conditions in the design of a 
monitor for scheduling disk accesses using the "scan" algorithm° This design is 
a modification of the algorithm presented in [3]. In this version the RELEASE 
algorithm is simpler due to the use of an array of condition variables indexed 
by the current direction. 

Hoare[1] presented an "Alarmclock" algorithm to illustrate the application 
of priority conditions in the design of monitors. In his algorithm a process 
can delay itself until a desired time by waiting on a condition with priority 
based on the time at which it is to awake. Each "tick" of the clock signals 
this condition to awaken the highest priority condition. But the awakened 
process must then go back to sleep again if it is not yet time to awake. Hoare 
argues that this is a relatively minor source of inefficiency. Figure 5 
presents an algorithm that does not suffer from this kind of inefficiency. By 
checking the maximum priority among processes in the queue, this algorithm will 
only signal the condition if it is indeed time to awaken the next process. The 
while loop in the "tick" procedure signals the alarm condition exactly as many 
times as there are processes due to be awakened at the current time. The 
Alarmclock algorithm of Figure 5 is presented to illustrate the fact that the 
inquiry maxpri (condition) is useful and can contribute to the efficiency of 
certain monitors. 

Figure 6 gives a program which employs the scan and alarmclock monitors in 
a simulation of a number of processes randomly accessing a disk. Each process 
performs the following: 

repeat 
delay a random time period 
request a random cylinder on the disk 
delay a random time period 
release the cylinder 

forever 

The results of this simulation show the "elevator" like scheduling of disk 

accesses imposed by the scan algorithm. 

CONCLUSIONS 

This paper has presented a technique for implementing monitors with 
priority conditions in UCSD Pascal. A priority condition is implemented as a 
linked list of semaphores, where each semaphore has an associated priority. It 
is argued that the user should be able to access certain features of a priority 
condition variable, provided such access is efficient and does not disclose 
internal implementation details. It is demonstrated that access to the both the 
maximum priority of processes waiting on a condition and the number of processes 
waiting with maximum priority are useful. 
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Figure i. Simple Monitor for Exclusive Access 

unit AccessControlMonitor; 

{ Enforces mutually exclusive access to some resource } 

interface uses MonitorToolBox; 

procedure request (var fence: gate); 
procedure release (vat fence: gate); 
procedure initAccess (vat fence: gate); 

implementation 

v a r  
in_use: boolean; 
free: Condition; 

procedure request {vat fence: gate}; 
begin 

EnterMonitor (fence); 
i f  in_use then waitC (fence, f ree);  
in_use:= true; 
ExitMonitor (fence); 

end; 

procedure release {vat fence: gate}; 
begin 

EnterMonitor (fence); 
in_use:= false; 
signalC (fence, f ree);  
E×itMonitor (fence); 

end; 

procedure initAccess {vat fence: gate}; 
begin 

create (fence); 
in i tC (fence, f ree);  
in_use:= false; 

end; 

end {AccessControIMonitor}. 

Figure 2. Structure of the P r i o r i t y  Queue 

Queue 

Node 

I I I I I 

I I Wait I I I 
I P r i o r i t y  I I Semaphore I Link I 
I I Count I I I 
I I ........ I ........... I ....... I 

I I I I I 

Head )1981 31S91 II 
I__I_ I_ I__I 

t 
P r o c e s s  

1 
P r o c e s s  

1 
P r o c e s s  

1 I I I l 

)14bl 11S31 II 
l l I I I 

Process 

) : 1 3 1  2 : $ 4 1  i t  

l 
P r o c e s s  

l 
Process 



F igu r~  3. The Moni tor  T o o l b o x  Un i t  } 

u n l t  Moni tor  Toolbox; { ve rs l on  6 } 
i n t e r f a c e  

t y p e  
p r i o r l t y  = 0 . . m a x l n t ;  (maximum D r i o r l t y  = max in t }  
~emQue = record { a semaphore w a i t l n g  queue, w i th  coun te r }  

H a ; r i n g :  i n t e g e r ;  
semi semaphore; 

end; 
gate = ^gate record ;  
gate record = record { t o  c o n t r o l  access t o  monitored data}  

main: semaphore; 
r e e n t r y :  semQue; 

end; 
P q u e c e l l  = record  {a node i n  a p r i o r i t y  queue) 

p r y o ~ i t y :  p r i o r i t y ;  
w a i t i n g :  i n t e g e r ;  
sem: semaphore; 
n e x t :  ~Pque_ce l l ;  

