
UC Davis
IDAV Publications

Title
Real-Time Monitoring of Large Scientific Simulations

Permalink
https://escholarship.org/uc/item/08c1v755

Authors
Pascucci, Valerio
Laney, Daniel E.
Frank, Randall J.
et al.

Publication Date
2003

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/08c1v755
https://escholarship.org/uc/item/08c1v755#author
https://escholarship.org
http://www.cdlib.org/

Real-Time Monitoring of Large Scientific Simulations
V. Pascucci1,2 D. E. Laney1 R. J. Frank1 G. Scorzelli3

 pascucci@llnl.gov dlaney@llnl.gov rjfrank@llnl.gov scr.giorgio@cogesic.it
 L. Linsen4 B. Hamann4 F. Gygi1

 llinsen@ucdavis.edu hamann@cs.ucdavis.edu gygi1@llnl.gov

ABSTRACT
We present a distributed framework that enables real-time
streaming and visualization of data generated by large remote
simulations. We address issues arising from distributed client-
server environments and guarantee good parallel load balancing.
We apply progressive computing techniques and parallel,
hierarchical data streaming techniques to reduce the “distance”
between the simulation hardware and the systems where the
actual visualization and analysis occur. We present a simple and
efficient load balancing method that scales to arbitrary simulation
sizes and does not introduce additional communication cost. We
demonstrate the performance of our system with a molecular
dynamics code and show its ability to allow monitoring of all the
time-steps of a large simulation with negligible time overhead.

1. INTRODUCTION
It is often the case in large high performance computing
environments that the external systems, supporting applications
such as visualization, are located remotely from the
computational host. These systems are “remote” in terms of
bandwidth and latency vs. dataset sizes. As the sizes of the
datasets increase, there is a corresponding increase in the ratio
between the compute power available to the scientific simulation
(executed on a large supercomputer) and the compute power
available to the external systems. Data transfer and conversion
become a major cause of delay, and the external systems become
increasingly “remote”. This remoteness adversely impacts the
steerability of a simulation.
Computational steering involves both inspecting and interpreting
the state of an ongoing simulation and modifying simulation
parameters. In this paper we focus on the real time assessment of
the simulation results, which entails the visualization of data.
Simulations that enable the adjustment of parameters at run time
can use this technology to achieve a full-fledged steering system.
A large number of tools and libraries for linking and steering
computational simulations have been developed over the years [7,
10]. These systems have matured into the modern problem
solving environments [9, 14, 1], which encompass the simulation
building blocks as well. In general, these systems can become
scalability bottlenecks when mapped onto large parallel and
distributed memory architectures.
We propose a real-time streaming system based on a multi-tiered
client-server architecture that enables the real-time monitoring of
large scale simulations on distributed memory architectures.
Each compute node utilizes a simple library call to stream data to
one or more layers of data servers. On the client side, these
servers are queried to obtain real-time multiresolution

visualization of the data. The streaming system has the following
properties:

Efficient. The system computes a fast permutation of the data,
resulting in a subsampling hierarchy. This permutation is
performed in-place with no expensive construction operations.
Cache Oblivious. The data layout follows the access patterns of
typical level of detail visualization algorithms and its locality is
independent of the various system cache sizes (CPU, disk, etc.).
Therefore a unique data layout facilitates high performance of the
system for different cache hierarchies.
Scalable. The system is built on the concept of stream-processors
that can be dynamically realized to optimally utilize available
computational and network resources.
Progressive. Progressive streams allow data streaming to be
dynamically tailored to available network resources and desired
visual fidelity.
The system described here addresses some fundamental issues
arising from “remote” client-server architectures and parallel load
balancing. It does so using progressive computing techniques
[15] and parallel, hierarchical data streaming techniques [16]. We
present practical results obtained by connecting our system with
JEEP, a code that computes first-principles molecular dynamics
based on the plane wave method [5]. We demonstrate our ability
to perform real-time monitoring of all the time steps of a large
scientific simulation at full resolution with negligible overhead.

2. RELATED WORK
In recent years there has been an increasing focus on data
transport schemes and mechanisms that optimize information
transformation in an attempt to decrease the “remoteness” of
external systems. In the case of time-varying volumes, novel
volume data encoding ensures timely data transport to graphics
hardware [12]. Multi-tier caching schemes, which transform and
store data for remote visualization, have been developed that
utilize lower-bandwidth graphics primitives [3]. External memory
techniques [2] allow efficient access to data that does not fit in
main memory [13, 16]. Hierarchical representations for data
transport have been proposed to reduce bandwidth requirements
[6, 11, 8, 18].

