
-23~

Modula-2 Process Facilities

D. A. Sewry

Department of Computer Science
Rhodes University

Grahamstown, South Africa

Introduction

Considerable interest has been expressed in recent years on the subject of
concurrent programming in high level languages, and several languages have
been developed or extended to allow such facilities:

Ada [Uni81], [You83]
Clang [Cha84]
Concurrent Euclid [Ho183]
Concurrent Pascal [Bri75]
CSP [Hoa78]
Edison [Bri82]
Extended Pascal-S [Ben81], [Cha82]
Modula [Wir77]
Modula-2 [Wir83]
Pascal-Plus [We179], [We180]
UCSD Pascal [Sof81]

In this paper we wish to explore the features offered by Modula-2 (Wirth,
1979). Modula-2 is a most interesting language in that concurrency as such
is not supplied as part of the language. A coroutine construction is
supplied, in terms of which quasi-concurrency may be implemented at the
user's fancy, using routines in a "module", which then become part of a
library. In his book Wirth suggests one such simple implementation, and
this has been included with several widely used systems:

i) Volition Systems' Apple implementation running under the Apple
Pascal System

ii) Volition Systems' SAGE IV and IBM PC implementation running under
the UCSD Pascal II.O System

iii) University of Hamburg's VAX-11 implementation.

In the discussion which follows we shall point out some difficulties with
this system, and suggest some enhancements, as they have been programmed
for the SAGE IV microccmputer using Volition Systems' Modula-2.

Wirth's Proeesses Module

The module Processes offers the following facilities:

PROCEDURE StartProcess(P:PROC; n:CARDINAL)
(* start a process P with workspace size of n *)

SIGPLAN Notices, Vi9 ~Ii~ November 1984

http://crossmark.crossref.org/dialog/?doi=10.1145%2F948606.948610&domain=pdf&date_stamp=1984-11-01

°24°

PROCEDURE SEND(VAR S:SIGNAL)
(* reactivate a process WAITing on S ~)

PROCEDURE WAIT(VAR S:SIGNAL)
(* WAIT for some process to SEND S *)

PROCEDURE Awaited(S:SIGNAL):BOOLEAN
(* true if any processes WAITing on S *)

PROCEDURE Init(VAR S:SIGNAL)
(* initialise S *)

It is important to note that only parameterless procedures can be
designated as processes. This seems to be an unfortunate, and an
unavoidable restriction in the base language.

Each initiated process is ,represented by a ProcessDescriptor in a process
(schedule) ring. A ProcessDescriptor is defined by:

TYPE SIGNAL : POINTER TO ProcessDescriptor;
ProcessDescriptor =

RECORD
next: SIGNAL; (* ring *)
queue: SIGNAL; (* queue of waiting processes*)
cor: PROCESS; (* process variable *)
ready: BOOLEAN (* active or waiting *)

END;

When a process is started, by a call to StartProcess, a descriptor of the
process and a workspace for its associated coroutine are set up. The
descriptor is inserted in a circular list (ring) containing all process
descriptors created so far. By traversing the list any process can be
reached. Within this ring are subsidiary queues to handle signals.

SEND(S) takes a process off the queue pointed to by S, reinstates it as
ready-to-run, adjusts S to point to the next process waiting on the signal,
and finally transfers control from the sending process to the reinstated
process.

WAlT(S) places the current process at the end of the queue for S and then
searches for the next ready-to-run process in the ring. Deadlock occurs if
there is no ready-to-run process, but otherwise control passes to the
process so found.

Process Termination

The first difficulty with Wirth's system is that it does not clarify the
action to be taken when a process terminates.

In many implementations, as soon as any process or the main program
terminates, the entire program terminates.

Since the process concept and the underlying coroutine concept may appear
somewhat different to users (there is no reason why they should associate

-25-

one in terms of the other), a way to ensure conformity is to require that
all processes (and the parent program) execute, as their last statement, a
call to a standard procedure (say, procedure StopProcess) which will remove
from the schedule ring the ProcessDescriptor representing that process or
program (in effect destroying all evidence of its existence). In addition
to removing the ProcessDescriptor, StopProcess also searches the schedule
ring for the next process which is ready-to-run and transfers control to
it.