end; 
Cond i t i on  = ^Pque_ce l l ;  {a p r i o r i t y  queue} 

procedure Create (va t  fence:  g a t e ) ;  
procedure En te rMon l to r  (va t  fence:  g a t e ) ;  
procedure E x i t M o n i t o r  (va t  fence;  g a t e ) ;  
procedure s igna lC  (va t  fence:  ga te ;  va t  c; C o n d i t i o n ) ;  
procegure wai tC (var  fence :  gate ;  var c: C o n d i t i o n ) ;  
procedure i n i t C  (vat  fence ;  gate ;  var c: C o n d i t i o n ) ;  
p rocedure  PwaitC (va t  fence:  gate ;  va t  c: Cond i t i on ;  p r i :  p r i o r i t y ) ;  
f u n c t i o n  maxpri ( f i r s t _ c e l l :  C o n d i t i o n ) :  i n t e g e r  ; 
f u n c t i o n  ~a i t i ngC  ( f i r s t  c e l l :  C o n d i t i o n ) :  i n t e g e r ;  

imp lementa t ion  

procedure En te rMon i to r  {var  fence:  g a t e } ;  
{ seek t o  e n t e r  v i a  the  main gate } 

begin ~ a i t  ( fence^.main)  end; 

procegure ReenterMoni tor  ( va t  fence:  g a t e ) ;  
{ seek t o  e n t e r  v i a  the  r e e n t r y  gate.  Ca l led  gy  a s lgna lZ 'e r }  

beg in  
w i t h  f e n c e ^ . r e e n t r y  do beg in  

w a i t i n g : =  w a i t i n g  + 1; 
wa i t ( sem) ;  {wa i t  f o r  s i g n a l  from prec.  ex l~ Ing  moni tor }  
w a i t i n g : =  w a i t i n g  - I ;  
end; 

end; 

procedure E~ i tMon i to r  (var  f ence l  g a t e ) ;  
begin 

w i t h  fence  ̂  do 
i f  ( r e e n t r y . w a i t i n g  > 0) then 

s i g n a l ( r e e n t r y . s e m )  
e l s e  s i g n a l (  main l ;  

end { E x i t  M o n i t o r } ;  

procedure c leanup(  va t  c :  C o n d i t i o n ) l  
{ d e l e t e  unueed queue node, i f  any} 

vat  temp; C e n d i t i o n ;  
begin 

i f  c ^ . w a i t i n g  = 0 then begin  
tempz= c; 
¢1~  c ~ . n e x t ;  
d iepose( temp) ;  
end; 

end { c l e a n u p } ;  

procedure Pwa~tC {va t  fence: ga te ;  vat c : Cond i t i on ;  p r l l  p r l o r i t y ) ;  
( p r i o r i t y  w a l t  on a c o n d i t i o n  v a r i a b l e }  

var c u r s e r ,  t r a i l e r ,  temp: Cond i t l on ;  
found,  done: boolean; 

begin 
t r a i l e r l  = n i l ;  o u t s e t :  = c; found:~ f a l s e ;  
repea t  

i f  cu rser  ~ n i l  then done: = t r u e  {end of l i s t }  
e l s e  i f  p r i  = c u r s e r ^ . p r y o r i t y  then beg ln  

found:= t r u e ;  (found c e l l  to  wa i t  on} 
t e m p : ~  c u r s e r ;  { w a l t  o n  ~ h l s  c e l l }  
done:= t r u e ;  { e x i t  loop}  
end 

e l~e i f  p r i  > curser^.pryori ty then 
done:= t r u e  ( i n s e r t  new c e l l  before c u r s e r }  

e l s e  beg ln  (advance c u r s e r )  
t r a i l e r l  = o u t s e t ;  
c u r s e r : =  c u r s e r ^ ° n e x t  

end; 
u n t i l  done; 
i f  not  found then begin  { c rea te  a new c e l l }  

new(temp); 
~ i t h  temp ̂  do begin ( i n i t l a l i z e  and l i n k }  

p r y o r i t y : =  p r i ;  semin i t ( temp^.sem,  0 ) ;  
w a i t i n g : =  0; 
n e x t l =  ou tse t ;  ( l i n k  temp before  c u r s e r }  
end; 

i f  t r a l l e r  = n i l  t hen  (tLemp i s  new f i r s t  c e l l )  
c :=  temp 

e l s e  { l i n k  temp a f t e r  t r a i l e r }  
t r a i l e r S ,  n e x t : =  temp 

end; { c rea te  new c e l l }  
t e m p ^ . w a i t i n g : =  t emp^ .wa i t i ng  + 1; 
Exx tMon i to r  ( f e n c e ) ;  