A common requirement of such schemes has been the
construction of hierarchical data structures before performing any
visualization. In a real-time streaming infrastructure, this
expensive computation stage cannot be neglected as off-line
independent preprocessing. The present work obviates the need
for such data structures by reordering the data into a subsampling
hierarchy.

1 Center for Applied Scientific Computing (CASC), LLNL
2 Corresponding Author: 925-423-9422
3 Third University of Rome
4 University of California at Davis
This work was performed under the auspices of the U.S. Department of
Energy by University of California, Lawrence Livermore National
Laboratory under Contract W-7405-Eng-48.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’03, March 1-2, 2003, Melbourne, Florida.
Copyright 2003 ACM 1-58113-624-2/03/03…$5.00.

mailto:pascucci@llnl.gov
mailto:dlaney@llnl.gov
mailto:rjfrank@llnl.gov
mailto:scr.giorgio@cogesic.it
mailto:llinsen@ucdavis.edu
mailto:hamann@cs.ucdavis.edu
mailto:gygi1@llnl.gov

3. DISTRIBUTED ARCHITECTURE
Three different types of components are used to construct the
tiered client-server streaming architecture: Data Sources, Data
Servers and Data Clients. Data Sources act as the data producers
in the system. Typically, Data Sources are nodes of a running
simulation, but the system supports alternate Data Sources, such
as remote storage or real-time experimental data streams.
Coupling to a simulation is achieved through a single function
call inserted in the simulation code. This function is typically
called after the computation of each time step. At each call, we
convert the input dataset into a progressive hierarchical data
stream and transmit the stream to a set of Data Servers.

The Data Servers constitute the central data processing
component in the system. Each Data Server component takes a
data stream as input and acts as a filtering and buffering agent. A
Data Server outputs a data stream either to another Data Server or
to a Data Client. Data Servers that perform pure data
transformations may do so directly on the stream, without
caching. Data Servers are also capable of caching data and
responding to spatially bounded queries. We focus on a specific
Data Server, which acts as a pure data storage component.
Typically, several data servers are run in parallel with the data

partitioned amongst them to take advantage of multiple
processors and parallel disk I/O subsystems.

The Data Clients act as data stream sinks. The Data Client
presented here is a visualization tool that renders textured cut
planes and performs progressive volume rendering to a local
display. A Data Client makes spatially bounded data queries to
its upstream Data Servers in response to interactive user requests.
The Data Client receives the data streams corresponding to the
samples satisfying the queries and builds a progressive data
representation. The progressive nature of the stream
representation allows it to be rendered at any time, even
asynchronously, with respect to the receipt of the incoming
stream.

Key to the scalability of the architecture is that all the system
components are realized as distributed software entities with a
fully interconnected communication infrastructure between each
component. A major challenge in this type of architecture is to
ensure load balancing throughout the entire system while
maintaining scalability of the global communication. The format
of the data stream itself addresses this problem. Implicit in the
data ordering of the stream is the parallel distribution logic,
which allows for asynchronous load balancing without global
communication.

4. CACHE-OBLIVIOUS STREAMING
Consider a rectilinear grid G of size 2gx2gx2g. We turn G into a
hierarchy by a reordering of its vertices based on the recursive
definition of the 3D Z-order space-filling curve (see [17]). In
particular, the nodes at resolution l are the nodes of the grid that
are interpolated by the Z-order space-filling curve of resolution l
but that are not interpolated by the Z-order curve at resolution l-1.
Figure 1 shows this construction for the 2D case. At each level
the space filling curve is alternately refined along the x and y
axes. Figure 1(a) shows level 0, which is just a (dark gray)
vertex. Figure 1(b) shows level 1, which is the new vertex
marked in dark gray (the vertex at the previous level is light
gray). At each level the number of new vertices introduced is
equal to the total number of vertices in all the previous levels of
resolution. This data layout is called “cache oblivious” since the
locality of the mapping is independent of the block size used to
partition the 1D array.