The COBE~3IN...COEND Construct

In several discussions on concurrent programming the COBEGIN...COEND
construct is used as a means of specifying which processes one wishes to
execute concurrently.

eg:
COBEGIN

A ;
B ;
C ;

COEND

in this instance A,B and C must be executed concurrently.

It is of interest to see how closely this idea can be implemented in
Modula-2. Processes will still have to be initiated using StartProcess, and
the closest we can hope to achieve will on the lines of:

BEGIN
COBEGIN;
StartProcess(A, 400);
StartProcess(B, 400);
StartProcess(C, 400);

COEND
END MainProg.

COBEGIN and COEND have to be implemented as procedures, not "reserved
words" which means, in general, that semicolons must follow both words.

Procedure COBEGIN can be made responsible for what was previously the
initialisation code of module Processes. COEND can be merely a call to a
revised version of StopProcess.

Further to the problem of process termination, it is still be necessary to
call StopProcess as the last statement in any process.

Since it is possible to have the following trivial case:

COBEGIN;
COEND;

-26-

it is necessary to launch a dummy process from within procedure COBEGIN.
Its only statement will be a call to procedure StartProcess which will~
amongst other tasks, assign the correct value to the main program's process
variable to allow control to be returned to the main program.

In Appendix A we present a revised implementation of the module Processes
which show how these improvements could be effected.

Process Priorities

In Wirth's scheme the schedule ring is very simple: ProcessDescriptors are
linked into it just next to the "launching" process in every case. The
scheduling policy is also simple: at any process switch one simply selects
the next ready-to-run process around the ring. (In Wirth's scheme switching
only occurs as a result of an explicit WAIT, SEND, or StartProcess call).
The system does not really allow for any form of scheduling policy based on
priority, time slicing etc.

Were a priority to be assigned to each process, scheduling policies could
be developed. Such policies might favour higher priority processes with
either (i) greater amounts of processor time or (ii) more immediate
attention on any process switch.

One such policy could be developed along the following lines: each time a
process is initiated a priority can be assigned to it and used as a means
of determining which process should be activated when confronted with a
choice at a process switch. For example, activate the process with the
highest priority (as is the case in the implementation given in the
appendices).

Procedure StartProcess is au~nented as follows:

PROCEDURE StartProcess(P:PROC; n:CARDINAL; PRIORITY:INTEGER);

The schedule ring now reflects ProcessDescriptors representing processes in
ascending order of priority.

Degree of Concurrency

It will be noted that in the implementation discussed so far, context
switching can only occur when an executing process either initiates another
process, or executes a WAIT, SEND, or StopProcess operation. This can
severely limit the degree of "concurrency" which can be achieved. (In an
extreme case one obtains essentially none at all.)

To enhance the degree of concurrency one might either:

a) introduce time shared process scheduling as an intrinsic
feature of the implementation, with implementation details
hidden from the user, or

b) introduce the possibility of user defined scheduling, based on
an accessible low level scheme such as a clock interrupt.

-27 a

The latter possibility is totally in accordance with the design philosophy
of Modula-2, whereas the former is in complete contradiction to it.

In an attempt to increase the degree of concurrency, a computer's internal
clock can often be used to generate an interrupt driven process switch.

Since Modula-2 provides a low level procedure, IOTRANSFER, to handle
interrupts, it can be used to trap clock interrupts. Having trapped the
interrupt, processor control can be transferred to a Reschedule procedure
which selects the next process to activate and then generates a process
switch.

Timeslieing

A simple implementation of procedure Reschedule would merely select the
next ready-to-run process in the schedule ring at a clock interrupt,
whereas the process with the highest priority would always be selected when
a choice is involved at all other process switches.

It is not much use altering Reschedule to activate the process with the
highest priority at clock interrupts. This will, to a large degree, negate
the effect of the clock. In general, the processor will currently be
executing the process with the highest priority - with the exception of
SEND the processor is always directed to the process with the highest
priority. Consequently, when a clock interrupt occurs, there is a good
chance that control will be passed back to the selfsame process which is
currently being executed. A context switch will only occur when this
process executes either a SEND or WAIT or StopProcess - a situation much
the same as it was before the clock was introduced.

