SIGPLAN Notices 8 1974 January

y technical contributions

Check for
Updates

A PROGRAMMING LANGURGE FOR MINI-COMPUTER SYSTEMS

Frank L Friedman
Victor B Schneider

Department of Computer Science

Purdue University
West Lafayette, Indiana 473906

I. INTRODUCTIOMN AMD OVERVIEW

This paper concaerns the development of a family of higher

revel languages which are to ssrve as the target langusges
for the decompilation of assembler coded modules of small
computer operating systems. The main objective 1s the

design of a machine indepsndent language to serve as the
nucleus of these highsr level languages, sach of which will
have to possess characteristics unique to the opsrating
system for which it was designed. The work involved in the
development of the nucleus language is part of a research
effort intended +to show that assembler coded systems
programs for a specific class M of machines'! can be
concisely vrepresented in a higher level language and that
this higher level representation can be easily moved from
one machine in M to another. It is our primary purposs here
to describe the main features of this rnucleus language and
present some reasons why these features have been included
in the language.

The majop objectives influencing the design of the
nucleus language are:
A.] The language 1s to contalin only thoss data and control
structures which will be easily recognized in the assemblar
coded program, and several additional structures which will
be useful in providing a higher level representation of the
assembler code without requiring complete program re-
arganization. (Thus, in a sense, the data structures and
contraol mechanisms to be translated are an important factor
in the definition of the nucleus language.)
B.) Programs resulting from the decompilation process
should be readable, and should admit a simple and nicely-
nested, control structure.
.} The nucleus language should ke portable, extendable,
and compilable by a fairly simple compiler. That is, the
compiler should be several orders of magnitude less complex
than a small operating system.

! M is a class of machines characterized by the
architectural characteristics lTisted in Hppendix H.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953220.953222&domain=pdf&date_stamp=1974-01-01

SIGPLAN Notices 9 1974 January

The data and control structures that have hbesn
incorporated into the language have been selected
empirically - on ths basis of our experiences in manually
re-writing several small systems routines for the IBM1130
and the CDCES00, and our discussions with systems
srogrammers at Purdue. Rn index loop and & simple cycle
onstruct are the only two structures available for the

—

[

specification of code repetltzun (see section II.C). The
gensral n-way decision box can be handled via a labelled
CAsE St%mecﬂt or, in the caze of rn=2, by the if ... then
... glee statement [I1.C).

In an effort to restrict the use of the goto as much as
possible, exit, repsat, and cass constructs were introduced
into the language (11.B.1). In addition, the pauritv af run
time overhead reguired to handle pru;edur&: permits the use
of paramstsrless procedures to facilitate linked programming
irn the neat and orderly fashion provided by most assembler
languages with no overhesd whatsoever! Nevertheless, we ave
dealing with already existing programs, and our primary
mission 1s the decompilation of these programs, and rot
thelr re-organization. Therefors, we felt it wisze to retain
the . goto, although we intend for its use to be limited ta’
situstions not easily handled by the other control
structures (II.EB.4).

i

The nrucleus language 1s & type-ignorant language having
but two wery simple data structures: (1) the singly-
dimPHS'Dned arvay; and (2) an n21 storage cell! structure of
variable-length bit strings. The lengths of thesze bit

P

he format of the n-cell sequence, ars

ztrings, and hencs
2roup declaration (II1.B).

e
qﬁ&*ltlwd wia a specia

— o+

It is our intentio that the process of decompiling
assembler coded modul es in a h

igher lewel 1angu_ge br only
partial ly automated (zee section IV]. ble belie that
attempts to automate this process " too far’ bayond control
flow and wariable usage analysis, the coalescing of
register/core computations, and loop and procedure
recognition, to ke impractical. Howsver, we hope that our
research, although not directed toward a complete

automation, may giwe us a better indication of exactly how
far is "too far’.

' A storage cell, as referenced herein, may be thought of as
a word or a hyte, with the bit size of either dependent upon
implementation. - The language requires the specification of
2ither word o byte in front of all declarstions that efiect
storage allocation.

