tools in (4). We would encourage
professors to have students produce
these for the community under their
guidance.

SIGLINK is the most logical professional
organization to define and construct a
fully-functional hypermedia-supported
digital library. Let’s lead the way by
implementing the infrastructure to pub-
licly demonstrate our community’s con-

cepts and then populate it with our
community’s research and annotations.
Simultaneously, let's work further to
craft this digital library into the core
resource of a full Hypermedia Networked
Improvement Community.

Please contact me if you are interested in
working on these ideas, or if you have
any suggestions. (bieber@njit.edu)

Desiderata for a Java-based Hyperlink API: The
Hypertext ‘98 Java Users’ Birds of a Feather Session

Peter J. Wasilko, Esq., J.D., LL.M.
Director, The Continuity Project
futurist@cloud9.net

“Are we here yet?”—Background to the BOF
Hypertext 98 will no doubt be remem-
bered as a seminal event in which our
community paused to reflect on its past
and to reassess its future direction. We
have a long tradition that dates back to
the visionary work of Vannevar Bush, Ted
Nelson, and Douglas Engelbart. We have
produced numerous research systems
over the years demonstrating a depth
and breadth of functionality that goes far
beyond the static navigational paradigm
of the Web.

But HT 98 was a time to reconcile where
we are with where we might have been.
Our conference series didn’t accept the
first paper on the World Wide Web,
though it should have. Our technologies,
in their full richness, have not been
transferred beyond the lab, though they
should have been. Indeed, as John
Leggett observed in his opening keynote,
our community is not Hyperliterate, since
we do not yet use our own tools in the
creation and access of our literature.

Douglas Engelbart challenged us to think
of ourselves as a Networked Improve-
ment Community and to remember that

SIOUNK

the introduction of novel high impact
technology will inevitably necessitate
some measure of user training. However,
he cautioned us to avoid the trap of
limiting our designs to the lowest com-
mon denominator of today’s skill levels
since people can and will learn in the
future just as they have in the past.

In my view, our community came away
from HT ‘98 with a renewed sense of
direction, a general consensus to make
the interoperability and transferability of
our technologies a key priority, and a
determination to lead by example. In the
months ahead you should see the emer-
gence of a number of exciting new initia-
tives with their roots in HT 98,

Java and Technology Transfer

I proposed and led this year’'s Java BOF
in anticipation of such developments
which are making the Java Platform a
particularly appealing environment for
future hypertext research. In the days of
old, when computing machinery was
slow, large, expensive, and the province
of large organizations, the availability of
CPU Cycles dictated our choice of devel-
opment environments. If an organization

45


http://crossmark.crossref.org/dialog/?doi=10.1145%2F951171.951182&domain=pdf&date_stamp=1998-02-01

later wanted to deploy the fruits of our
research, we could reasonably assume
that it would already have access to or
be willing to commit the funds needed to
replicate our development environment.

So a lot of early work found its home on
high end low volume systems built
around custom hardware, like the LISP
Machine. Over time, as these systems
were phased out or failed to penetrate
the commercial market technologies
dependent upon them stagnated and
atrophied. This occurred despite the
concomitant explosion in desktop com-
puting power, because the vendors of the
underlying systems did not perceive a
large enough market to justify porting
their full development environments to
the desktop. Moreover, they did not have
the expertise to produce fast, tight
runtimes that could offer end users of
systems constructed to run on them a
consistent native user interface experi-
ence.

More recently, some vendors have fol-
lowed the rise of processing power to the
desktop with limited cross-platform
solutions, but they tend to focus on
preserving legacy code and operate on
the assumption that their users’ primary
object is to create commercial code
targeted for each platform’s native
environment.

Sun’s Java platform is predicated on a
different set of choices, which are per-
haps more closely attuned to the needs
of the research community. The cost of
entry into Java development is dramati-
cally lower than competing solutions
(free if one downloads just the Java
Development Kit from Sun). By focusing
on the creation of a world class Virtual
Machine and a series of high level cross-
platform Application Programmer Inter-
faces rather than a full Integrated
Development Environment, Sun has
taken on a more manageable task. The
virtual machine architecture encourages
third parties to boost the performance of
the system through bytecode optimiza-
tions and advanced interpretation tech-
niques while providing an appealing

46

target for the designers of other pro-
gramming languages.

Java offers us memory management,
multiple threads of execution, exception
handling, a persistence mechanism, the
ability to create reusable cross-platform
graphic user interface components, and
enough high level networking support to
put the design of distributed collabora-
tive hypertext systems within the grasp
of an advanced undergraduate. Of course
the language is not perfect and many
might argue that Scheme offers a more
eilegant and concise conceptual frame-
work on which to base computer science
instruction. But as a research develop-
ment environment its benefits outweigh
its disadvantages, indeed even those
preferring Prolog or Scheme can find
solutions under development to interpret
these languages in Java or compile them
directly into Java classes which couid
then be invoked from Java proper.