An alternative solution to merely selecting the next ready-to-run process
is to allow each process a maximum number of timeslices determined by its
priority, eg. a process with a priority of four will be allowed a maximum
df four contiguous timeslices.

In the appendices, Reschedule is coded to manage this timeslice mechanism.

Implementations

In Appendix A we present an implementation of the COBEGIN ... COEND concept
(including process termination).

In Appendix B we present an implementation of Wirth's module Processes
[Wir83] extended to include process termination, process priorities,
improved concurrency and timeslicing.

Conclusion

Initially a user is provided with a little less than the bare minimum
required to achieve something which resembles, albeit somewhat remote,
concurrency ("less" because a process-filled program will not even
terminate correctly). However, with a little thought it is possible to

~28~

design one's own scheduler which not only solves the problem of process
termination but which also provides some useful extensions°

Some might contend that this is precisely what Modula-2 is all about -
building in an hierarchical fashion, from something very simple to
something quite sophisticated. In this way the user provides himself with
exactly that which he requires, no more, no less. It certainly affords the
user the flexibility of choosing/creating the process facilities of his
choice.

In conclusion, the suggested process facilities provided with the
Modula-2 system are weak but using what is given as a basis for
development, they can be extended to include some useful features.

Acknowledgements

I would like to thank Professor P. D. Terry for all his help and advice. I
also acknowledge the financial support of the Council for Scientific and
Industrial Research.

References

Ben81 Ben-Ari, M. Cheap Concurrent Programming. Software - Practice and
Experience, 11, (12), 1261-1264 (1981).

Bri75 Brinch Hansen, Per. The Programming Language Concurrent Pascal.
IEEE Transactions on Software Engineering, SE-I, (2), 199-207
(1975).

Bri82 Brinch Hansen, Per. Programming a Personal Computer. Prentice-Hall
Inc., Englewood Cliffs, New Jersey. (1982).

Cha82 Chalmers, A.G. Pascal-S MarkI.HAC Compilers. B.Sc.(Hons) project,
Dept. of Computer Science, Rhodes University, South Africa. (1982).

Cha84 Chalmers, A.G. The Monitor and Synchroniser Concepts in the
programming language Clang. M.Sc. thesis, Dept. of Computer Science,
Rhodes University, South Africa. (1984).

Hoa78 Hoare, C.A.R. Communicating Sequential Processes. Comm. ACM, 21,
(8), 666-677 (1978).

Ho183 Holt, R.C. Concurrent Euclid, the UNIX system and TUNIS. Addison-
Wesley, Reading, Massachusetts. (1983).

Sof81 UCSD Pascal IV.0 User Manual and Internal Architecture Guide.
Softech Microsystems. (1981).

Uni81 United States Department of Defense. The Programming Language Ada --
Reference Manual. Lecture Notes in Computer Science, 106. Springer-
Verlag, Berlin. (1981).

~29o

Wel79 Welsh~ J~ and Bustard~ D°Wo Pascal-Plus - Another Language for
Modula Multiprogra~ning~ Software - Practice and Experience, 9,
(11)~ 947-957 (1979)o

Wel8~ Welsh~ J. and McKeag, M. Structured System Programming. Prentice-
Hall Inc., Englewood Cliffs, New Jersey. (1989).

Wir77 Wirth~ No Modula: A Language for Modula Multiprogra~ning. Software -
Practice and Experience, 7, (I), 3-35 (1977).

Wir83 Wirth, No Programming in Modula-2 and Report on the Progra~ning
Language Modula-2. Springer-Verlag, Berlin. (1983).

You83 Young, S.J. An Introduction to Ada. Ellis Horwood, Chichester,
England. (1983).

appendix A

DEFINITION MODULE COBI;
(' $ ~ : : 4 7 ; •)

(~ NOTE: Ensure that the library module name is distinct •)

FROM SYST~H IMPORT PROCESS;

EXPORT QUALIFIED StartPrx~ce.~s ,StopProce~ ,SI~D ,WAIT,
COB~ IN, CO~2¢D,
Awaited, Init,
SIGNAL;

TYPE SIGNAL = POINTER TO Proce~sDee~crlptor;
ProcesM)escriptor : RECORD

next: SIGNAL;
queue: SIGNAL;
cor: PROCESS;
ready: BODLEAN

END;