SIGPLAN Notices 10 1974 January

1I. THE CONTROL STRUCTURES

A. The Program

Programs consist of declaration blocks, scope blocks
(sequences of a:epuiable statemasnts), and a defirition block
{see section II.D. for further details). The scopes block
merely provides a partitioning of a program for readibility,
bhut it does not provide for name independence or any other
structural independence normally associsted with a "hlock’.
Thus, the nucleus language is essentially not a block

oriented language in the sense of ALGOL 60 or PLSI.

Programs will be able to communicate with sach other and
with the system wvia a procedure calling mechanism, and a
common pool of storage similar to the COMPOOL of JOVIAL [Sh

B3].

B, Hiding the 'eoio

The desire to construct a language that admits only
programs with a simple and nicely-nested control structure
resulted in the decision to purposely limit the ways in
which the goto could be employed at the souwrce lewvel, We
weres not ramplet@1w successful in dealing with this problem
{ses 4. below), but we have considerakly reduced the need
faor the zato by "hiding' it behind constructs introduced

specifically to ald in such camouflage. These =special
constructs are the exit, repeat, parameterless procedure,
and the case. Descriptions of the first two of these
constructs iz presented here the case construct is
discussed in section C, and }E procedure is covered in
section 0.

1. Exit - The idea for the exit construct originally came

from BLLISS [Wa 71al, but the version currently used in the
nucleus language laq bean simplified . The exit construct
may be usad to Pff“ut an exit from wvarious levels of thrae
nestakle constructs in the mucleus language, the for, cycle,
and the case. [Eﬂlt from a procedure 1z coded with a return
statemant.)

The two forms of exit provided are

The wse of the identifier 1in the exit construct is as a
range identifier” [RH 721.

In addition to improving program readabili
identifier may also serve to indicate the control

SIGPLAN Netices 11 1974 January

from which the exit is to be taken. For example:
OUTER: for I « 1 step ...

INNER: cycle:

.3 Fepeat; ...
exit INNER;

end INNER;
exit OUTER;

end OUTER;

The exit statement causes a transfer of control out of the
designated structure to the first statement that follows the
end of that structure.

When the identifisr is omitted, =xit is taken from the
inner-most structure containing the exit. Uhen the
identifier is included, it is sxpected to match the range
identifier preceding the first word (for, cycle, or casel of
one of the control structures containing the exit. Control

is then transfered to the first statement following that
structure.

2. Repeat - The repeat statement may be used only within a

cycle structure. The repeat causes program control to
continue with the first statement of the designated cycle.
It may be unconditional or conditional (repeat whti]

<relation>= }. In the latter case, the repeat causss an exit

from the designated cycle when the <relation> talkes on the

value TRUE. When wused with a ‘range identifier' [(see
1,Exit), the repeat causes a transfer of control to the
first statement of the named cycle. When the Farge
identifier is not present, control is transfered to the

first statement of the inner-most cycle.

The repest construct is guite wuseful in coding nested
cycles when the statements in the irnmer loop are also the
beginning statements of the cuter loop. In the absence of
the vepeat, additional cycles would be needed to handle such
nested loops, unless the goto was employed.

3. As previously 1indicated, we were not completely
successful in our attempt to banish the most primitive and
unrestricted form of the goto. The main reason for this
failure 1is that we are not primarily concerned with writing
rew programs, but rather with decompiling already existing
programs in the nucleus language. Based on our empirical
evidence, asuch programs are likely to contain numerous
control sequences which would be guite difficult to codse
without the use of the goto. Examples of such sequences

SIGPLAN Notices 12 1974 January

are:
1. Hbrnormal exits from a block or procedure,
. (e tain code sequences requirving node splitting or
while construction with additional flags {for control

flow designations .

