Check for
Updates

SIGPLAN Notices 18 1974 September

A STRUCTURED MODEL OF PROGRAMS SUITABLE

FOR _ANALYSING TIME/STORAGE TRADE-OFFS

Anthony G. Middleton

Department of Computer Science,
University College of Swansea,
Swansea, SA2 8PP, Wales, UK.

1.0 SUMMARY

A program is modelled as a graph whose nodes (actions) are characterised
by symbols for their time and storage requirements. The graph is expressed
as a hierarchy of basic graphs (constructs). Bach basic construct has character-
istic equations for its time and storage requirements (resource equations).
Recursive application of these basic resource equations allows resource equations
to be derived for any program represented in this manner. Furthermore,
certain basic constructs have alternative, equivalent constructs. Such design
decisions may occur at several points in the program, giving rise to a set
of equivalent "variants" of the program. Using such a model, this set of
equivalent variants can be systematically enumerated, resource equations can
be derived for each variant, and, given a meaningful cost equation, a minimum
cost variant of the program can be selected. Symbols have to be supplied
for the resource requirements of the atomic (unstructured) actions and for
relevant cycle counts and branching probabilities. In a future system values
for these symbols might be derived from automated program measurement.

2.0 THE INTITTAL MODEL

We first discuss the simplest presentation of the model: the model
is being extended to give it a wider range of applicability. The notion of
a "graph function" aids exposition (this notion deriving from [1]). An
example of a graph function is:-

Ap

A

N cycles

DO(N,a) = a

A,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953214.953217&domain=pdf&date_stamp=1974-09-01

SIGPLAN Notices 19 1974 September

The inputs to the graph function can be any one of the following
types of item:~
(i) An integer.
(ii) A probability.
(iii) An action.

The output is a program graph. The above graph can be taken as
a model of the FORTRAN DO-loop construct with the following interpretations:-

Ao v initialisation of the control variable
A, Vv testing of the control variable

A, Vv incrementing the control variable

N ~ the number of complete cycles

a "~ the action embedded in the DO-loop.

Different versions will exist for different implementations. The
time and storage equations for this construct are:-—
TIME(DO(N,a)) = To+ N ¥ (Ty+ TIME(a) + T;) + Ty
STORE(DO(N,a)) = So+ Si+ S;+ STORE(a)

where Ty ,S1 are the time and storage requirements of A ,etc.
(Note that A, is performed N+l times.)

Another graph function is

v

\
a
a
REPEAT(N,a) = : & N occurrences
|
|
1
a
v,

v

The resource equations for the REPEAT construct are:-

TIME(REPEAT(N,a)) = N * TIME(a)
STORE(REPEAT(N,a)) = N * STORE(a)

which represents N successive occurrences of the action a. In certain:cases
where a DO-loop is used, a pattern of "repeated code" could be employed instead.
e.g.
DO 100 I=1,50
100 X(I) = Y(I) + 1T

]

(where X and Y are arrays) could be replaced by:-

x(1) = ¥(1) + T
X(2) = Y(2) + T

X(50)

SIGPLAN Notices 20 1974 September

The first alternative could be modelled by use of the DO graph
function, and the second by REPEAT. This choice of construct can be denoted
thus:~

DO(N,a) = REPEAT(N,a) 2 DOREP(N,a)

Thus an occurrence of DOREP is taken to indicate a choice between
the use of a DO-loop and the use of repeated code.
Using this notation, the expression:-
e = DOREP(M,DOREP(N,b))
can be used to denote a choice from the following four variants:-

DO(M,DO(N,b))
DO(M,REPEAT(N ,b))
REPEAT(M,DO(N,b))
REPEAT (M,REPEAT(N ,b))

and recursive use of the resource equations for the construets involved allows
the resource equations to be derived for each variant. For example:-

TIME(DO(M,REPEAT(N ,b)))
= To+ M * (T;+ TIME(REPEAT(N,b)) + T,) + T,

(using time equation for the DO construct)
= To+ M ¥ (Ty+ N * TIME(D) + T,) + Ty
(using time equation for the REPEAT construct).

If an acceptable cost equation, COST, can be found such that:-
COST(TIME(p), STORE(p))

indicates the cost of a program p, then a minimum-cost variant can be selected
whenever the values for the atomic synbols are known or can be measured.