PROCEDURE StartProcess(P:PROC; N:CARDINAL) ;
(* Start a process P with workspaee size of N •)

PROCEDURE StopProcess;
(~ Terminate the current process *)

PROCEDURE SEND(VAR S:SIGNAL) ;
(• Reactivate a process WAITing on S *)

PROCEDURE WAIT(VAN S:SIGNAL) ;
(* WAIT for some process to SEND S *)

PROCEDURE COBI~GIN ;
(• Start concurrent execution •)

PROCEDURE COEND;
(• Stop concurrent execution *)

(• Function •) PR(X~DURE Awalted(S:SIGNAL): BOOLEAN;
(• Any proce~es WAITing on S *)

PROCEDURE Init(VAN S:SIGNAL);
(' Initlallse S *)

END COBI.

ZMI~TATION MODUI~ COBI[I];

**

• MODULE COBI •

• An implementation of the •
• COBBGIN . . . COEND construct making *
• u~e of WiSh's Procasses module as a *
• ba,~ts, with pr,oce~e temmlnatlon facilltie~ *
• added. *

• Machine details: Volition Systems' •
• implementation of Modula-2 m
• SAGE IV microcomputer •

• Date: June, 198~ AutJ~o~: D. A. ,awry *

FROM SYSII~ IMPORT ;/~,T~IZ~,I~OK~,EWI~oe~,~;
FROM S ~ o r a ~ IMPORT Ai,,,I,~,,,~I'~;

VAN CP, (* po ln tar to ~u~enZ pro,~ss *)
MAIN: SIGNAL; (• pointer to main program de~erlptor m)

PROCEDURE StartProcess(P:PROC; N:CANDINAL) ;
(• Start a process P with wor~space slze of N *)
VAR S~: SIGNAL; (• temporary, launching procems •)

WSP: ADDRESS; (• workapace •)
BB~IN

SO::CP;
ALLOCATE(CP, TSIZE(ProcessD~scrlptor)) ;
ALLOCATE(WSP, N) ;
WITH CP ̂ DO (• link de,,w~rlpbor into ring *)

next: ~$0 ̂ .next;
$0 ̂ .next: :CP ;
ready: :TRUE;
queue: =NIL;

END;
NEWPROC_~(P, ~ P , N, C?^.cor);
TRANSFER (SO^.cor, CP^.cor)

END StarccProee~;

(~ Te~ lna te the o u r r e n t proee~,.~ ~)
VAR SO,hrE~kTJOB: SIGNAL; (~ temporary ~)

NOT~DUWD: BOOLEAN; (~ ready pr~ce~ no% f ~ •)
BEGIN

IF CP : CP^onext
THEN (* last process terminated - return ~o cain prc~r~ •)

TRANSFER (CP^ ° cot, MAIN~ .cot)
ELSE SO:=CP; NF~TJOB:=CP; ~OTPOUND::TRUE;

REPEAT (• find next ready-to-run process m)
NEXTJOB : =NEXTJOB ~ . next;
IF ((NOTFOUND) AND (CP~.ready))

THEN CP : =NEXT JOB ;
NOTFOUND: =FALSE

END
UNTIL NEXTJOB^.next = S~;
IF NOTFOUND

THEN (~ DEADLOCK 4)
HALT

ELSE (~ r~aove descriptor frcm rir~ •)
NEXTJOB ̂ . next : =$0^. next ;
TRANSFEN ($0^ .cor, CP^.cor)

END
END

END StopProcess;

PROCEDURE SENI)(VAR S:SIGNAL);
(" Reactivate a process WAITIng on $ •)
VAR $0: SIGNAL; (~ temporary, s lgna l l lng prc~e~ •)
BEGIN
IF S 0 NIL

THEN (m a process is WAITing :•)
S@: :CP ;
CP::S;
WITH CP ̂ DO (m mark signal led process as act ive •)
S: =queue ; ready : =TRUE; queue : :NIL

END;
TRANSFER(SO^.cor, CP ̂.cor)

END
END SEND;

PROCEDURE WAIT(VAN S:SIGNAL) ;
(• WAIT for some process to S~D S •)
VAR SO,SI: SIGNAL; (• temporary •)
BEDIN
IF S : NIL

