
Integrated Querying of XML Data in RDBMSs

Albrecht Schmidt Stefan Manegold Martin Kersten
CWI Amsterdam
P.O. Box 94079

1090 GB Amsterdam
The Netherlands

first.last@cwi.nl

ABSTRACT
This paper proposes a way to integrate cleanly relational
databases and XML documents. The main idea is to draw a
clear line of demarcation between the two concepts by mod-
elling XML documents as a new atomic SQL type. The
standardised XML tools like XPath, XQuery, XSLT are
then user-defined functions that operate on this type. Well-
defined interoperability is guaranteed by, on the one hand,
defining a standard way to markup SQL relations as XML
documents and, thus, to make them accessible to the XML
tools; on the other hand, XPath and XQuery queries run
against the XML portion of the database can use the same
predefined schema to make their results accessible to the
SQL language for further processing. Additionally, a method
for set-oriented evaluation of regular path expressions is pre-
sented that integrates into our implementation framework.

Keywords
XML, Database, Data Integration, Query Optimisation

1. INTRODUCTION
So far, a plethora of work on storing and querying XML
documents in relational, object-relational, object-oriented
or special-purpose native XML databases has become avail-
able (see, e.g., [7, 10, 15, 16]). Most of these proposals
focus on the technical or implementation aspects of queries
and tend to neglect the modelling and software-engineering
aspects. The contribution of this paper is to build on al-
ready known physical XML-to-relational mappings and to
propose a sound model of XML databases so that essential
database design principles are adhered to. We introduce
a perspective of XML documents that allows for the co-
existence with relational tables in the same database with-
out violating the data independence principle, which is of-
ten a point of concern in the previous work cited above.
The main idea to achieve this is to draw a strict line of
demarcation between the XML and the SQL world and by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. SAC 2003, Melbourne, Florida, USAc©2003
ACM 1-58113-624-2/03/03...$5.00

allowing data interchange between them only through well-
defined interfaces. From a SQL point of view, the XML
documents in the database are all instances of an atomic
datatype XML document ; the inner structure of XML val-
ues is accessed and queried through user-defined functions
which implement the XPath and XQuery specifications. To
extract SQL tables from XML documents through XPath
or XQuery, queries have to return results that adhere to an
XML Schema [17] that is supplied by the DBMS and also
make use of a special namespace; if these rules are obeyed,
then the results are automatically made available as SQL
tables or SQL views without any further user interaction.
In the reverse direction, to access SQL tables from XQuery,
we use a standard publishing technique from the literature
[14]. In fact, for reasons of simplicity, transparency and effi-
ciency, we require that the schema of published relations in
XML is the same as that of the extracted XML data men-
tioned above. Should users desire data to be in a different
format, they can use (indexed) view mechanisms to derive
and use differently structured data.

Once the authors of this paper embarked on the approach
of clear separation just described, the next question was
how to make best use of the SQL-based infrastructure that
was already in place like the query optimiser and query ex-
ecution engine; building on them would be preferable to
having to implement facilities for XPath and XQuery pro-
cessing from scratch, having to make fundamental modifica-
tions to the SQL engine or duplicating functionality. These
approaches would be objectionable from a software engi-
neering and manpower point of view. While implementing
these ideas, it turned out that one of the greatest tech-
nical challenges was the presence of wildcards in path ex-
pressions. We propose to tackle it with so-called path sum-
maries, i.e., structural summary information that we gather
while shredding documents when we bulkload them into the
database [12]. This technique can enable large scale process-
ing in many practically interesting cases.

The rest of this paper is structured as follows: After review-
ing some related work, we present a system architecture that
implements our proposal. We then embark on outlining how
we can make use of the SQL engine to query XML docu-
ments without implementing a dedicated XQuery processor
from scratch; special emphasis is laid on the evaluation of
regular path expressions. Finally, we conclude with a sum-
mary and an outlook on future work.