3.0 DEFINING GRAPH FUNCTIONS IN TERMS OF PRIMITIVES

Graph functions can be defined in terms of a set of "primitives".
The choice of primitives is somewhat arbitrary. The following set of primitives
is used to indicate the approach:=-

Simple actions
Compound actions
Cycles
Repetitions
Join=branches.

Each primitive has characteristic resource equations and these can

be used to derive resource equations for any graph function which is defined
in terms of the primitives. .The above primitives are described below.

3.1. Simple Actions

This is an "atomic' action which is simply characterised by symbols
or expressions for its resource requirements.

3.2 Compound Actions

COMPOUND(&1 5 +..., an) is used to denote the serial composition of

actions 81, «vee, a .

SIGPLAN Notices 21 1974 September

The resource equations are:-

TIME(COMPOUND(&1 5 «...

» ap))
=mmmn+.“.+mmwﬁ
STORE(COMPOUND(a1 , +... a,))
= STORE(ay) + + STORE(an)

3.3 Cycles

CYCLE(N,a',a") is used to denote the structure:-

Entry
al
N complete
cycles
8."
v Exit

If N complete cycles are performed, part of the cycle (a') is per-
formed N+1 times. The resource equations are:-

TIME(CYCLE(N,a',a")) =
N*WmMa)+mmwM)+ﬂmw)
STORE(CYCLE(N,a',a")) = STORE(a') + STORE(a")

3.4 Repetitions

REPEAT (N ,a) indicates n sequential occurrences of the action a: possibly
with systematic variations of coding which are assumed not to affect the resource
requirements. of a. The resource equations are:- '

TIME(REPEAT(N ,a))

, ; N ¥ TIME(a)
STORE(REPEAT(N ,a))

N * STORE(a)

SIGPLAN Notices 22 1974 September

3.5 Join-Branches

JOINBRANCH({p1, a1 % {p2, @) {p , a))
denotes the structure:— n n

191 P2 Pn

ay a2 a,

The action aiis performed with probability p1, the action azis
performed with probability p. , ete. The resource equations are:-

TIME(JOINBRANCH({p1 , @1 % {p2, @2 % .veu, {Dp, an))
= p* TIME(a1) + m* TIME(a2) + p ¥ TIME(a,)

STORE(JOINBRANCH({ p1, &1 % (P2, @), (D, a)))
=M%ﬂm)+ﬂ%ﬂm)+.“.+ﬂwm%)

The expression for time is a statistical average.

The DO graph function could be expressed in terms of these primitives
as:=—
DO(N,a) = COMPOUND(ACTION(O), CYCLE(N,ACTION(1),
COMPOUND(a ,ACTION(2))))

where ACTION(O) denotes an atomic action whose rescurce requirements will be
represented by symbols Te¢ and So , etc.

The resource equations for this graph function can be derived from
the resource equations of the primitives:-—

SIGPLAN Notices 23 1974 September

TIME(DO(N,a)) =

TIME (COMPOUND(ACTION(O) ,CYCLE(N
COMPOUND(a ,ACTION(2))

TIME (ACTION(O)) +
TIME(CYCLE(N,ACTION(1),COMPOUND(a ,ACTION(2))))

To+ N * (TIME(ACTION(1)) + TIME(COMPOUND(a ,ACTION(2)))
+ TIME(ACTION(1))

(
To+ N ¥ (T;+ TIME(a) + TIME(ACTION(2))) + Ty
To+ N * (Ty4+ TIME(a) + To) + Ty

LACTION(1),
)))

1

4.0 COMMENT ON CURRENT PROGRAM OPTIMISATION TECHNIQUES

If 8 and T denote the time and store requirements of a program,
then current optimisation methods can be regarded as the application of
a sequence of equivalence-preserving transformations to a program which,
individually, may have one of the following four effects:-

(i) T is reduced, S is reduced (e.g. removal of a redundant action).

(ii) T remains constant, S is reduced (e.g. removal of an unreferenced
data structure).

(iii) T is reduced, S remains constant (e.g. movement of some action to a
less frequently executed part of the program). '

(iv) T is reduced, S may be increased: but the increase is regarded as
unimportant. (This is presumably the case in the treatment that would
be given to conditionals inside DO-loops in [2 1).

In cases (i) to (iii) the advantages appear obvious. However in case (iv),
the situation is not so obvious. Using our representation of a DO-loop,
case (iv), for moving a conditional outside a DO-loop, can be portrayéd as in
Figure 1. We could define these two alternatives so:

PHI(N,c,p,a,b) =
DO(N ,COMPOUND(¢ ,JOINBRANCH({ p,a > ,{1-p,b?)))

RHO(N,c,p,a,b) =
COMPOUND(C ,JOINBRANCH({ p,DO(N,a)) (1~ p,Do(N b))))

Resource equations can be derived for each alternative and, given
values for the primitive symbols, a minimum cost variant chosen - no doubt
giving us the same verdict -as Schneck and Angel! :

However, the situation becomes more compllcated 1f one cons1ders
the definitions:-—

PHI(N,c,p,a,b) =
DOREP (N ,COMPOUND(¢ ,JOINBRANCH({ p,a) ,{ 1-p,b >)))

RHO(N,c,p,a,b) =
COMPOUND(c ,JOINBRANCH(p ,DOREP(N,a)) (1~ p,DOREP(N,b))))

since PRO(N,c,p,a,b) now denotes the set of alternatives:-

DO(N,COMPOUND(¢ ,JOINBRANCH({ p,a) £1-p,b))))
REPEAT(N,COMPOUND (¢ ,JOINBRANCH{{ p,a) ,(1-p,b })))
COMPOUND(C JOINBRANCH((p DO(N,a)) ,{1-p,DO(N,b))))
COMPOUND(c ,JOINBRANCH(p, REPEAT(N a)) <1—p,Do(N b))
COMPOUND(¢ ,JOINBRANCH({ p,DO(N,a) } (l—p,REPEAT(N b))
COMPOUND(c ,JOINBRANCH({ p,REPEAT(N, a)) (1-p, REPEAT(N b))

SIGPLAN Notices 24 1974 September

The repeated code option only applies when the upper limit of the
DO-loop control variable is known at compile time. Other conditions can
give rise to other alternatives to the DO-loop. For example, one might
use a "diluted" DO-loop in which the embedded action is performed M times on
each cycle of the loop. This alternative could be defined by the graph
function (see Figure 2):-

DILDO(N,M,a) =
DO(N/M,REPEAT(M,a))

where M divides N and:-

TIME(DILDO(N,M,a)) = To+ N/M % (Ti4 TIME(a) + T2) + Ty
STORE(DILDO(N,M,a)) = So+ Si+ S2+ M ¥ STORE(a)

(this is an approximation - the DO-loop overheads may alter because of the
different nature of the operations on the DO-loop parameters. Also, see below,
Seetion 5.2.)

In a situation in which all three versions of the DO-loop are
permissible, the optimum variant of PRO(N,c,p,a,b) becomes somewhat non-obvious,

and mechanised enumeration of alternatives appears worthwhile.

5.0 SOME EXTENSIONS TO THE MODEL

A "program analyser" which is based on the above model is at present
near completion. It allows such program design problems to be posed in a
manner which is reasonably natural for a systems programmer. It essentially
removes the tedious burden of algebraic manipulation in analysing time/storage
trade-offs. At present the system is "spoon-fed" by the systems analyst.
But the eventual aim is for the analyser to be resident in a computer and
to acquire its information (and implement its decisions) mechanically. Below
are some modifications to the model which are currently being studied.

5.1 Allowing for more Resource Types

One could classify resources into two types:-—

(i) "Per Node" resources. These resources are associated with the existence
of the node (e.g. store).
(ii) "Per Visit" resources. A quantum of the resource is used on each visit

to the node (e.g. time).

Resource equations can be found for each resource type and construct e.g. if
PN denotes a per node resource, and PV denotes a per visit resource, we have:-

PV(CYCLE(N,a',a")) = N * (PV(a') + PV(a")) + PV(a')
PN(CYCLE(N,a',a")) = PN(a') + PN(a")

This approach might allow treatment of program involving input/output:
such operations requiring a "per visit" resource.

5.2. Interaction of Consgtructs

The choice between use of a DO-loop and use of repeated code was
presented as a choice between DO(N,a) and REPEAT(N,a). It should more correctly
be presented as a choice between DO(N,a) and REPEAT(N,a') where a' is a modified
form of a which may require slightly different resources. Thus, resource
requirements of an action can be influenced by neighbouring design decisions.
This is provided for in the program analyser by employing "conditional actions”
whose resource requirements are dependent on a decision variable. If the

SIGPLAN Notices 25 1974 September

resource requirements of an action are influenced by several decisions: the
analysis can still be conveniently handled provided that the influences are
separable.

5.3 The Influence of Data Structures

Work is in hand to study the influence of data structure design
on the resource requirements of a program. It is worth noting in passing
that store equations exist for data structures e.g.

STORE(LIST(N,a)) = N * (2 + STORE(a))

might be a suitable equation for the store required for a list of N cells
containing data structures of type "a': where a is some complex structure.

Such equations would be most useful where all sub—structures of a data sbtructure
were of the same class. (One can include probabilities in an obvious manner

- but finding walues for the probabilities might be another matter.)

5.4 Cost Equations

A useful piece of further research would be to try and find a system-
atic basis for determining the "cost" of a program. The nature of the cost
equation will depend on the nature of the computer configuration.

5,5. Multiple Entries and Exits

At present a program is modelled as a hierarchy of single-entry,
single-exit constructs. These could be the nodes of a more arbitrarily
structured graph in which the nodes might have several entries and/or several
exits. Such an extension is being implemented.

5.6 Complexity of Analysis

TIf there are N independent, 2-way decisions to be made in designing
a program, there are 2N'possible variants of the program and 2N+l resource
equations to be derived. Clearly, there is a problem of complexity and
some balance must be struck between the complexity of analysis and the benefits
derived. One obvious approach is to analyse only those choices occurring
in the innermost constructs of the most frequently executed parts of the

program.
Other possibilities exist.

5.7 ..A More Empirical Approach

One may wish to define a construct in the following manner:-—
SUB(NPA,a):
TIME = Ta+ Te¥ N
STORE = S3+ NPA:

A + TIME(aj:

Here, SUB(Npy,a) is intended to model the action a embedded in a
gubroutine requiring EPA.parameters. The equations for the resource require-
ments of a subroutine are given directly - no attempt is given to give a
graphical description of the construct (such -attempts proved awkward and
unnatural). In this model, it is assumed that the subroutine is used at
several points in the program and that the storage cost of the single copy

of the subroutine can be ignored: - other possibilities exist. The alternative
to using & subroutine is the "open" coding of a.

SIGPLAN Notices 26 1974 September

This alternative can be expressed by the trivial graph function:-

OPEN(NPA,a) = g
and the choice between the two constructs specified by:~
= 2
OPEN(NPA,a) = SUB(NPAaa) SUBOP(NPA,a)

From the above 1t should be clear that this 1s very much an on-going
piece of work. Problems are in sight - bubt so also are solutions. It should
be noted that the approach is suited to the analysis of sequential systeus.

No attempt has yet been made to deal with parallelism and pipelining.

As a parting shot, the author suggests that deriving by hand the
resource equations of the 24 variants of:-
PRO(N,c ,p,SUBOP(N1,a) ,SURBOP(N2,b))

(a very simple structure!) would illuminate the motivation behind this work.

ACKNOWLEDGEMENTS

I would like to thank Professor D. W. Barron of Southampton University
for advice and encouragement throughout this project. I would also like
to thank the Science Research Council for financial support.

REFERENCES

[1]1 Flow Diagrams, Turing Machines and Languages with only two Formation
Rules. €. Bohm and G. Jacopini, CACM Vol 9, No. 5, pp. 366-3T1.

[21 A Fortran to Fortran Optimising Compiler. ©P. B. Scheck and E. Angel,
Computer Journal, Vol. 16, No. 4, pp. 322-329.

1974 September

SIGPLAN Notices

(9°e'd 2'N)QHY

(Q'®dIN)IHd

OHY B IHd_GNOILONNS
HIVES | 38013

SIGPLAN Notices 28 1974 September

N/M
CYCLES

M TIME

o@mwmmmmma

Ve

FIGURE 2
GRAPH FUNCTION DILDO