THEN (t first such process to WAIT •)
S:=CP

ELSE (• add to ex i s t i ng queue •) .
S~:=S;
S 1 : :30 ̂.queue ;
WI~ILE $10 NIL DO (• search for tall •)

o0::$1;
S] :=S~^.queue

END;
$0 ̂ .queue :=CP

END;
SO::CP;
REPEAT CP::CP^.next UNTIL CP^.ready; (• find next proee~ •)
IF CP : $0 THEN HALT (• DEADLOCK •) END;
SO^.ready::FALSE; (• deactivate pr'oce~ •)
TRANSFER ($0^ .cot, CP^.cor)

WAIT;

(* Function •)PROCEDURE Awalted(S:SIGNAL): BOOLEAN;
(• any processes WAITing on S •}
BBGIN
RETURN S <~ NIL

END Awaited;

PROCEDURE Init(VAN S:SIGNAL);
(• initlalise S •)
BEGIN
S : :NIL

E~) Inlt;

PROCEDURE Dummy;
(• dummy process to allocate correct value to

MAIN% Oct •)
BEGIN

StopPreoese
END Dummy;

PROCEDURE COBEGIN;
(, start concurrent execution •)
B~IN
~LLOCATE(CP, TSIZE(P~rocessDescriptor)) ;
WITH CP ̂ DO (• enter main p~ogram into ring •)
next::CP; ready:=TRUE; queue::NIL

END;
MAIN : :CP;
StartPrncesa(Dummy, 4¢@)

END COBEGIN ;

PROCf~URE COEND;
(• Stop concurrent execution •)
B~GIN

StopProcess
END COEND;

B ~ I N (* COBI *)
END COBI.

~31o

D~I~ITIC~ ~DULg P r ~ s ~ ;
(* ~ : : 4 7 ; ~)

(~ MOTE: ~tsuP~ Lh~t Lh~ library ~odule r~ is distinct ~)

~RCH SYST~ ~HFO~T PROCE3S;

~XPORT QUALIFIED St~r~Process,Sto~Frocess,S~,WAIT,
Awgited ,Inlt,
SIGNAL;

TYPE SIGNAL : POINTER TO Pr~>cessDe~criptor;
ProcessDescriptor : RECORD

next: SIGNAL;
queue: SIGNAL;
oor: PROCESS;
prior: INTEGER;
slice: INTEGER;
ready: BOOLEAN

PRCCEDURE StartProcess(P : PROC; N :CARDINAL; PRIORITY : INTEGER) ;
(• Start a process P with workspace size of N and

priority of PRIORITY *)

PROCEDURE StopProcess;
(* Terminate the current process •)

PROCEDURE SEND(VAR S:SIGNAL) ;
(* Reactivate a process WAITing on S *)

PROCEDURE WAIT(VAR S :SIGNAL) ;
(• WAIT f o r some process to S~D $ a)

(• Function •) PROCEDURE Awaited(S:SIGNAL): BOOLEAN;
(* Any processes WAITin~ on S •)

PROCEDURE Init(VAR S:SIGNAL);
(" Initlalise S m)

END Processes.

I H P L ~ I T A T I ~ HOIXILE Processss[1] ;

• MODULE P r o c e s s e s •

• Modified version of Wirth's Processes module. *
• P r o c e s s t e r m i n a t i o n added. •

Priority assiEned to processes. Always •
• activate process with highest p r i o r i t y . •
• Interrupt driven process switchi~W~ added . •
• Tlmeslice mechanism based on priority a d d e d . •
• |

• Hach~J'~e details: Volition Systems' *
• implementation of Hodula-2 •
" SAGE IV mlcroccBputar •

• Date: June, 1984 Author: D. A. Se~ry •

l l l l l l i l i l t i l i l i l l i l l l l l l l l l i i l l l l l l l l l l l l J l J l l l l l l l l l l)

FROM SYST~I IMPORT ADDRESS,ADR,WORD,SIZE,TSIZE,PROCESS,
N~PR~CE~.~, TRANSFER, IOTRMGFER ;

FROH Storage IMPORT ALLOCATE;
FROM P r o g r a a IMPORT SetEnvelope,FirstCall ;
FROM UnltlO IMPORT UnitWrite;
FROM SYST~H68 IMPORT ClearVector,SetPriority,Attach,Detacb;