3. Code which uses & navigstion vector’ to determine
the sequence of execution of program modules. Such
code 1s often characterized by the need {or
path, non-returning transfer instruction. ;
fills this need better than any other control structurs
that' has been offered in its place.

s
v e

''''''''' only mearns of transfer out of

The goto also provide: =
a scogpeblock . The scopeblock exit was abandorned in favor

of the goto for the purpose of forcing explicit reference to

the target of the golo.

i

We are not prepared to srgue whether or not any of the
above-described control structures are necessary oF ewven
desivable in & program. The point is that they exizt, have
been debugged, and, for ouw purposes, they must be deaslt
with as ef iently as possible. UWe feel that this may he

i

o]
best accomplished hy retaining the goto in ow language,
althought we hope that its uze will be limited to situations
that ars not easily handled with the other constricts of the
language

C. Fundamental Control Structures: The Loop and the
Decision Box

e indicated sarlier that the control mecharnizms used 1n
the programs to be decompiled would play a substantial role
in the selection of the control structures To be included in

the rnucleus languages. In the programs sxamined so far,
three types of fundamental control mPrhanlwm stand out: (1)

Slﬂ de entry, k-exit Toops (L21); (2) n-way "decision bowes’
axtion, we will confine

?"] and (3) procedures. In this sac =
Dur dizcussion to the fivst two of these mechanisms. Thes
procedure is discussed in detail in section O,

Loop structures

The lToop structure type may be classified further into
two sub-types 3ucu:d1ng to the repeat control used. In one
type of loop, the rang and increment of a ocounter (or
index) is specified dhd this information is used to control
=1= t on. In the other loop typs, the Togic walue
on is used explicitly to control

It is important to note that rno effort 1s belng made to
distinguish loops with 1 exits from those with §J (isj]
Bxits. In addition, the position of the iteration test(s)
inside the loop is irrelevant. Hs long as ths appropriate

SIGPLAN Notices 13 1974 January

structured loop escape constructs (see previous section) are
admitted into the 1ahguag8, the distinction between the loop
structures described above is sufficient fovr our purposes.

Loop structures controlled by a counter are represented
by @ for statement of the form

Tonr do:

for <identifiesrs: « p selon> step <expressions unti]
EXQFESE

HTT other loop structures may be represented simply as

cysler. .. end

The guestion of the ease of recognition of thesze +two basic
loop constructs 1s still open, although thelr presence can
be demonstrated in the examples of system code that we have
examined.

The n-way decision box

is tittle quaatian that 50Mme convenient
representation of the n-way decision box is desirable in a
higher lewel language. The key guestion concerns the form

ch this representation is to take. Two different forms,
the Jjump tabkle and the case statement, are the most
freguently used in other Xnnfuapes (see, for example, [Sa
£9, on NELIACY], [Co 691, [Wu T1al,[CH 71), and [Ra 72]. UWe
have chosen the lTabelled case cunatruct [CH 71]:
<expression> in {<lakels> <statement list>}4!

else: «<statement list> end

wherea
<labels> 1= {<label>:}4
and

Here, the selection expression is evaluated, and contvol is
passad to the statement list labelled by the resulting
value, If ro statement list 1is so labelled, the statement
tist labelled by slse is executed,

}+ indicates that the content of the braclkets occurs

1e o more times.
wes 1¥ dndicates that the content of the brackets ocours

zero o more times.
A <constant> may be a signed number

eguival enced identifier.

'

=)

,
g

.“.)

a (compile time)

n}
x

SIGPLAN Notices 14 1974 January

There are a number of reasons for choosing the labelled
case statement owver the jump tabls and the other wariations
considered. We szhall list only a few.

1. The use of the jump table places a heavier burden
on the programmsr then doss the use of the labelled
case statement shown shove. Regardless of the way in
which the jump table 1s constructed, it 13 the
programmer ' s responsibilty to corwvert the data to be

used 1in the seléction process to the correct integer
value (modulo the size of the jump table)

2. The labelled case statement more accurately
reflects the activity that is most often assoclated
with the m-way decision bowx, nan selection of
one item from a finite, unorder elemsnts.

3. The use of the 1mbelled case statement should
vield a more adable program, 5 & progranm
that 1is more likelwy to he correct after 1ts initial
coding, and after esach modification to & Case
statement. For example, we nesd not worry about

switches getting out of order, or cases being added or

daleted. A=z has been shown [AM 71] that the cycle,
for, and case structures described abowve are indesd

sufficient to enable the coding of every flowchartab
program. We anticipate that, when combined with th
exit and the repesat constructs, they will prove to be
both adeguate and convenlent constructs in any systems
implementation language.