~ai t ( temp~.sem))  { w a i t  On tQmp (whether new or o l d ) }  
{ . . . S i g n a l l e r  l e t s  me back i n t o  mon i to r }  
t e m p ~ a ; ¢ i n g : =  temp~ .wa l t i ng  - I ;  
c l e a n u p ( c ) ;  

end {P~a i tC} ;  

procedure waitC (var  fence:  ga te ;  var c :  C o n d i t i o n } ;  
{ n o n - p r i o r i t y  wa i t  on a c o n d i t i o n  v a r i a b l e }  

begin 
PwaitC ( fence,  c ,  0 ) ; { w a i t  w i t h  l e a s t  p r i o r i t y }  

end (wa i tC } ;  

procedure s igna lC  { va t  fence:  gate ;  va t  c; C o n d i t i o n } ;  
{wake up a h i g h e s t - p r i o r i t y  process w a i t i n g  on a c o n d i t i o n  v a r i a b l e }  

begin 
i f  c <> n i l  then begin 

s i g n a l (  c^.sem); 
ReenterMoni tor  ( f ence ) ;  
end; 

end { s i g n a I C } ;  

f u n c t i o n  maxpri { f i r s t _ c e l l ;  C o n d i t i o n } ;  
{ r e t u r n s  g r e a t e s t  p r i o r i t y  of any process w a i t i n g  on the  c o n d i t i o n  o r  
e l s e  a nega t i ve  i n t e g e r  i f  no process i s  N a i t i n g }  

begin 
i f  f i r s t _ c e l l  = n i l  then maKpri: ~ --i {a n o n - p r i o r i t y  v a l u e }  
e l s e  maxpr i :=  f i r s t _ c e l l ^ . p r y  O r i t y ;  

end; 

~unct ion wa i t i ngC { f i r s t _ c e l l l  C a n d i t i o n l  p r l l  p r i o r i t y  } !  
{ r e t u r n s  no. of processes w a i t i n g  w i t h  ma~Imum p r i o r i t y }  

begin i f  ~ i r ~ t _ ¢ e l l  = n i l  t hen  ~a i t i ngC ;  = 0 
e l s e  w&i t ingC := f i r s t ,  c e l 1 ^ ' w a i t l n g  

end; 

pro~:edure i n i t C {  va t  c :  C o n d i t i o n } ;  
{ i n i t i a l i z e  a c o n d i t i a n  v a r i a b l e  ( re  empty queue)}  

beg in  ¢1= n i l  end; 

procedure c rea te  (va~ fence l  g a t e } ;  
( a l l o c a t e  and i n i t i a l i z e  fence  data } 

begin 
new ( f e n c e l ;  
w i t h  fence ~ do begin 

s e m l n i t  (main + I ) ;  
semJni t  ( reentry .sem+ o )1  
r e e n t r y , w a i t i n g l =  O; 
end; 

end { i n ; t } ;  

b e g i n  
end { M ~ i t o r T e o l b o x  u n i t ) .  
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Figure 4. The SCAN Monitor } 

un i t  scan_monitor; 
{ monitor f o r  scheduling a disk using "SCAN" a lgo r i t hm}  

i n te r f ace  uses MonitorToolbox ; 

const max_cyl = 200; { cy l i nde rs  numbered 0~.200} 

procedure i n i t D i s k  (vat fence: ga te) ;  
procedure acquire (vat fence: gate;  cy l :  i n t e g e r ) ;  
procedure re lease (vat fence: ga te ) ;  

implementation 
type 

d i r e c t i o n  = (up, down); 
vat  

in_use: boolean; {records s t a t e  of the d isk  d r i ve }  
queue: array [ d i r e c t i o n ]  of cond i t i on ;  {Note array of cond i t i ons }  
c u r r e n t _ d i r e c t i o n :  d i r e c t i o n ;  { of d isk head motion } 
cu r ren t_cy l i nder :  i n tege r ;  

procedure i n i t D i s k  {vat  fence: ga te} ;  
{ a l l o ca te  and i n i t i a l i z e  fence semaphoresv and i n i t i a l i z e  cond i t ions}  

begin 
create ( fence);  
in_use:= f a l s e ;  
c u r r e n t _ d i r e c t i o n : =  up; 
i n i t C  (fencer queue{up]);  
i n i t C  (fence, queue{down]); 

end; 

procedure swi tch(  vat d: d i r e c t i o n ) ;  { change d i r e c t i o n  of  motion} 
begin 

i f  d = up 
then d: = down 
else d:= up 

end; 

procedure acquire { vat fence: gate; cy l :  i n t e g e r } ;  
{acqui re access r i g h t s  to  a c y l i n d e r  } 

begin 
EnterMonitor ( fence); 
i f  in_use then 

i f  (cyl < cu r ren t_cy l i nder )  
or ( (cy l  = cu r ren t_cy l i nde r )  and ( cu r ren t_d i rec t i on  = up)) 