CON.ST ClocklVector = 9;
EventlNumber = 36;
C lockDevice = 131;
ClockPriority = 3;
Star~lock = I ;
StopCloek = 0;

VAR CLK,
Userprocess: PROCESS;
CUKWSP: ARRAY [0..~99] OF WORD;
T:, ARRAY [e,..~} OF CARDINAL;

(• clock interrupt vector ~)
(* clock event number •)
(* clock device number •)
(• clock priority number •)
(~ c'icx~ start indicator •~
(• clock stop indicator •)

(* clock plxx~eJ~s •)
(• current user process •)
(• clock workspace ~)
(• timeslloe duration value •)

MOntE SYNCHRO[~] ;
(m non-interruptable module to protect prx~e~ r l I ~ •)

IMPORT ADDRESS, TSI ZE, PROCESS, NI~PROCESS, TRAN~ ;
IMPORT ALLOCATE;
IMPORT SIGNAL, ProcessDescr Iptor;
IMPORT Userprocess;

EXPORT StartProcess ,StopProcess ,S~WD ,WAIT, Awal ted, Inlt,
CP, Reschedu le;

VAR CP. (~ pointer to current process •)
TOPPROC: SIGNAL; ~e pointer to procsss wlth hLKhest priority •)

PROCEDURE StartProcess(P:PROC; N:CARDINAL; PRIORITY:INTEGER);
(o Start a proce.ss P with workspace slze of N and

priority of PRIORITY m)
VAR $0,$1 ,PREVIOUS: SIGNAL; (i temporary i)

WSP: ADDRESS; (" workspaee.')
BEGIN
S~::CP; $I :=POPPROC;
ALLOCATE (CP, TSIZE (ProcessDescriptor)) ;
ALLOCATE(WSP, N) ;
IF Sl^.prior < PRIORITY

THEN (Q new process has highest priority m)
REPEAT
S; : =S1^.next

UNTIL S1^.next = TOPPROC;
PREVIOUS ; =S 1;
TOPPRCC:=CP (m amend top p r i o r i t y pointer •)

ELSE (• f ind correct place to insert descriptor •)
PREVIOUS: =.S I ;
$1 :=S1^.next;
WHILE ((S l ^ . p r i o r >= PRIORITY) AND ($1 0 TOPPROC)) DO

PREVIO{IS : =S I ;
$I :~1^.next

END
~D;
WITH CP ̂ DO (• link descriptor into ring •)
next: =PREVI0OS ̂ .next;
PREVIOUS ̂ . next : =CP;
ready : =TRUE ;
prior: =PRIORITY ;
slice : =prior;
queue : =NIL;

END;
NEWPROCESS(P, WSP, N, CP^.cor);
S 1 : =TOPPR(X~ ;
WHILE (NOT S1^.ready) DO (• search for ready process •)
S l : -~ l ^ .nex t (• with hlgbest priority m)
END;
CP:=.S1 ;
TRANSFER (Se^.eor, CP^.cor)

StartProcess;

PROCEDURE StopProcess;
(• Terminate the current process •)
VAR SO,NEXTJOB: SIGNAL; (• temporary •)
BEGIN
IF CP = CP^.next

THEN (i ~ OF PROGRAM •)
HALT

~D;
SO::CP;
REPEAT (• f ind next ready-to-run process •)
CP: :CP ̂ .next;

UNTIL CP^.next = $0;
CF^.next:=SO^.next; (• remove descriptor from ring i)
IF S0 = TOPPROC

THEN (i process with top priority terminated •)
TOPPROC : =TOPPROC ̂ .next

END;
NEXTJOB : =TOPPROC ;
(~ f ind next ready-to-run process •)
WHILE ((NOT NEXTJOB^.resdy) AND (NEXTJOB^.next O TOPPROC)) IX)
NEXT JOB : :NE3(TJOB ̂ .next

END;
IF NEXTJOB~. ready

THEN CP: =NEXTJOB;
TRANSFER(SO^. cot, CP^.cor)
(• DEADLOCK ")
HALT

~D
FJ~ StopProcess;

-32-

PROCEDURE SEND(VAR S :SIGNAL) ;
(* Reactivate a process WAITing on S •)
VAR $0: SIGNAL; (m temporary, signalling process ~)
B~GIN
IF S O NIL