D. E?:l:l caedures

Both the procedure and the program, P, ares comprised of
three different types of blocks.

i) one or more declaration blocks each Cuntdlnlng
information to ke shavred in the proceduwres local to P
(if any)

ii)] one or more sScope bloclks each containing

executable code
iii) one definition block containing the definitions
of all procedures that are referenced in P.

Execution of a proceduwe iz terminated wvia the return

statement. Neither recursive nor re-entrant pracedur 5 are
supported in the nucleus laguage.

In the nucleus language, all procedures are functio
procedures with side effects (they may alter the value uf
any paramster passed, and they also may be assigned a unique
valus upon returnl. The wvalue of the procedure may be
defirned by the wariable (identifier, group wvariable, or
array designator) specified in the return statement(s) of
the procedurs. If the variable is ommitted, the procedurs
walue 1s assumed to be irrelevant to the calling program.

SIGPLAN Netices 15 1974 January

Hs is the casze with scops blocks, local procedures
provide no name or structural 1ndep9ndunxe relative to the
outer praﬁedur" and programs in which they are declared.
For example, it is not possible for an outer procedure to
jump into the middle of an irnner procedure, but the latter
may transfer into the middle of an outer procedure,

sgardliess of the original point of call. Hopefully, this
wi]i he & featurs that will be used only sparingly , 1f &t
all, in the programs that we decompile.

The lack of nams and structural independence has enabled
us to irplumeﬂt procedures with mo run time overhead except

the passing of parameters. The parameterless procedure
herefore, a convenlent and e=fficient means for
ting B aups of statements whose execution 1=
at several different places i & PEOgrEm.

ies for such representalon are avallable in assemblsy
ves, most of which have an operation code for "heanch
and store instruction register’ which enables access to a
statemant group while at the same times saving the address of
the next sequential instruction for the subseqguent return,

E. The Hssignment Statement
2 ather construct of the nucleus language, the

gnment statement, deserves comment here because of its

e role in the expression syntax of the nucleus language

Appendix A). The two most important aspects of this
v

—~ iy
DiﬁJtm
{

— e
""‘;

oD
c
3

5

1. Farenthesized expressions may appear on the
lefthand side of the assigrment operator "5,

2. Parentheslized asalgnm:nt statements may be used as
operands in expressions,

The walue of thes assigrment is the content of the storage

location into which thu value of the right hand side 1is
stored, The destination of the asssigmment is either the
lTocation of the designstor or the aidresa given by the value
of the calculated expresssion in 1ts Algiﬁggft. T These
features, combined with the syntactic structure of the
language, and the monadic operators loc (location of), and

" i

Qe
. {indirect referencel wield a succinct higher lTewvel
represesntation of sequences of lengthy urlthmutic and
masking calculations at the machine code level.

Y

! The leftpart of an assigrment statement wmay be a
designator or a parenthesized expression. AR designator may
be an identifier, an array veference, a group component

reference, a partial cell reference, or a loc reference.

SIGPLAN Notices 16 1974 January

ample: The IBMT130 Disk Opevating Syatem code sequences

R FUFREA
O D914
A DZ565
ST0 D2330+41
f DZ49R0
H D7 280+
ST0 DEZEO+

has a target langusge representation

(DZ280+1) = [({DZ330+1) = FUMRREA ~ DZ910 + DZ9ER)

L Pa]

+ DZEE0 + L [1ocDZ280 + 1);

III. DATA STRUCTURES AND OFERATIONS IN THE MUCLEUS LAMNGUAGE

The problem of the avtomatic recognition of the data
types and structures used in the as ler language code is
& research topic In its own right. Ewen the manual

cecognition of types and structures is often o formidable
;dah. Ft this point, we are willing to speculate that the
singly-dimensiorned arid typelsss array is the most
complicated structure that ne be recognlzec
automatic PE o anm structure anal: h
current wersion of the target language syhntax 1z
1]

1

@

Py
]
-

1

type-ignorant, although 1t does irnclude fac
handling intﬁrnd], LH1H'L » and string constar s
special polnter waria a e The current syntax iz al
wirtually structureless, in Jdlhd only facilities the
declaration ard manipulation of ﬂln?]”“ amd
e5s arvays; and oy -Duping anffhhf in
zod strings of bits into a simple structure cal
feee TI1I. B, for a brief discussion of a groupl.