Coarser data New level data

(a) (b) (c)

(d) (e) (f)

The conversion from the standard (i,j,k) index of a row major
array order is performed in three simple steps as shown in [16].
First, the bits of the binary representation of i, j and k are
interleaved to form the standard Z-order index IG’. This
transformation is denoted IG’=Z(i,j,k). Next, a sequence of right
shifts is used to transform IG’ into the final hierarchical index IG.
This transformation is denoted IG=S(23g+IG’), where 3g is the
total number of bits used by (i,j,k). Overall, we have

)),,(2(3 kjiZSI g
G += . (1)

Unfortunately, while the mapping from (i,j,k) to IG is very
efficient, the inverse mapping from IG to (i,j,k) is slow and cannot
be used directly in the inner loops of a computation.
Consequently, the preprocessing that reorders the data can
introduce significant delays before one can access the data
efficiently. In the next section, we show how to overcome this
problem and allow direct streaming of the data while hiding the
preprocessing stage in the data transmission stage.

Figure 1: Sequence of levels of resolution of the
hierarchical version of the Z-order space-filling curve. In
each image fine black points in the background represent
the fine resolution data. The dark gray points represent the
new samples introduced at the current level of resolution.
The light gray points mark the samples introduced in the
previous levels of resolution.

4.1 Streaming with embedded reordering
One main advantage of the approach proposed in [16] is that the
data preprocessing is reduced to computing a permutation of the
storage order. While this fact provides orders of magnitude of
improvement with respect to previous methods, it would
introduce a significant delay in the data servers since they would
need to store a temporary copy of the data and then perform a
redistribution of the data based on the new index.
The entire dataset G is partitioned into equal bricks B1…Bm.
Each brick is a grid of 2bx2bx2b vertices and is associated with
one Data Source. Our strategy in reordering the data is to create
direct connections between each Data Source and every Data

Server as shown in Figure 2. Conceptually, each Data Source
loops through all the data in the order imposed by the index IG
and determines for each vertex (i) which data server must receive
its value and (ii) the (i,j,k) index of the vertex to be sent (if stored
locally).
In general, the vertex of hierarchical index IG is stored in the
block IG/d, where d is the size of the data blocks in the Data
Servers. Moreover, we assume that the Data Server storing such a
block has the index

mod ,GI n
d

 (2)

where n is the number of Data Servers available. We discuss in
the following section how to select a value of n that yields good
load balancing in the data visualization stage. Two fundamental
efficiency issues arise from a direct implementation of this
scheme:
(i) Performing a loop based on the index IG on each Data Source
induces large delays since it requires enumerating all the vertices
of G instead of only those of the local brick of data B.
(ii) The computation of the inverse mapping IG→ (i,j,k) is slow
and its evaluation for each vertex, even if only those in B, induces
additional delays.
To overcome these problems we take advantage of two
fundamental properties of the index IG, derived from the recursive
structure of the Z-order curve:

Property 1. The traversal order of the vertices in a brick B,
induced by the index IG, and computed with respect to the global
grid G, is the same traversal order induced by the hierarchical
index IB, computed locally with respect to B.
Property 2. The traversal of the elements at level l of the
hierarchical index IG is equivalent to a regular (non hierarchical)
Z-order traversal with indices (i,j,k) having l-1 bits total.
Property 1 is explained by the fact that any Z-order curve built on
G and restricted to B is equivalent to a Z-order built directly on
B. Property 2 is illustrated in Figure 1, where the light gray
vertices of level l are identical to the translation (along x and y

alternatively) of the regular Z-order curve containing the dark
gray vertices (those of levels up to l-1).

FS2

FS3

Data Source 1
(brick B1)

Data Source 2
(brick B2)

Data Source m
(brick B m)

Data Server 1

Data Server 2

Data Server 3

Data Server n

Figure 2 : Direct socket connections used to stream
data from each Data Source to every Data Server.

