Check for
updates

SIGPLAN Notices

How do you think academic
circles will accept such new
techniques?

Slowly. They didn’t like Cobol
either. You see when aca-
demics dirst started teach-
ing about computers in uni-
versities and colleges all the
mathematics students star-
ted electing to do numerical
analysis and that sort of
thing rather than do the
mathematics courses.

This meant that the bud-
get of the math department
fell and that of the other de-
partment rose. This worried
the math professors and they
began to accuse the computer
people of being vocational
and not academic. So the
computer people decided
that they had to be academic
so that they could justify
their budgets and invented
higher level studies. They
weren't teaching people how
to run computers. They were
computer scientists. They
leaned over backwards to be
highly scientific and highly
technical but now we are be-
ginning to see a swing back.

Thomas I. M. Ho
Purdue University

West Lafayette, Indiana

Schwartz, J. T. On programming:
Installment II:
Science Department,
York University, 251 Mercer Street,

Mullish, M. and Goldstein, M.
Courant Institute of Mat

York (1973).

A SETLB primer.

6

Some universities have two
departments — computer
science which is very esoteric,
and information sciences.
The term information can
cover many things which in-
cludes data processing but
you don’t say data process-
ing tn a university. A few
state colleges now are teach-
ing data processing but of
course the Ivy League
wouldn’t even look at a piece
of data {and they wouldn’t
know where to put a decimal
point ecither) — they are
mathematicians.

But in spite of expected
hindrances you are looking
forward to the future?

I just think the most excit-
ing work is still to be done.
Speed is going to be the pre-
mium. .

We will have increased
population, increased growth,
increased needs for transpor-
tation and increased shor-
tages which means you will
have to buy exactly what
you need instead of what
you think you might need.

REVIEW

the SETL language and examples of its use.
Courant Institute of Mathematical Sciences, New
New York 10012 (October 1973).

1974 January

The distribution of things
will have to be managed
much more closely than ever
before. People wili have to
have better information fas-
ter to make decisions fas-
ter.

You don't find threats of
shortages and energy crises
daunting?

When | came to England
this time the one place I
wanted to go to again was
Stonehenge to see what men
could do when they had
nothing to do it with.

Those stones are big and
bulky but they are all
perfectly lined up to a
magnificent plan. 1If, that
long ago, men couid think
of such a concept and com-
plete it with virtually no
tools, and no sophisticated
mechanical assistance, then
we can manage pollution
and oil crises and anything
else if we want to.

an interim report on the SETL Project,
Computer

Computer Science Department,
hematical Sciences, New York University, New

The current work (installment II) is the second in a series of three
reports on SETL, a new programming language derived from concepts of tbe
mathematical theory of sets. Installment I, dated February 1973, ogtllnes
the general approach of the SETL effort. Installment III will be titled
"Extension and Optimization'. Installment II describes the SETL language
facilities, presents a variety of algorithms illustrating the use of SET;,'
and provides details of the run-time routines implementing the SETL primitive
operators. SETLB is a subset of SETL currently implemented on the CDC 6600
at the Courant Institute.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F953220.953221&domain=pdf&date_stamp=1974-01-01

SIGPLAN Notices 7 1974 January

The variety of SETL-coded examples seems to substantiage the claims by
SETL advocates of the language's capability to specify complex algorithms.
Being a language of very high level, SETL permits the manipulation of complex
data structures without requiring specification of the physical structures
ordinarily expected of the user of lower level languages.

The value of these advantages must be weighed against the generally in-
efficient nature of SETL programs. In particular, the use of certain powerful
SETL primitive functions that are readily available makes it all too easy to
generate very inefficient programs. For example, the SETL operation pow(a)
which forms the set of all subsets of the set a can cause very inefficient
algorithms. A less important criticism relates to the awkwardness of the SETLB
character set required by the adaptation of the familiar symbols of set notation
due to the unavailability of those symbols on the keypunch and the computer.

SETL should be of interest to advocates of structured programming.
Dijkstra [1] advocates the postponement of decisions regarding particular data
representations in stepwise program-composition. SETL enables the postponement
of the selection of physical structures for an efficient implementation of an
algorithm until after the algorithm has been first abstractly specified in SETL.

Also, practitioners of modular programming should find SETL of interest.
Parnas [2] describes a technique to provide program module specifications
sufficiently precise and complete so that other modules can be written to in-
teract with the specified module without additional information. Schwartz [3]
proposes that SETL might also serve well as a module specification language.

Further, proponents of proofs of program correctness may find that the
mathematical foundations of SETL make the language especially suitable for the
coding of algorithms whose correctness must be rigorously determined.

Finally, teachers of computer science may want to examine SETL's
pedagogic potential in the study of abstract algorithmic processes and of
concrete data structures.

Of course, students of programming and of programming languages should
find this work interesting for its contribution to mathematical formalization
of programming principles and language semantics.

References

1. Dijkstra, E. W. Notes on structured programming. T.H.-Report 70-WSK-03,
Department of Mathematics, Technological University, Eindhoven, The
Netherlands (April 1970).

2. Parnas, D. L. A technique for software module specification with
examples. Comm. ACM 15, 5 (May 1972), 330-336.

3. Schwartz, J. T. Principles of specification language design with some
observations concerning the utility of specification languages. 1in
Rustin, R., ed., Algorithm Specification, Englewood Cliffs, NJ:
Prentice-Hall (1972), 1-37.