—
—
it
81}

it

purp » e 15 intraducse & name,
: group etc.), and

There are four
’ anguage: declarations
25, areay ”dfldbfﬁu; Eroup bﬂkiﬁflﬁﬁ, and

fo .1n¢
procedurs

F1T simple wariables, groups, avrvays, and procedures,
must ke declared, and these declarations must appear within
some declaration block of the program in which they are to

SIGPLAN Hotices 17 1974 January

be used.' The scope of the declared item 1is the entire
program in which the declaration cccurs, but an item must be
declared before it is referenced.

We recall that neither the seope block nor the procedure
provids any neme independence in the nucleus language
Therefore, an identifier already declared at some point in a
program may not be re-declared locally anywhere in that
program or in & procedures that 1is local to the program.
This restriction may be judged as somewhat inconvenient from
a programming point of wview, but it does simplify the
compilation process. Furfhwkmorg, the re-definition feature
is rot at all usefuwl in the automatic deccmpiTatiDn of

assemblar language programs. The purpos of allowing
declaration blocks between any palr of prafram statements is
solely to enable the programmear to localize item

declarations to ease the strain on his memory and to make
the program more veadable,

In the remailnder of this section, we will confine our
attention to the =imple wvariable and array declarations,

ﬂiﬂCU hB_EmGCPdufﬁ declaration is stralight-forward and the

grows declaration is covered in the next section.

]

Simple variable declarations may occur. in any one of
threse forms.
1) as= an element of the declaration list (placed
between commas) causing an uninitialized storage cell
to be allocated;
2) as a declaration list element of the form
zidentifier> = <expression>’
which causes & storage cell inlitialized to the wvalue
of the expression to be allocated;
3) as a declaration 1i5t =]l ement of the form
<identifier> = <expression>!
which causes the walue of the expression to be used
wherever the identifier appears in the program;

._.4....m

T

i

Array declarations may be in one of two forms:
11 as a declaration list slement of the form
“identifier>[<unsigned constant>]
which casuses n = (valus of the wunsigned constant)
uninitialized cells to be allocated to the identifier;
2) as a declaration list element of the form
<identifier>[<unsigred numberz] =

'In the case of the simple variahle, the reguired
declaration is wiewed as an important debugging aid,
espacially for large programs. :

' The walue of the such an expression must be completely

determinable at compile time.

SIGPLAN Notices 18 1974 January

{<constant tuple»)?
which causss a one-one assigrment of the min constant
tuple elements to the first m cells allocated 1o the
n-cell array.

Simple wvariable declaration 3) and array declaration 2)
have been added to the language for decompilation and
programming convenience, since such equival ence and
initialization featurss are provided in most assembly
languages.

Two implementation dependent “"length” characteristics
(word and bytel must be specified for sach element (simple
variakle, array or group) that is declared. These snable

the user to instriuct the compiier to conserve storage
whenever possible by assigning wunits of shorter length
(byte) to those program elemsnts such as small integers and
characters which do not regquire the longer (word) storage
structure. In the Microdata 1621 implpmentatiun aof the
nucleus language, the byte is 8 bits and the word is 16 bits
in length.

More refined partitioning of program storage cells may be
accomplished wvia the use of the special group declaration
described below.

H. Group VYariables

The group declaration may be used to facilitate the
naming and organization of collections of partial words
which may have frequent use in a program. The use of a
group can enable the storage of several memory objects of
different lTength in & contlguau bloclk.

R group varishkle iz a pointer to a named and ordered
seguance of partial storage s, Group variables are
specified in the group wvariable ist part of a group
decl aration: '

]

<group declaration> :1:=

where
<group wvariable > :
ignators>

For ewxample, the declaration of a group reflecting the
format of the IBM1130 Disk Operating System Input/Output

2R CUHatant tuple is a parenthesized list of string or
i

numeric onstants which are assigned left to right to the
cells of the specified array as in a FORTRAN DATA statement.