Property 1 allows each Data Source to loop through the data
using the local IB index. This means that we need to compute the
mapping IB→ IG. This mapping can be computed efficiently using
the indices (ib,jb,kb) of the brick B within G. Note that ib,jb, and kb
have g-b bits each. To perform this transformation we take into
account the level of resolution l of the vertex with respect to the
index IB. In particular, a vertex has level l if its index IB satisfies
the following inequality:

12 2l l
BI− .≤ <

We assume, by convention, that 2-1=0. The first level l=0 has
only the vertex with IB=0. The global index for this vertex is
analogous to expression (1):

3()(2 (, ,))g b
G b b bI S Z i j−= + k

)b b

The second level l=1 has only one vertex with IB=1. The global
index for this vertex is

3()2 (, ,g b
G bI Z i j k−= +

For the following levels, the mapping is
3() 1 1(2 (, ,))2 (2)g b l l

G b b b BI Z i j k I− − −= + + −

Note that all the additions are between addresses that do not share
common bits set to 1. Therefore they can be implemented as
bitwise-OR operators. Similarly, the subtraction simply resets to
0 a bit that was set to 1.

I B

I 1

1

Z(i
b
,j

b
,k

b
)

x x x x x x x x x x x x xx

x x x x x x x x x x x x xx

y y y y y y

y y y y y y

Figure 3: Mapping from the local index I B to the global
index IG . The local brick has array index (i b ,j b ,k b).

The diagram in Figure 3 shows the bitwise representation of this
mapping from IB to IG. The fast evaluation of this mapping allows
us to loop only through the data in B instead of the entire grid.
The problem remains that the mapping from IB→ (ib,jb,kb) is a
slow operation. We optimize the loop based on IB using property
2. At level l we use three auxiliary variables (x,y,z) that we
increment, via a lookup table, following the regular Z-order for a
grid of total size 2 1l− . The auxiliary variables (x,y,z) allow
building the index (ib,jb,kb) using these three rules, where h=l-1:

mod 3h bi bj bk

0 12 2h hx −+ 2hy 2hz

1 12hz − 12 2h hx −+ 2hy

2 12hy − 12hz − 12 2h hx −+

Again, these are simple shift operations with an eventual or
operator to set an additional bit.

In our implementation, we attained one order of magnitude
speedup with the use of these expressions. On a brick of size 5123
a loop through the data in IB order with explicit computation of
the inverse mapping IB→ (ib,jb,kb) requires 67.7 seconds while the
same loop with computation of (ib,jb,kb) without explicit inverse
mapping requires 5.5 seconds. Since the computation of one time
step of the simulation typically takes a few minutes, we are able
to maintain the time overhead at a level that does not appreciably
affect the performance of the simulation

4.2 Data Server load balancing
We take a load balancing approach based on static data
distribution [4, 19] where there is no data replication and no
contention on a centralized agent that distributes tasks. The major
challenge is to find a deterministic way to distribute data in a way
that guarantees good load balancing for any request within a
given set of queries. In [4] there is a study on how to load balance
the iso-contouring query for any valid iso-value. Random data
distribution [19] has the advantage of not being specialized for
any particular query. For direct computation of iso-surfaces this
approach works properly but for our type of spatial queries this
approach would require large tables that track the actual locations
of data elements.
As discussed in the previous section, we use expression (2) to
determine the index of the Data Server that stores a given block
of data. This technique allows us to distribute the data evenly
across the Data Servers and achieves load balancing in the
streaming from the Data Sources to the Data Servers.
Unfortunately, this method does not guarantee load balancing in
the real-time data access, when the Data Clients perform spatial
queries (for example for visualization purposes). We have tested
experimentally a large set of spatial queries to determine the load
balancing achieved in practice.
Figure 4 summarizes the results of our experiments. As expected,
the number of Data Servers has a major impact on the load
balancing of the system. Even numbers of Data Servers seem to
yield poor load balancing, with peaks denoting unbalanced
distributions for multiples of 8 (in 2D this would be multiples of
4). This result seems to be due to the nature of the hierarchical

indexing scheme that is based on sequences of shift operations,
which are equivalent to multiplications by powers of 2.
Interestingly, this bias remains even if we can deal with
parallelepiped datasets of any aspect ratio using partially empty
blocks whose overhead is removed by compression or their
complete removal in the case of empty blocks. Symmetrically,
most of the odd numbers of Data Servers yield a good load
balancing. Most of the prime numbers yield a nearly ideal load
balancing, as we would expect, but there is an exception to this
rule. In practice, we select a target range of Data Servers using
the chart in Figure 8 to select the candidate that would provide
the best balancing.