SQL Schema

publish relations as XML

extract structure with XQuery/XPath

URI−document pairs

XML Schema

XQuerySQL

Figure 1: System architecture

2. RELATED WORK
From the plethora of XML research literature, the works on
publishing SQL tables as XML documents [8, 14] are of par-
ticular relevance in our context, since they provide the basis
for accessing SQL relations from XPath and XQuery. On the
other hand, to query XML documents with a SQL optimiser
and engine, we use the storage schema presented in [13].
The technique to eliminate path expressions is akin to the
‘path expansion’ technique for graph databases as deployed
in Lore [11]; however, our technique is XML-specific, allows
complete compile-time optimisation and does not require
fixed-point calculations. Although we make use of previous
work, the approach presented in this paper is geared to-
wards removing implicit constraints inherent in many tech-
niques that use relational technology to store and query
XML and that often violate physical data independence
principle. In [9], the authors present a general method to
represent relational tables as XML documents; in the sequel,
we assume that our system implements an approach such as
this one.

3. SYSTEM ARCHITECTURE
Figure 1 sketches the architecture of our system. First we
focus on the XML part on the right side of the figure. From
a user’s point of view, XML documents are stored as pairs
of Uniform Resource Identifiers (URIs) and black-box XML
documents, which may only be accessed through XPath and
XQuery but not SQL. Internally, the documents are stored
in a shredded schema that allows fast associative access with
the relational algebra of the SQL engine; to achieve this we
chose to implement the approach of [13]. Additionally, the
native SQL tables on the left side of the figure are exported
as XML views and may be queried in XPath and XQuery
just like the XML documents on the right side. Details of
the approach are described in the next section.

The left half of the figure is the SQL universe with its
relational tables, views, triggers etc. that can be used as
usual. In addition to that, the URI-document table can be
queried with user-defined functions that implement XQuery
and XPath: selections on the URI column identify tuples
of interest to which expressions in XML query languages
are applied. Should the user want to query the results in
SQL, then the thus extracted information must adhere to a

att1 att2 att3 att4

Relation1

val1 val2 val3 val4

val5 val6 val7 val8

...

<?xml version=’1.0’>
 <relation name=’Relation1’>
 <tuple>

 </tuple>
 </relation>

mapping
 <att name=’att1’> val1 </att>
 <att name=’att2’> val2 </att>

Figure 2: Translation between SQL tables and XML
documents

set of associations
(oid,oid)

set of associations
(oid,string)

result document

markup engine

query engine

Figure 3: Data Flow in Query Processing

predefined schema which enables automatic conversion into
SQL tables. The translation process is illustrated in Fig-
ure 2. Note that the translation process places restrictions
on the document structure which we found useful to guar-
antee something like a 1 : 1 mapping; it turned out that a
true bijective (1 : 1) mapping is not achievable due to nu-
merous incompatibilities between relations and XML docu-
ments. We do not have the space to enumerate and discuss
them in detail but they range from whitespace handling and
font encodings to attribute naming conventions. In practise,
the most promising approach seemed to be to introduce re-
strictions that should help avoid problematic cases before
they can occur. Efforts like Canonical XML [4] should be a
good starting point for future research. For our purposes, it
should be sufficient to assume that the system implements
a method to map relations to XML documents as the ar-
rows in Figure2 indicate; such a method is presented, for
example, in [9].

Note that, from the SQL side, the XML documents them-
selves are only identifiable through their URI. This is reason-
able for two basic reasons: (1) Since XQuery [6] is document-
oriented – XQueries are constructed with blocks of FLWR
expressions of the form FOR $x IN document(‘‘foo.xml’’)

etc. – and not document collection-oriented, this choice of
representation captures the semantics of XQuery. The logi-
cal scheme of an XQuery processor is depicted in Figure 3.

(2) To be able to enforce the semantic and modelling in-
tegrity of the XML documents independently of the physi-
cal representation used in the storage engine, the documents
need to be black boxes from a SQL point of view. In a later
section, we briefly mention some implementation techniques
we used to enforce the strict separation of the SQL and the
XML part.