then PwaitC (fence, queue Cdown], cy l )  
e lse PwaitC (fence, queue {up ] ,  max_cy l -cy l ) ;  

in_use:= t rue ;  
cu r ren t_cy l i nde r :=  cy l ;  
Ex i tMoni tor  ( fence); 

end {acqu i re } ;  

procedure re lease { fence};  
{ re lease access r i g h t s  to  cu r ren t  c y l i n d e r }  

begin 
EnterMonitor (fenceS; 
in_use:= f a l se ;  
i f  0 = wait ingC (queue{cur ren t_d i rec t ion ] )  
then switch ( c u r r e n t _ d i r e c t i o n ) ;  
signalC (fence, queue { c u r r e n t _ d i r e c t i o n ] ) ;  
Ex i tMon i to r  ( fence); 

end { re lease } ;  

begin 
end {scan_monitor moni tor } .  
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Figure 5. The Alarmclock Monitor } 

un i t  alarmclock; 
in te r face  uses Monitor_Toolbox {version 6 }; 

funct ion time ( var clock: gate) : in teger ;  
procedure t i c k  (var clock: gate; pr int_t ime: boolean); 
procedure delay( var clock: gate; t :  in teger) ;  
procedure i n i t  (var clock: gate); 

implementation 
var alarm: Condition; 

counter: integer ; {count-down from maxint} 

funct ion time { var clock: gate };  
begin 

EnterMonitor (clock); 
t ime:= maxint-counter; 
Exi tMonitor (clock); 

end; 

procedure t i c k  { var clock: gate; pr in t_t ime:  boolean}; 
begin 

EnterMonitor (clock);  
i f  counter <= O then begin 

wr i te ln ( 'T imer  runout. Execution t e rm ina tes . ' ) ;  
exi t(program); 
end 

else counter:= counter- I ;  
i f  pr in t_t ime then w r i t e l n ( ' t i m e  = ,maxint-counter);  
while counter <= maxpri (alarm) do signalC (clock, alarm); 

Exi tMonitor (clock); 
end; 

procedure delay { vat clock: gate; t :  in teger } ;  
var se t t ing :  p r i o r i t y ;  
begin 

i f  t>O then begin 
EnterMonitor (clock); 

se t t ing :=  counter- t ;  
PwaitC( clock, alarm, se t t i ng ) ;  

ExitMonitor (clock);  
end; 

end; 

procedure i n i t  { var clock: gate } ;  
begin 

Create (clock); 
i n i tC  ( clock, alarm ); 
counter:= maxint; 

end; 
begin 
end {alarmclock}. 
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Figure 6. A Simulation Using the SCAN and ALARMCLOCK Monitors 

program prog4b; {disk-arm scheduling via "scan" algn} 

uses MonitorToolbox, scan monitor, alarmclock~ 

const 
s tack_s ize = 500; 
f i l e S i z e  = 20; 
p r o c _ p r i o r i t y  = 128; 

type 
f i l e _ i n d e x  = 0 . .19 ;  
S _ f i l e  = f i l e  of packed a r ray [O . .59 ]  of char; 

v a r  

i n f i l e :  S _ f i l e ;  
p id :  processid;  
seed: r e a l ;  
k: i n tege r ;  
c lock ,  d isk :  gate; 

func t ion  rand( range: i n t e g e r ) :  i n tege r ;  
begin 

seed:= seed*31.415927; 
seed:= seed - t runc (seed); { de le te  i n tege r  pa r t }  
rand: = I + t runc (seed * range);  

end; 

process P; 
vat rec:  f i l e _ i n d e x  ; 
begin 

repeat 
rec :=  r a n d ( f i l e S i z e ) ;  
a c q u i r e ( d i s k ,  rec ) ;  
seek ( i n f i l e ,  rec ) ;  
g e t ( i n f i l e ) ;  
writeln('Read record ',rec, 
delay ( c lock ,  rand( 5 ) ) ;  
re lease (d isk ) ;  
delay (c lock,  rand(5 ) ) ;  

u n t i l  t ime (clock) x- 9001 
end {process F'}; 

": ,infile"); 

begin {main prog} 
i n i t C l o c k  (c lock) ;  
i n i t D i s k  (d i sk ) ;  
seed:= 0.71123; 
r e s e t ( i n f i l e , ' d a t a 4 " ) ;  
f o r  k:= 1 to  10 do 

s t a r t (  P, p id ,  s tack_s ize ,  p r o c _ p r i o r i t y ) ;  
repeat t i c k  (c lock,  t rue)  u n t i l  t ime (clock) = 1000; 

end. 