At present, Java is too slow for some
applications on common hardware,
client-side Java still isn’t completely
stable across virtual machines, and the
fanguage will never match the speed of
compiled C or hand optimized assembier
for all classes of computation. However,
these issues will soon fade as we run our
Java under Dynamic Compilation or with
next generation Just-In-Time Compilers
with more compliant virtual machines on
ever-faster hardware. Indeed it would
not be unreasonable to assume that
Java’s runtime overhead will represent a
sufficiently smali percentage of CPU load
in a few years that a major system being
written today could safely introduce
another level or two of interpretation
without becoming unwieldy.

However, from a technology transfer
perspective, the cross platform promise,
if realized, offers us the greatest benefit.
For it will guarantee that what we write
on high-end systems in the lab today will
be able to run with ease on a student’s
or customer’s personal computer in a few
years. Moreover, if network computing
takes hold on campus, even a stock PC in
today’s average computer cluster could



serve as a thin client to support interac-
tion with our Java-based server side
solutions.

Are We Still Doing Hypertext Wrong?

After spending some time on these
issues, I raised the question of what sort
of direct support for hypertext we might
like to see added to the standard Java
libraries. I took Norman Meyrowitz’'s
short but highly salient contribution to
Edward Barrett’s classic anthology 74e
Society of Text: Hypertext, Hypermedia,
and the Social Construction of Informa-
tion (MIT Press, 1989) as a point of
departure. In “"The Missing Link: Why
We're All Doing Hypertext Wrong” he
found that the failure of hypertext to
reach its full potential stems from our
deveiopment of “insular, monolithic
packages that demand the user disown
his or her present computing environ-
ment to use the functions of hypertext
and hypermedia.” (p. 112) By contrast,
Meyrowitz argued that we should try to
emulate the success of the cut, copy, and
paste paradigm noting that:

"This paradigm caught on for four rea-
sons. 1) powertul! things could be done
with this paradigm,; 2) the paradigm was
extremely easy to motivate and teach to
end-users, 3) the toofbox vendors touted
the copy and paste protoco/ as an impor-
tant integrating ractor that all software
developers should include in their appli-
cations,; and 4) most importantly, the
toolbox supporters provided the frame-
work for copy and paste deep in the
system software and provided developers
the protocols that enabled them to
i/ncorporate the paradigm into their
software with relative ease.” (p. 112-113)

“..Linking functionality must be incorpo-
rated, as a fundamental advance in
application integration, into the heart of
the standard compulting toolboxes... and
application developers must be provided
with the tools that enable applications to
Yink up’in a standard manner.”

The Intermedia project took this ap-
proach with limited success as it lacked
the visibility and market penetration to

SICLINK

induce developers to embrace its APIL.
Unfortunately, none of the platform
developers have taken heed of
Meyrowitz’s challenge and to this day we
do not have system wide hypertext
facilities.

Apple’s Initiatives

Given the adroitness with which Apple
Computer commercialized Xerox’s Cut,
Copy, and Paste research, I took some
time at our session to carry the case
study forward. Apple’s Drag and Drop
and Publish and Subscribe models, whose
APIs parallel that of the standard clip-
board, have enjoyed comparable though
somewhat more limited success with the
basic text and graphic clipping types.

But programmers and users have come
to recognize the limitations of the under-
lying core data types. Specifically, most
new applications can now import and
export raw text, styled text, and “PICT”
graphics. However, many older applica-
tions can’t handle text style information
and the “PICT” graphic format does not
support many advanced visual effects. In
general users seem to tolerate this
mismatch under Cut and Paste, but it
clearly breaks down under Publish and
Subscribe because one can edit a live
graphic with all effects preserved in its
native application which is then printed
as a screen resolution bitmap by the
subscribing application. Thus the seam-
less integration of the data interchange is
notably broken.

This led to the ill-fated OpenDoc effort,
which attempted to provide an object
oriented . framework that could factor out
editing from printing and viewing and to
eliminate the need for data to be reduced
to a system level common denominator
before being incorporated in other docu-
ments. OpenDoc failed for:.two reasons:
1) executive level mismanagement sent
the company into a steep downturn
costing Apple market share and devel-
oper trust at the time of its release and
2) given its 50 unfamiliar API calis and
dubious cross platform support, it could
not be adopted by developers with re/s-
tve ease. (See “Building an OpenDoc

47



Part Handler” by Kurt Piersol in Develop.
The Apple Technical Journal, Issue 19,
September 1994, pp. 6-16)

Moving Forward with Java

These experiences suggest that, to be
widely useful, a Hyperlink API ought not
widely diverge from the dominant appli-
cation organization paradigm of its host
system. It should have a small well-
factored API that can be implemented
with minimal changes to existing code.
And perhaps, it should be associated with
a composite document model so arbitrary
source elements can be transc/uded (i.e.
linked & embedded) without loss of
formatting. Moreover, any programmati-
cally generated or scripted elements
ought to have their implementations fully
encapsulated so their destinations need
not actively trigger or participate in the
execution of their evaluation mechanism.