4. QUERY ALGEBRA
In this section, we discuss how documents stored in the XML
part of the database can be queried with the relational alge-
bra such as presented in [1] and be accessed with the machin-
ery that the underlying storage engine provides [3]. Basic
queries, i.e., queries without wildcards in path expression,
can be expressed by assigning the usual SQL bag semantics
to the tables in which XML documents are stored and that
were generated by the XML bulkload scheme procedure de-
scribed in [12]. Unfortunately, the probably most salient
feature of XML query languages, regular path expressions
with wildcards, is not expressible this way. To overcome
this lack of expressiveness of the underlying algebra, we
now introduce a preprocessing technique which translates
regular path expressions containing wildcards into the plain
relation algebra given a structural summary of a database
instance that was generated while the document was bulk-
loaded into the database. This approach enables the use
of existing query optimisers and execution engines on XML
queries without extensions or modifications. Note that by
building on the relational algebra, we primarily aim at bulk
retrieval; other types of queries are supported as well but
maybe not executed as efficiently as bulk queries. A further
design advantage we would like to mention is that we inherit
the simplicity and minimality of the relational algebra along
with its rule set for query transformation and optimisation.

4.1 Features of XML Query Languages
Although this paper is not the place to discuss the require-
ments and features of XML query languages in detail, it
is still useful to look at what makes them different from
SQL [2], which is the standard interface to query processors
based on the relational algebra and the basis for our imple-
mentation. Then we analyse the requirements to identify
how the algebra we present can be extended to act as a fully
functional low-level implementation language for XQuery
and XPath.

In [5], the authors define some general requirements of XML
query languages. These requirements reflect the tendency to
extend the role of query languages beyond what they have
been in past settings. For example, relational databases are
queried through SQL or Query By Example (QBE) inter-
faces, both of which are made for human users. The role of
XML as a machine-readable data interchange format also ne-
cessitates a machine-readable version of the query language.
Therefore, it makes sense to define more than one syntax for
the logical query model to support both machine-readable
and human-readable formats. Furthermore, to deserve the
designation query language an XML query language has to
be declarative; this means that it should describe queries
on the logical level rather than by algebraically enforcing a
particular strategy of evaluating the query.

On the technical level, a query language should be indepen-

dent of protocols so that queries do not depend on the phys-
ical infrastructure of the World Wide Web or the database
server. Since so much effort has been made to provide
and standardise lowest common denominators like URIs, on
which XML and its infrastructure depend, it is not desirable
for the query language to depend on more than these lowest
common denominators.

As one important use of query languages is the role of em-
bedded languages in program code, an XML query language
should provide a set of standard error conditions like excep-
tions to signal to the host application that expressions can-
not be processed. This could be due to syntactical or logical
errors in the expression or the unavailability or failure of
external resources such as network or external functions.

Additionally, an XML query language should be extensi-
ble in the sense that it is open for additional functional-
ity that goes beyond querying. Updates and transactions
are critical for many applications but still not part of any
standard. Since some XML data models can define infinite
document instances, fixed point computations are useful for
these cases; however a query language is only required to be
defined for finite instances.

Although XQuery appears to be the current frame of refer-
ence in XML querying, a number of alternative approaches
are available and may catch on in the future. Therefore,
we do not pretend to present an algebra that implements
all the features of XQuery but that rather can serve as a
basis for an implementation of XQuery. So we try to focus
on the features that separate XML query languages from
relational query languages and show how to implement the
former with a basic relational algebra and the additional
information provided by our physical XML mapping. This
means that the algebra which we present in the next subsec-
tion has two important properties: First, it is closed under
composition, i.e., the result of a sub-query can be bound to
a variable in the enclosing query. Second, it is set-oriented,
i.e., it aims at processing of large data volumes.

The reader can easily verify that, despite these impedance
mismatches, a SQL engine provides the functionality that is
necessary to implement the features that were discussed in
the previous paragraphs.

4.2 Example Database
We use the XML document displayed in Figure 4 as an ex-
ample to illustrate the concepts we explain in the following
subsections. The document is one example from a whole
series of analyses done in the context of multimedia feature
detection. They describe images and are output in XML
format by programs called ‘detectors’ that extract features
from raw image data.

Figure 5 displays the schema tree as maintained by the
database engine [12]. In the sequel, it is useful to keep this
tree in mind as the query rewriting ideas follow naturally
from the tree shape of the schema tree. In our XML map-
ping all relations Ri are binary and contain the parent-child
or node-attribute relationships in the XML syntax tree of
the document.