TH~ (~ a proce3s is WAITing 4)
SO:~CP;
CP:=S;
WITH CP ̂ DO (~ ~rL(signalled process as active 4)
S : :queue; ready : :TRUE ; queue : =NIL

END ;
TRAN3FER (S@ ̂.eor, CP ̂.cor)

END
END SEND;

PROCEDURE WAIT(VAR S:SIGNAL);
(• WAIT for some proce~ to SEND S m)
VAR SO,SI: SIGNAL; (o temporary ~)
BEGIN
IF S : NIL

THEN (I first such process to WAIT ~)
S::CP

ELSE (* add to existing queue 4)
SO:=S;
S 1 : :$0 ~ .queue ;
WHILE $10 NIL DO (" search for tail *)
SO:=SI;
S 1 : :$0 ̂ . queue

END;
$0 ̂ .queue : :CP

END;
CP^.ready:=FALSE; (" deactivate process ")
S~::CP;
S I : =TOPPROC ;
(* find next ready-to-run process *)
WHILE ((NOT Sl^.ready) AND (Sl^.next O TOPPROC)) DO
$1 :=Sl^.next

END;
IF S1 ̂ .ready

TH~ CP:=51;
TRANSFER(SO^. coP, CP^ .eor)

ELSE (m DEAD~XX m)
HALT

END
END WAIT;

(m Function *) PIKX:EDURE A~Xted(S:SIGNA5): BOOLEAN;
(* Any process WAIT~g on S *)
BEGIN

RETURN S <> NIL
END A~ited;

PROCEDURE Inlt(VAR S:SIGNAL) ;
(* Inltiali~ S *)
B~IN
S:=NIL

Inlt;

PROCEDURE R~ehedule;
(n Interrupt driven prooess switch. Find next ready-to-run

process in the process ring and activate it ~)
B~IN
CP ̂ . eor: =Userproeess;
CP^.sliee::CP^.sliee - I; (' decrement timesllee •)
IF CP^.slice : 0

THEN (• timeslice complete *)
Cp^.sllee::CP^.prlor; (* new tlmesllee *)"
IF CP O CP^.next

THEN REPEAT (• find next ready-to-Pun process ')
CP: =CP" .nex t
UNTIL CP^. r--~ady;
Userprocm: :CP ̂ .eor

END
~D

END Reschedule;

~IN (* SYNCHRO •)
ALLOCATE(CP, TSIZE(ProceasDescriptor)) ;
WITH CP ̂ DO (* enter main program into ring *)

next::CP; ready:=TRUE; prlor::2; queue::NiL;

TOPPROC : =CP
END SYNCHRO;

PROCEDURE CLCX~C;
(~ Interrupt driver ~)
BEGIN
Attach(Clock Wector) ;
LOOP
IOTRANSFER (CLK, U3erprocess, Clock 1 Vector) ;
Reschedule

END
END CLOCK;

PROCEDURE CLKinit;
(" Start the SAGE IV clock

See "SAGE II User's Manual
section IV.4.6 System Cloc~ Access" ~)

VAR P: CARDINAL;
BEGIN
P : =SetPrlorl ty (C lockPriori ty) ;
NEWPROCESS(CLOCK, ADR(CLKWSP), SIZE(CLKWSP), eLK) ;
P: =SetPrlorlty(P) ;
T[O] :=0;
T[]]:=64~; (m 100 millisecond time,lice *)
TRANSFER(Userprocess, eLK) ;
CP ̂ .cor: =Userproceas ;
UnitWrite(ClockDevice, ADR(T), 0, 0, EventINumber,

{StartClock })
~D CLKinlt ;

PRCCEDURE CLKtem;
(~ Stop the SAGE IV clock

See "SAGE II User's Manual
section IV.4.6 System Clock Access" *)

BEGIN
UnitWrite(ClockDeviee, NIL, 0, 0, EventINumber,

(StopClock }) ;
Detach(Clock IVeetor) ;
ClearVector(NIL, NIL, ClockIVeetor)

END CLKterm;

BBGIN (* Processes *)
SecEnvelope(CLKinlt, CLKtem, FirstCall)

END Processes.