4

3

2

1

5. EXPERIMENTAL RESULTS 0
0 10 20 30 40 50 60 70 80 90 100

Table 1: System performance for the real-time streaming of
the electron density distribution from JEEP Data Servers. Figure 4. Load Balancing attained for repeated spatial queries

with a different number of Data Servers. Each point in the
chart plots the ration of the maximum load attained by any
Data Server (that is the Data Server that finishes last) divided
by the ideal load of the perfectly balanced execution. Smaller
ratios mean better load balancing, with a minimum ratio of
one.

Number of Data Sources 1 8 64

Number of Data Servers 1 3 3

Total Domain Size 1283 2563 5123

Equivalent simulation time/time-
step

270s 736s 4224s

Send Time 5.31s 7.03s 38.6s

We tested the performance of our system by creating a direct
stream of data from a running simulation to a desktop workstation
that visualizes one time step of the data while the simulation is
computing the next one. Table 1 shows the performance results
obtained for three experiments conducted under realistic
conditions.
The Data Sources for our experiments are the compute nodes of
JEEP [5], an ab initio molecular dynamics simulation code based
on the plane wave method. To demonstrate the scalability of the
system we have increased the resolution of the simulation by data
replication. In particular, we report timings of the compute time
of the simulation (equivalent simulation time) assuming linear
scalability of the simulation code. Much slower running times
would be attained if we where to increase the actual number of
atoms being simulated. Streaming the entire electron density field
after each time-step took the time Send Time of Table 1.
Three experiments were conducted with 1, 8, and 64 MPI
processes respectively. JEEP was executed on an IBM SP system
with four 332 MHz PowerPC 604e processors per node. The
Data Servers were started on an SGI workstation with 4 194 MHz
R10000 processors and 1280MB of memory. A rendering Data
Client was instantiated on a desktop workstation to display the
data received.
The Data Sources transmitted three bytes (RGB) for each sample
of the electron density, resulting in 384MB per time step for the
5123 volume. The total sustained streaming throughput was
roughly 10MB/sec on a network connection on which we could
measure a maximum ideal bandwidth of 20MB/sec with TCP
sockets. This indicates that the transfer times are negligible with
respect to the simulation times. Moreover, our reordering process
is not the bottleneck in the data streaming process and higher
speed networks would yield better streaming performance.
However, for improved performance on standard networks, some
type of data compression between the Data Sources and Data
Servers will probably be required.

Figure 5 Progressive refinement (left to right) of the volume rendering of the electron density distribution.

Figure 5 illustrates the progressive rendering of the 5123 data set.
The total elapsed time to stream the data from the Data Server to
the slicing client and render the image was 0.9 seconds for a 1283
version and 1.6 seconds for a 2563 version. Only 4.7 seconds
were required to obtain the full 5123 resolution data.
The progressive reordering of the data at the Data Clients
provides additional flexibility in streaming strategy. Interrupting
the data stream before the entire data set is transferred results in
an approximated representation of the data that can still be used
for rendering. In contrast, truncating the data stream in a classical
single resolution data stream produces a nearly useless
incomplete data set. Therefore, our hierarchical approach
provides the simulation code with the added capability to
determine the maximum transfer time considered acceptable, and
request the Data Sources to truncate the data stream when
unacceptable delays may be introduced.

6. CONCLUSIONS
We have presented a distributed framework for real-time
streaming and visualization of large datasets generated by
scientific simulations. We used progressive rendering algorithms
and parallel/hierarchical data streaming techniques to reduce the
latency between the simulation and the external software
components like visualization and analysis tools. Our simple load
balancing system enables scalability to arbitrary simulation sizes
without introducing additional communication cost. We have
applied our approach to a first-principles molecular dynamics
code and showed that our system allows a user to monitor all the
time steps of a large simulation with negligible time overhead.