<image key="18934" source="/cdrom/images1/23493.jpeg">

<date> 999010530 </date>

<colours>

<histogram> 0.399 0.277 0.344 </histogram>

<saturation> 0.390 </saturation>

<version> 0.8 </version>

</colours>

</image>

Figure 4: Example document

image

colorsdate

histogram saturation

PCDATA PCDATA

PCDATA

key
source

version

PCDATA

All Documents

R1

R4

R2
R3

R5

R6

R7

R8

R9

R10

R11

R12

R1:
R2:

/image
/image[key] R4:

R3: /image[source]
/image/date

R5: /image/date/PCDATA
...

Figure 5: Schema tree of example document

4.3 Overview of the Query Algebra
This subsection gives an overview of the query algebra by
outlining its syntax. Figure 6 presents a listing of the gram-
mar productions. The algebra is a simple extension of basic
relational algebras [1] with function application, intersection
and path expressions.

expr → (expr)
| pathexpr (expr)
| σp(expr)
| πA(expr)
| expr ∪ expr
| expr ∩ expr
| expr ./p expr
| mapf (expr)

pathexpr → step? tag? (step tag) ∗ attr?
step → / | //
attr → [tag]

Figure 6: Operators of the algebra

The semantics of most of the operations are standard and
straight-forward. Like in many algebras in the database
world, the functions are either singleton or binary. The se-
lection operator σp(R) filters out those tuples in a relation R
for which the predicate p does not hold. The projection op-
erator πA(R) only keeps the attributes contained in the set A
from the tuples in the relation R. The binary operators ∪,∩
and ./p are the well-known union, intersection and equi-join

operators, where p again is a predicate; mapf (R) applies the
side-effect free function f to all tuples in R. It will mainly
be used to convert tuples to XML notation and to cast the
type of attributes. The salient feature of the algebra is the
production pathexpr , which can be interpreted as follows:
while the other operators work in the document tree in a
horizontal manner, path expressions help to query the tree
vertically, i.e., along the tag hierarchies. Note that the set
of operations we presented is not minimal. This means that
it is possible to express certain operators by combinations of
other operators. Also note that the algebra does not allow
expressions to be substituted by database relations; this is
done automatically by the query compiler. The only way to
navigate through the hierarchies of documents is by means
of path expressions.

Example. Consider the example document of the previous
section in Figure 4, whose schema tree is displayed in Figure
5. Suppose we want to extract all histograms and the key
of the corresponding image. The following expression could
be used to do just that (since all relations are binary we use
hd to denote the first component – the head – of the binary
tuple and tl to denote the second component – the tail):

image([key] ./hd=hd (colour/histogram/cdata[string]))

This translates to the plain algebra in a straightforward
manner:

R1 ./tl=hd (R2 ./hd=hd (R6 ./tl=hd R7 ./tl=hd R8))

The structure of the plain algebra expression resembles that
of the original query. For orientation, note the following way
of reading the original query: In the database, navigate to all
nodes which carry an image tag. Then join the key attribute
with the string found at the end of the paths along the tags
colour and histogram. Also note, that, in this case, all head-
head and head-tail correspondences in joins happen to be
1 : 1 relationships. We only need two different kinds of join
attributes in the query. If we follow a hierarchical path, we
join parent-child relations on the OIDs (object identifiers)
that refer to each other, this is denoted by ./tl=hd following
Monet speak [3]. If we want to combine objects with a
common ancestor we use the join ./hd=hd to compute the
intersection with respect to the head elements.

We now turn our attention to regular path expressions and
how they can be replaced with operators from the plain re-
lational algebra.

algebraised query preprocessing optimisation

execution

Figure 7: Phases of query compilation

4.4 Compilation of Regular Path Expressions
While Regular Path Expressions (RPEs) are one of the most
powerful features of XML query languages, there is still re-
search going on how to evaluate them efficiently in general
settings. We now present a two-step evaluation scheme that
(1) enables efficient execution of a restricted class of RPEs
in the relational algebra and (2) opens up this class of RPEs
to query optimisation.