These final points imply support for first
class access and ability to manipulate
nested components, raising some inter-
esting knowledge representation issues’
which could be safely deferred to a future
point in time, provided appropriate
interfaces are put in place from the
outset.

We can further envision two classes of
users of such a link API: 1) Developers of
such functional domain specific modules
as Day Planners, who would like to
support the importation of arbitrary link
pointers (e.g. URL’s) to embed in their
container classes (e.g. Timeslots) while
exporting references to, and self-con-
tained representations of, their own
application specific substantive classes
(e.g. Appointment objects); and 2)
Hypertext researchers and developers
looking to provide advanced link man-
agement, authoring, and analysis. The
former group would be best served by a
minimalist API building on existing data
interchange services with user controls
provided through a pre-built reusable

GUI Widget. The later group would want
to retain full control over all elements of
the user interface, perhaps have the
ability to bind custom data structures to
system wide link objects, and be able to
modify the functional semantics of fink
creation, selection, traversal, etc. with-
out sacrificing interoperability with other
packages. Fortunately, these goal sets
are complimentary.

Java is particularly well suited to the
development of such a framework, as its
high level constructs already draw
heavily on the work of Design Patterns
community (see Design Patterns: Fle-
ments of Reusable Object-Oriented
Software by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vliissides with a
Forward by Grady Booch. Addison
Wesley, 1995) which has identified a
number of mechanisms that can be
readily integrated to endow a system
with just these kinds of functionality.
Thus Java is well positioned to help solve
our software engineering problems.

Conclusions—The Open Hypermedia
Connection

But we would still need a semantic
foundation on which to structure a Java
Hyperlink API to insure interoperability
with native services in other environ-
ments, for while Java provides an elegant
solution to creating cross-platform
hypermedia clients we need to embrace
legacy systems as well.

Fortunately, our session had a number of
participants who have been actively
working with both Java and Open
Hypermedia Systems. This Open
Hypermedia Systems Working Group has
drawn on the perhaps somewhat dated,
but still descriptive, Dexter Hypertext
Reference Mode/to implement cross-
platform link services. They were able to
address these larger interoper-ability
issues and point to their ongoing stan-
dardization effort that we could leverage

t | noted that Professor Ken Haase at the MIT Media Lab had done some interesting work on large-scale distributed knowledge bases
with Java support that could provide some useful insights (see “FramerD: Representing knowledge in the large” by K. Haase in /BM
Systems Journal, Volume 35, Numbers 3&4, 1996, pp. 381-397). Unfortunately he has been out of touch, and presumably focusing on
other Media Lab business since his last note to me was back in February so | am unable to report on FramerD’s current status.

48



in our explorations of the design space
for a future Java-based Hyperlink APIL.

Ultimately, we gathered some initial
sense of how Java might evolve to better
support our needs while coming to recog-
nize that future collaborations between
the Open Hypermedia Systems Working
Group and the Java developer community
would offer us the greatest opportunities
to advance our mutual objectives.

In closing, I would like to thank the HT
‘98 Program Committee for providing us
with this forum to meet and to thank
each and every one of our session’s
participants for sharing their thoughts. %

Online Resources

JavaWorld—IDG’s magazine for the Java
community: http://www.javaworld.com

Java Developer Connection Home Page:
http://developer.javasoft.com

Languages for the Java VM:
http://grunge.cs.tu-berlin.de/~tolk/
vmlanguages.html

Open Hypermedia Systems Working Group:
http://www.csdl.tamu.edu/ohs/,
http:// www.ohswg.org (This later site
was down at the time of this writing)

Trip Report: ACM Hypertext 98

Deena Larsen
textra@chisp.net, deenalarsen@acm.org

Hyperliteracy

The keynotes began and ended in a
dance around the concept of
hyperliteracy. I have always thought in
hypertext—but I suspect that this is
merely a private quirk in my thought
patterns. Thinking linearly is like holding
onto a bedstead while someone pulls the
corset tight—it crushes my ideas until
they faint.

I need to think both of the idea and its
connections at the same time or the
thought is lost. Thus this trip report is as
nonlinear as you can get in a newsletter
(My real conception of Hypertext 98 is all
contained in the graphic, which shows
the interstices of the three “camps”).

A Common Language

John Leggett’s image from the opening
keynote, of scattered tribes on a desolate
plain, held sway throughout the confer-
ence. To create a civilized hyperliterate
world, we first need a common language.

SICLINK

John spoke of runners between the
camps. Mark Bernstein began to address
the challenge of developing vocabulary
that describes and names the structures
and paths we are finding in actual
hypertexts. Francisco Ricardo stalked the
edges of meaning as he spoke about the
meaning that links have in and of them-
selves. These new ways of forming and
thinking about communication will lay the
groundwork for developing hyperliterate
systems.

Reef Accretions

Accretion. n. An increase by external
addition or accumulation (as by adhesion
of external parts or particles).

The reef metaphor for the panels opened
up the way for fantastic accretions of
knowledge, insights, and collaboration. If
thoughts could grow shells like coral,
then the panel reef would surely be a
multifaceted wonder of the seven seas.

49