7. REFERENCES
[1] G. Allen, W. Benger, T. Goodale, H.-C. Hege, G. Lanfermann, A.
Merzky, T. Radke, E. Seidel and J. Shalf, “The Cactus Code:A Problem
Solving Environment for the Grid”, Proceedings of the Ninth IEEE
International Symposium on High Performance Distributed Computing
(HPDC9), Pittsburg, 2000.
[2] Abello, J., and Vitter, J.S., (eds.). External Memory Algorithms and
Visualization. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society Press, Providence, RI,
1999.
[3] W. Bethel, “Visualization Dot Com”, IEEE Computer Graphics and
Applications, May/June 2000.
[4] C. Bajaj, V. Pascucci, D.Thompson, X.Y. Zhang Parallel “Accelerated
Isocontouring for Out-Of-Core Visualization”, In Proceedings of IEEE
Parallel Visualization and Graphics Symposium, October 24-29,1999 San
Francisco, CA, pp. 97 – 104

[5] J.L.Fattebert, and F. Gygi, "Density Functional Theory for Efficient
Ab Initio Molecular Dynamics Simulations in Solution," J. Comput.
Chem., in press (2002). Also available as Lawrence Livermore National
Laboratory technical report UCRL-JC-143326, April 2001.
[6] R. Grosso, T. Ertl, J. Aschoff “Efficient Data Structures for Volume
Rendering of Wavelet-Compressed Data”, WSCG '96 - The Fourth
International Conference in Central Europe on Computer Graphics and
Visualization.
[7] B. Haimes, “pV3: A Distributed System for Large-Scale Unsteady
CFD Visualization.” AIAA Paper 94-0321, Reno NV, Jan. 1994.
[8] I. Ihm, S. Park, "Wavelet-based 3D compression scheme for very large
volume data", In Proceedings of Graphics Interface '98, pages 107-116,
Vancouver, June 1998.
[9] C. Johnson, S. Parker, and D. Weinstein “Large-scale Computational
Science Applications using the SCIRun Problem Solving Environment”,
Supercomputer 2000.
[10] J.A. Kohl and P.M. Papadopulos. “A library for visualization and
steering of distributed simulations using PVM and AVS.” In V. Van
Dongen, editor, Proceedings of the High Performance Computing
Symposium, Montreal, Canada, pages 243–254, 1995.
[11] E.C. LaMar, B. Hamann, K. Joy, “Multiresolution Techniques for
Interactive Texture-Based Volume Visualization” Proceeding of
Visualization 1999.
[12] E. Lum, K.L. Ma, J. Clyne, J., "Texture Hardware Assisted
Rendering of Time-Varying Volume Data," Proceedings of IEEE
Visualization 2001 Conference, October 21-26, 2001.
[13] P. Lindstrom, and C.T. Silva A Memory Insensitive Technique for
Large Model Simplification. IEEE Visualization 2001 Proceedings, pp.
121-126, 550, October 2001.
[14] M. Miller, C.D. Hansen, S.G. Parker, and C.R. Johnson. “Simulation
Steering with SCIRun in a distributed memory environment.” Seventh
IEEE International Symposium on High Performance Distributed
Computing (HPDC-7), July, 1998.
[15] V.Pascucci and C.Bajaj, “Time Critical Adaptive Refinement and
Smoothing” Proceedings of the ACM/IEEE Volume Visualization and
Graphics Symposium 2000, Salt lake City, Utah, pg 33- 42.
[16] V. Pascucci and R.J.Frank “Global Static Indexing for Real-time
Exploration of Very Large Regular Grids”. In proceeding of 14th Annual
Supercomputing conference, November 10-16, 2001, Denver, Co. On-line
proceedings http://www.sc2001.org/techpaper.shtml
[17] Sagan, H., Space-Filling Curves. Springer-Verlag, New York, NY,
1994.
[18] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, T. Ertl,
“Level-Of-Detail Volume Rendering via 3D Textures” IEEE Symposium
on Volume Visualization '00.
[19] X. Zhang, C. Bajaj, and V. Ramachandran. “Parallel and Out-of-core
View-dependent Isocontour Visualization Using Random Data
Distribution”. To appear in Joint Eurographics-IEEE TCVG Symposium
on Visualization 2002

http://raphael.mit.edu/pv3/reno94.ps
http://raphael.mit.edu/pv3/reno94.ps
http://www.supercomp.de/
http://vis.computer.org/vis01
http://www.mcs.anl.gov/hpdc7/
http://www.mcs.anl.gov/hpdc7/
http://www.mcs.anl.gov/hpdc7/
http://www.sc2001.org/techpaper.shtml
http://www.vis.rwth-aachen.de/Research/VOLVIS00.pdf

	INTRODUCTION
	RELATED WORK
	DISTRIBUTED ARCHITECTURE
	CACHE-OBLIVIOUS STREAMING
	Streaming with embedded reordering
	Data Server load balancing

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES

