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ABSTRACT 
We present a distributed framework that enables real-time 
streaming and visualization of data generated by large remote 
simulations. We address issues arising from distributed client-
server environments and guarantee good parallel load balancing. 
We apply progressive computing techniques and parallel, 
hierarchical data streaming techniques to reduce the “distance” 
between the simulation hardware and the systems where the 
actual visualization and analysis occur. We present a simple and 
efficient load balancing method that scales to arbitrary simulation 
sizes and does not introduce additional communication cost. We 
demonstrate the performance of our system with a molecular 
dynamics code and show its ability to allow monitoring of all the 
time-steps of a large simulation with negligible time overhead. 

1. INTRODUCTION 
It is often the case in large high performance computing 
environments that the external systems, supporting applications 
such as visualization, are located remotely from the 
computational host. These systems are “remote” in terms of 
bandwidth and latency vs. dataset sizes. As the sizes of the 
datasets increase, there is a corresponding increase in the ratio 
between the compute power available to the scientific simulation 
(executed on a large supercomputer) and the compute power 
available to the external systems. Data transfer and conversion 
become a major cause of delay, and the external systems become 
increasingly “remote”.  This remoteness adversely impacts the 
steerability of a simulation. 
Computational steering involves both inspecting and interpreting 
the state of an ongoing simulation and modifying simulation 
parameters. In this paper we focus on the real time assessment of 
the simulation results, which entails the visualization of data. 
Simulations that enable the adjustment of parameters at run time 
can use this technology to achieve a full-fledged steering system.   
A large number of tools and libraries for linking and steering 
computational simulations have been developed over the years [7, 
10]. These systems have matured into the modern problem 
solving environments [9, 14, 1], which encompass the simulation 
building blocks as well. In general, these systems can become 
scalability bottlenecks when mapped onto large parallel and 
distributed memory architectures. 
We propose a real-time streaming system based on a multi-tiered 
client-server architecture that enables the real-time monitoring of 
large scale simulations on distributed memory architectures.  
Each compute node utilizes a simple library call to stream data to 
one or more layers of data servers.  On the client side, these 
servers are queried to obtain real-time multiresolution 

visualization of the data. The streaming system has the following 
properties: 

Efficient.  The system computes a fast permutation of the data, 
resulting in a subsampling hierarchy. This permutation is 
performed in-place with no expensive construction operations. 
Cache Oblivious. The data layout follows the access patterns of 
typical level of detail visualization algorithms and its locality is 
independent of the various system cache sizes (CPU, disk, etc.). 
Therefore a unique data layout facilitates high performance of the 
system for different cache hierarchies. 
Scalable. The system is built on the concept of stream-processors 
that can be dynamically realized to optimally utilize available 
computational and network resources.  
Progressive.  Progressive streams allow data streaming to be 
dynamically tailored to available network resources and desired 
visual fidelity.  
The system described here addresses some fundamental issues 
arising from “remote” client-server architectures and parallel load 
balancing. It does so using progressive computing techniques 
[15] and parallel, hierarchical data streaming techniques [16]. We 
present practical results obtained by connecting our system with 
JEEP, a code that computes first-principles molecular dynamics 
based on the plane wave method [5]. We demonstrate our ability 
to perform real-time monitoring of all the time steps of a large 
scientific simulation at full resolution with negligible overhead.  

2. RELATED WORK 
In recent years there has been an increasing focus on data 
transport schemes and mechanisms that optimize information 
transformation in an attempt to decrease the “remoteness” of 
external systems. In the case of time-varying volumes, novel 
volume data encoding ensures timely data transport to graphics 
hardware [12]. Multi-tier caching schemes, which transform and 
store data for remote visualization, have been developed that 
utilize lower-bandwidth graphics primitives [3]. External memory 
techniques [2] allow efficient access to data that does not fit in 
main memory [13, 16]. Hierarchical representations for data 
transport have been proposed to reduce bandwidth requirements 
[6, 11, 8, 18].  