Once a query front-end produces an algebraised version of
the input query for example from an XQuery input, query
execution consists of the steps outlined in Figure 7: dur-
ing preprocessing all wildcards in regular path expressions
are eliminated and replaced with join and union operations;
the query can then be handed on to the conventional SQL
query optimiser and execution engine. In the preprocessing
step, we eliminate wildcards in regular path expressions by
keeping track of the current context of a query node and re-
placing a wildcard with the paths that match the wildcard
in the current context. The following algorithm eliminates
all wildcards in path expressions from the input tree:

procedure eliminate (context c, expr e) : expr
if e is pathexpr then

replace e with union of all matching relations in c
new context cn is union of c and expanded e

else
the new context cn is concatenation of c and e

endif
∀child ec of e : eliminate(cn, ec)

end

Figure 8: Algorithm to eliminate regular path ex-
pressions schematically

Example. This example query is an extension of the
previous one. Now we are not only interested in the colour
histogram but also in all string data below the colour node:

image([key] ./hd=hd (colour//cdata[string]))

Using the algorithm in Figure 8, this translates to:

R1 ./tl=hd (R2 ./hd=hd (R6 ./tl=hd R7 ./tl=hd R8

∪R6 ./tl=hd R9 ./tl=hd R10

∪R6 ./tl=hd R11 ./tl=hd R12))

Following the previous example, the regular path expression
colour//cdata[string] expands to the three paths

1. colour/histogram/cdata[string],

2. colour/saturation/cdata[string], and

3. colour/version/cdata[string].

FOR/LET Clauses

RETURN Clause

WHERE Clause

Ordered list of tuples
of bound variables

Pruned list of tuples
of bound variables

Instance of XML
Query data model

Figure 9: Data flow in XQuery

Note that once one wildcard in an RPE evaluates to more
than one path, all its child-wildcards in the RPE possibly
also evaluate to more than one path.

During the translation, new union statements are only in-
troduced if not all paths are fully specified or otherwise non-
unique. After the elimination of the wildcards, the query is
optimised for efficient execution. Since our extended rela-
tional algebra is compiled to a plain relational algebra, rela-
tional optimisation techniques can be applied and the query
is handed on to the SQL optimiser. Note also that the pres-
ence of path expressions makes query optimisation feasible
for a larger class of queries than a plain translation of path
expressions into joins, which would be functionally equiva-
lent. This is because large numbers of joins tend to enlarge
the number of optimisation and reordering opportunities be-
yond what current optimisers are capable of handling.

Figure 9 shows the data flow in an XQuery processor as an-
ticipated by the designers of the language. In such an engine,
path expressions come in two flavours: just as we found it
useful to introduce strong and weak associations [13] to cap-
ture the semistructured nature of XML data, we also distin-
guish between strong and weak path expressions. Whereas
strong path expressions are evaluated with join semantics,
weak path expressions bear outer join semantics. For the
purpose of this algebra, path expressions in the first phase
of query execution, i.e., the evaluation of FOR and LET
clauses, are all strong, whereas those in the second part,
i.e., the RETURN clause, are all weak. Note that this re-
striction does not reduce the expressiveness of the algebra.

4.5 Some Implementation Issues
As we mentioned before, from a conceptual point of view,
the only entry point to the XML documents in the database
is the URI key of the binary relation. This means that
there is exactly one document root that corresponds to this
URI. To guarantee that the database obeys to this integrity
constraint, we use the SQL mechanism of triggers to guar-
antee integrity of shredded data. When update operations

are applied to the documents, it is, for example, necessary
to enforce the following constraint: for each node that is
deleted, the rules defined by the triggers must make sure
that the corresponding sub-trees are deleted as well.

To guarantee the strict division between the SQL and the
XML world on the one hand, but to still be able to use the
same query processor for querying both on the other hand,
we make sure that the relations in the database, which are
either native SQL tables or XML indexes but never both,
belong to different namespaces. Thus SQL tables cannot be
accessed with XPath or XQuery expression and, vice versa,
the internal structure of XML document cannot be accessed
with pure SQL. If the database engine does not support
namespaces the same effect can be achieved, for example,
by either prefixing relation names with appropriate distin-
guishing strings or by putting them in different databases
altogether, if this is supported. A final decision depends on
the architecture of the underlying engine.

Of course, there still remains the issue how derived data
in indexed views can be kept up to date efficiently; in the
scheme we presented triggers do not work well across the
SQL/XML boundary. Currently we consider this a research
issue and future work.

5. CONCLUSION
We presented a method to integrate SQL tables and XML
documents in the same database engine. The focal features
of our proposal are that (1) it is logically sound, (2) it can
be implemented with reasonable effort by building on ex-
isting SQL optimisers and execution engines, and, (3) that
it is conceptually simple. From a SQL point of view, the
main idea to achieve this was to model XML documents
as a separate user-defined type with user-defined functions
implementing XPath/XQuery functionality. From an XML
point of view, the mapping between SQL tables and XML
views was the guarantee for co-existence of the two schools
of thought. To make the mappings possible, it was neces-
sary to introduce a dedicated schema, for which the 1 : 1
mapping could be realised between relations and XML doc-
uments. Furthermore, we presented a technique to eliminate
wildcards in regular path expressions at compile time.

Concerning future work, we plan to work on query optimisa-
tion for XQuery. The execution plans generated during the
path elimination may be hard to optimise since they may
gain great complexity if many path wildcards are expanded.
We also intend to work on more flexible XML storage strate-
gies that automatically adapt the storage structure to the
query profile.

6. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] American National Standards Institute. The database
language SQL, 1986.

[3] P. Boncz and M. Kersten. MIL Primitives for
Querying a Fragmented World. VLDB Journal,
8(2):101–119, 1999.

[4] J. Boyer. Canonical XML Version 1.0, March 2001.
available at http://www.w3.org/TR/xml-c14n.

[5] D. Chamberlin, P. Fankhauser, M. Marchiori, and
J. Robie. XML Query Requirements. working draft,
available at http://www.w3.org/TR/xmlquery-req,
February 2001.

[6] D. Chamberlin, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu. XQuery: A Query Language for XML,
February 2001. available at
http://www.w3.org/TR/xquery.

[7] L. Fegaras and R. Elmasri. Query Engines for
Web-accessible XML Data. In Proceedings of the
International Conference on Very Large Data Bases,
2001.

[8] M. Fernandez, A. Morishima, and D. Suciu. Efficient
Evaluation of XML Middleware Queries. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2001.

[9] M. Fernandez, W. Tan, and D. Suciu. SilkRoute:
trading between relations and XML. Computer
Networks, 33(1–6):723–745, 2000.

[10] C.-C. Kanne and G. Moerkotte. Efficient Storage of
XML Data. In Proceedings of the IEEE International
Conference on Data Engineering, page 198, 2000.

[11] Jason McHugh and Jennifer Widom. Query
Optimization for XML. In Proceedings of the
International Conference on Very Large Data Bases,
pages 315–326, 1999.

[12] A. Schmidt and M. Kersten. Bulkloading and
Maintaining XML Documents. In Proceedings of the
ACM Symposium on Applied Computing (SAC 2002),
pages 407–412. ACM Press, 2002.

[13] A. Schmidt, M. Kersten, M. Windhouwer, and
F. Waas. Efficient Relational Storage and Retrieval of
XML Documents (Extended Version). In The World
Wide Web and Databases – Selected Papers of WebDB
2000, volume 1997 of Lecture Notes in Computer
Science, pages 137–150, 2000.

[14] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently
Publishing Relational Data as XML Documents. In
Proceedings of the International Conference on Very
Large Data Bases, pages 65–76, 2000.

[15] J. Shanmugasundaram, E. Shekita, J. Kiernan,
R. Krishnamurthy, E. Viglas, J. Naughton, and
I. Tatarinov. A General Technique for Querying XML
Documents using a Relational Database System. ACM
SIGMOD Record, 30(3), 2001.

[16] T. Shimura, M. Yoshikawa, and S. Uemura. Storage
and Retrieval of XML Documents Using
Object-Relational Databases. In Database and Expert
Systems Applications, pages 206–217. Springer, 1999.

[17] The World Wide Web Consortium. XML Schema Part
0: Primer. available at
http://www.w3.org/TR/xmlschema-0/, May 2001.