A common requirement of such schemes has been the 
construction of hierarchical data structures before performing any 
visualization. In a real-time streaming infrastructure, this 
expensive computation stage cannot be neglected as off-line 
independent preprocessing. The present work obviates the need 
for such data structures by reordering the data into a subsampling 
hierarchy. 
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3. DISTRIBUTED ARCHITECTURE 
Three different types of components are used to construct the 
tiered client-server streaming architecture: Data Sources, Data 
Servers and Data Clients. Data Sources act as the data producers 
in the system. Typically, Data Sources are nodes of a running 
simulation, but the system supports alternate Data Sources, such 
as remote storage or real-time experimental data streams. 
Coupling to a simulation is achieved through a single function 
call inserted in the simulation code. This function is typically 
called after the computation of each time step. At each call, we 
convert the input dataset into a progressive hierarchical data 
stream and transmit the stream to a set of Data Servers. 

The Data Servers constitute the central data processing 
component in the system. Each Data Server component takes a 
data stream as input and acts as a filtering and buffering agent.  A 
Data Server outputs a data stream either to another Data Server or 
to a Data Client. Data Servers that perform pure data 
transformations may do so directly on the stream, without 
caching. Data Servers are also capable of caching data and 
responding to spatially bounded queries. We focus on a specific 
Data Server, which acts as a pure data storage component. 
Typically, several data servers are run in parallel with the data 

partitioned amongst them to take advantage of multiple 
processors and parallel disk I/O subsystems. 

The Data Clients act as data stream sinks. The Data Client 
presented here is a visualization tool that renders textured cut 
planes and performs progressive volume rendering to a local 
display.  A Data Client makes spatially bounded data queries to 
its upstream Data Servers in response to interactive user requests. 
The Data Client receives the data streams corresponding to the 
samples satisfying the queries and builds a progressive data 
representation. The progressive nature of the stream 
representation allows it to be rendered at any time, even 
asynchronously, with respect to the receipt of the incoming 
stream.  

Key to the scalability of the architecture is that all the system 
components are realized as distributed software entities with a 
fully interconnected communication infrastructure between each 
component. A major challenge in this type of architecture is to 
ensure load balancing throughout the entire system while 
maintaining scalability of the global communication. The format 
of the data stream itself addresses this problem. Implicit in the 
data ordering of the stream is the parallel distribution logic, 
which allows for asynchronous load balancing without global 
communication. 

4. CACHE-OBLIVIOUS STREAMING 
Consider a rectilinear grid G of size 2gx2gx2g. We turn G into a 
hierarchy by a reordering of its vertices based on the recursive 
definition of the 3D Z-order space-filling curve (see [17]). In 
particular, the nodes at resolution l are the nodes of the grid that 
are interpolated by the Z-order space-filling curve of resolution l 
but that are not interpolated by the Z-order curve at resolution l-1. 
Figure 1 shows this construction for the 2D case. At each level 
the space filling curve is alternately refined along the x and y 
axes. Figure 1(a) shows level 0, which is just a (dark gray) 
vertex. Figure 1(b) shows level 1, which is the new vertex 
marked in dark gray (the vertex at the previous level is light 
gray). At each level the number of new vertices introduced is 
equal to the total number of vertices in all the previous levels of 
resolution.  This data layout is called “cache oblivious” since the 
locality of the mapping is independent of the block size used to 
partition the 1D array. 

Coarser data New level data

(a) (b) (c)

(d) (e) (f)

The conversion from the standard (i,j,k) index of a row major 
array order is performed in three simple steps as shown in [16]. 
First, the bits of the binary representation of i, j and k are 
interleaved to form the standard Z-order index IG’. This 
transformation is denoted IG’=Z(i,j,k). Next, a sequence of right 
shifts is used to transform IG’ into the final hierarchical index IG. 
This transformation is denoted IG=S(23g+IG’), where 3g is the 
total number of bits used by (i,j,k). Overall, we have 

)),,(2( 3 kjiZSI g
G += .  (1) 

Unfortunately, while the mapping from (i,j,k) to IG is very 
efficient, the inverse mapping from IG to (i,j,k) is slow and cannot 
be used directly in the inner loops of a computation. 
Consequently, the preprocessing that reorders the data can 
introduce significant delays before one can access the data 
efficiently. In the next section, we show how to overcome this 
problem and allow direct streaming of the data while hiding the 
preprocessing stage in the data transmission stage. 

Figure 1: Sequence of levels of resolution of the
hierarchical version of the Z-order space-filling curve. In
each image fine black points in the background represent
the fine resolution data. The dark gray points represent the
new samples introduced at the current level of resolution.
The light gray points mark the samples introduced in the
previous levels of resolution. 

4.1 Streaming with embedded reordering 
One main advantage of the approach proposed in [16] is that the 
data preprocessing is reduced to computing a permutation of the 
storage order. While this fact provides orders of magnitude of 
improvement with respect to previous methods, it would 
introduce a significant delay in the data servers since they would 
need to store a temporary copy of the data and then perform a 
redistribution of the data based on the new index. 
The entire dataset G is partitioned into equal bricks B1…Bm. 
Each brick is a grid of 2bx2bx2b vertices and is associated with 
one Data Source. Our strategy in reordering the data is to create 
direct connections between each Data Source and every Data 

 



Server as shown in Figure 2. Conceptually, each Data Source 
loops through all the data in the order imposed by the index IG 
and determines for each vertex (i) which data server must receive 
its value and (ii) the (i,j,k) index of the vertex to be sent (if stored 
locally). 
In general, the vertex of hierarchical index IG is stored in the 
block IG/d, where d is the size of the data blocks in the Data 
Servers. Moreover, we assume that the Data Server storing such a 
block has the index 

mod ,GI n
d

   (2) 

where n is the number of Data Servers available. We discuss in 
the following section how to select a value of n that yields good 
load balancing in the data visualization stage. Two fundamental 
efficiency issues arise from a direct implementation of this 
scheme: 
(i) Performing a loop based on the index IG on each Data Source 
induces large delays since it requires enumerating all the vertices 
of G instead of only those of the local brick of data B. 
(ii) The computation of the inverse mapping IG→ (i,j,k) is slow 
and its evaluation for each vertex, even if only those in B, induces 
additional delays. 
To overcome these problems we take advantage of two 
fundamental properties of the index IG, derived from the recursive 
structure of the Z-order curve: 

Property 1. The traversal order of the vertices in a brick B, 
induced by the index IG, and computed with respect to the global 
grid G, is the same traversal order induced by the hierarchical 
index IB, computed locally with respect to B.  
Property 2. The traversal of the elements at level l of the 
hierarchical index IG is equivalent to a regular (non hierarchical) 
Z-order traversal with indices (i,j,k) having l-1 bits total. 
Property 1 is explained by the fact that any Z-order curve built on 
G and restricted to B is equivalent to a Z-order built directly on 
B. Property 2 is illustrated in Figure 1, where the light gray 
vertices of level l are identical to the translation (along x and y 

alternatively) of the regular Z-order curve containing the dark 
gray vertices (those of levels up to l-1). 
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Data Source 2 
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Data Server 1

Data Server 2

Data Server 3
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Figure  2 :  Direct socket connections used to stream 
data from each Data Source to every Data Server. 

Property 1 allows each Data Source to loop through the data 
using the local IB index. This means that we need to compute the 
mapping IB→ IG. This mapping can be computed efficiently using 
the indices (ib,jb,kb) of the brick B within G. Note that ib,jb, and kb 
have g-b bits each. To perform this transformation we take into 
account the level of resolution l of the vertex with respect to the 
index IB. In particular, a vertex has level l if its index IB satisfies 
the following inequality: 

12 2l l
BI− .≤ <  

We assume, by convention, that 2-1=0. The first level l=0 has 
only the vertex with IB=0. The global index for this vertex is 
analogous to expression (1): 

3( )(2 ( , , ))g b
G b b bI S Z i j−= + k

)b b

 

The second level l=1 has only one vertex with IB=1. The global 
index for this vertex is  

3( )2 ( , ,g b
G bI Z i j k−= +  

For the following levels, the mapping is 
3( ) 1 1(2 ( , , ))2 ( 2 )g b l l

G b b b BI Z i j k I− − −= + + −  

Note that all the additions are between addresses that do not share 
common bits set to 1. Therefore they can be implemented as 
bitwise-OR operators. Similarly, the subtraction simply resets to 
0 a bit that was set to 1.  

I B

I 1

1

Z(i
b
,j

b
,k

b
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x x x x x x x x x x x x xx 

y y y y y y

y y y y y y

Figure  3: Mapping from the local index  I B  to the global  
index  IG . The local brick has array index  (i b ,j b ,k b).   

The diagram in Figure 3 shows the bitwise representation of this 
mapping from IB to IG. The fast evaluation of this mapping allows 
us to loop only through the data in B instead of the entire grid. 
The problem remains that the mapping from IB→ (ib,jb,kb) is a 
slow operation. We optimize the loop based on IB  using property 
2. At level l we use three auxiliary variables (x,y,z) that we 
increment, via a lookup table, following the regular Z-order for a 
grid of total size 2 1l− . The auxiliary variables (x,y,z) allow 
building the index (ib,jb,kb) using these three rules, where h=l-1: 

mod 3h  bi  bj  bk  

0 12 2h hx −+  2hy  2hz  

1 12hz −  12 2h hx −+  2hy  

2 12hy −  12hz −  12 2h hx −+  

Again, these are simple shift operations with an eventual or 
operator to set an additional bit. 

 



In our implementation, we attained one order of magnitude 
speedup with the use of these expressions. On a brick of size 5123 
a loop through the data in IB order with explicit computation of 
the inverse mapping IB→ (ib,jb,kb) requires 67.7 seconds while the 
same loop with computation of (ib,jb,kb) without explicit inverse 
mapping requires 5.5 seconds. Since the computation of one time 
step of the simulation typically takes a few minutes, we are able 
to maintain the time overhead at a level that does not appreciably 
affect the performance of the simulation 

4.2 Data Server load balancing 
We take a load balancing approach based on static data 
distribution [4, 19] where there is no data replication and no 
contention on a centralized agent that distributes tasks. The major 
challenge is to find a deterministic way to distribute data in a way 
that guarantees good load balancing for any request within a 
given set of queries. In [4] there is a study on how to load balance 
the iso-contouring query for any valid iso-value. Random data 
distribution [19] has the advantage of not being specialized for 
any particular query. For direct computation of iso-surfaces this 
approach works properly but for our type of spatial queries this 
approach would require large tables that track the actual locations 
of data elements. 
As discussed in the previous section, we use expression (2) to 
determine the index of the Data Server that stores a given block 
of data. This technique allows us to distribute the data evenly 
across the Data Servers and achieves load balancing in the 
streaming from the Data Sources to the Data Servers. 
Unfortunately, this method does not guarantee load balancing in 
the real-time data access, when the Data Clients perform spatial 
queries (for example for visualization purposes). We have tested 
experimentally a large set of spatial queries to determine the load 
balancing achieved in practice.  
Figure 4 summarizes the results of our experiments. As expected, 
the number of Data Servers has a major impact on the load 
balancing of the system. Even numbers of Data Servers seem to 
yield poor load balancing, with peaks denoting unbalanced 
distributions for multiples of 8 (in 2D this would be multiples of 
4). This result seems to be due to the nature of the hierarchical 

indexing scheme that is based on sequences of shift operations, 
which are equivalent to multiplications by powers of 2. 
Interestingly, this bias remains even if we can deal with 
parallelepiped datasets of any aspect ratio using partially empty 
blocks whose overhead is removed by compression or their 
complete removal in the case of empty blocks. Symmetrically, 
most of the odd numbers of Data Servers yield a good load 
balancing. Most of the prime numbers yield a nearly ideal load 
balancing, as we would expect, but there is an exception to this 
rule. In practice, we select a target range of Data Servers using 
the chart in Figure 8 to select the candidate that would provide 
the best balancing. 

4 

3 

2 

1 

5. EXPERIMENTAL RESULTS 0 
0 10 20 30 40 50 60 70 80 90 100

Table 1: System performance for the real-time streaming of 
the electron density distribution from JEEP Data Servers.   Figure 4. Load Balancing attained for repeated spatial queries 

with a different number of Data Servers. Each point in the 
chart plots the ration of the maximum load attained by any 
Data Server (that is the Data Server that finishes last) divided 
by the ideal load of the perfectly balanced execution. Smaller 
ratios mean better load balancing, with a minimum ratio of 
one. 

Number of Data Sources 1 8  64 

Number of Data Servers 1 3 3 

Total Domain Size 1283 2563 5123 

Equivalent simulation time/time-
step 

270s 736s 4224s 

Send Time 5.31s 7.03s 38.6s 

We tested the performance of our system by creating a direct 
stream of data from a running simulation to a desktop workstation 
that visualizes one time step of the data while the simulation is 
computing the next one. Table 1 shows the performance results 
obtained for three experiments conducted under realistic 
conditions.  
The Data Sources for our experiments are the compute nodes of 
JEEP [5], an ab initio molecular dynamics simulation code based 
on the plane wave method. To demonstrate the scalability of the 
system we have increased the resolution of the simulation by data 
replication. In particular, we report timings of the compute time 
of the simulation (equivalent simulation time) assuming linear 
scalability of the simulation code. Much slower running times 
would be attained if we where to increase the actual number of 
atoms being simulated. Streaming the entire electron density field 
after each time-step took the time Send Time of Table 1.   
Three experiments were conducted with 1, 8, and 64 MPI 
processes respectively.  JEEP was executed on an IBM SP system 
with four 332 MHz PowerPC 604e processors per node.  The 
Data Servers were started on an SGI workstation with 4 194 MHz 
R10000 processors and 1280MB of memory.  A rendering Data 
Client was instantiated on a desktop workstation to display the 
data received. 
The Data Sources transmitted three bytes (RGB) for each sample 
of the electron density, resulting in 384MB per time step for the 
5123 volume. The total sustained streaming throughput was 
roughly 10MB/sec on a network connection on which we could 
measure a maximum ideal bandwidth of 20MB/sec with TCP 
sockets. This indicates that the transfer times are negligible with 
respect to the simulation times. Moreover, our reordering process 
is not the bottleneck in the data streaming process and higher 
speed networks would yield better streaming performance.  
However, for improved performance on standard networks, some 
type of data compression between the Data Sources and Data 
Servers will probably be required. 

 
 

 



Figure 5 Progressive refinement (left to right) of the volume rendering of the electron density distribution. 

Figure 5 illustrates the progressive rendering of the 5123 data set. 
The total elapsed time to stream the data from the Data Server to 
the slicing client and render the image was 0.9 seconds for a 1283 
version and 1.6 seconds for a 2563 version.  Only 4.7 seconds 
were required to obtain the full 5123 resolution data. 
The progressive reordering of the data at the Data Clients 
provides additional flexibility in streaming strategy.  Interrupting 
the data stream before the entire data set is transferred results in 
an approximated representation of the data that can still be used 
for rendering. In contrast, truncating the data stream in a classical 
single resolution data stream produces a nearly useless 
incomplete data set. Therefore, our hierarchical approach 
provides the simulation code with the added capability to 
determine the maximum transfer time considered acceptable, and 
request the Data Sources to truncate the data stream when 
unacceptable delays may be introduced.  

6. CONCLUSIONS 
We have presented a distributed framework for real-time 
streaming and visualization of large datasets generated by 
scientific simulations. We used progressive rendering algorithms 
and parallel/hierarchical data streaming techniques to reduce the 
latency between the simulation and the external software 
components like visualization and analysis tools. Our simple load 
balancing system enables scalability to arbitrary simulation sizes 
without introducing additional communication cost. We have 
applied our approach to a first-principles molecular dynamics 
code and showed that our system allows a user to monitor all the 
time steps of a large simulation with negligible time overhead. 
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