SIGPLAN Notices 19 1974 January

Command on & 16-bit machine might appear as

growp TOCC [AOORESS(1EY, PREA(S), FUNCTION(3), MODIFIER(S)]
FILEICC, TEMPCEIE]

Fartial storage cel assigrments are made from left to
Fight in the compom&rt Tist. The rumber of storage cells in
the L]Eu machine needed to store the components of the

5]

pe)

’ﬂ

Wherever possible, more than one component may be assigned
to & single computer cel but overlapping a partial cell
asslgrment batwesn two cells is not permitted. The above
;m?& would effect the allocation of sewven groups of

5

]
i
=
groug is decided by the compiler as it moves left-to-right
o &
1,

format IOCC, and z.iuﬁmwnt uf the pointers to these
groups to the group sles FILE1CZ, and TEMPCC[1] thru

[E]. In the dhnxe example, the compiler would assign
two 16-bit words to each I0CC group., ADDRESS would ococcupy
the first of these two words, and the other three coamponents
would accupy the sccond word.

References to the components of a group are of the form

AREA of FILETCS, FDDRESS of TEMPOCI3]
The partial cells of a group may be assigrned initial wvalues
im the declaration section of a progran, o be referenced in
the scope block of the program, wia references [(subseguent
to the group declaration) to the group components as shown
abyonee.

Mo other type specifications oF declarations are
avallable in SIMFL. Type specification can, at some

gxpense, allow the compller to report on possible misuse of
the language, hbut thils advantage is small compared to the
limitations and restrictions that types impose, especially
when decomplling is irnvolved.

PUT/

i, I

Iriput/output handled in string form only. The input/

is
nutput statement is

geo

sicl=devices , <address> , <function= , <modifiers]
In general, the parameters of xio are references to the
components of & group variahle coﬂfainln the bit strings
which define the 170 device, the {irst word address of the

area of the data transievr, and the functlan to be performed.
in order to provide maximum flexibility In handling I70 for
the machines in the class M, the code gererated for the xio

instruction provides an interface between the host machine

SIGPLAN Notices 20 1974 January

170 facilitie= and t

= he veguested funt for the system
being moved to hw ost machines. =ritial Ty, this
interface code uses the Information in the hardwsrs status
t'r‘:‘egi&‘tﬁr‘ﬁ- of the host machine to simulate -}”@ setting of the
corresponding veglsters for the sowce machine, The source
machine VBngtﬁFﬁ are represented 1n memory c5175 in thes

Only strings of character:
transmission may be on & char&:
controll or on a "record’ basis
0 device.]l In the latter caze
be transmitted is usually conta
buffer pointed to by the <addressz> parasmeter of the I/0
call. To help with corversion from intsger to string and
bacl, two bullt-in procedures INCH (for integer to character
corwersion) and CHIM (for character to integer] conversion
will be available.

itted, and the
i nder progeam
g contral of Thﬁ I/

{f characteras +to
ned in ’Ehl*‘ first word ui the

i—-“‘ﬁ f‘n“
{0
i
}

V. FDDITIONAL FEATURES

The following are currently uwnder consideration for
implementation in the language:
1. A facility to permit the in :
language code in line in the hiqher leve
code.
2. H =i
that of SH

J

mple macro substitution facility similtar to
L. [La 69].

We do rnot anticipate that thaese features will
in the decompiling process. Howewer, they wil
to those who use the nucleus languaze to write o
s for writing bullt-in functions and
completing the decompilation workl.

VI, THE ROLE OF THE MUCLEUS LANGUAGE

The nucleus lTanguage is to serve as a practical | wvehicle
for the quick implemsntation of already existing small
computer operating systems an machiﬂ@a with o Dper:ting

o
pars
&

O ot
[}
=

system software. Ouwr ultimate goal is 1o produce a
level language which can be used with (possibly)
extensions to re-work an already existing operating Sy
s that the higher level weralon, when complled, ocan =

.,,
h
=

_,
1
k)
.
T

as the DPLrai1na system on another machine., Our success 1

working toward this goal will depend, to a wery largs
extent, in how well we are able to solwve the I70 and system
sommunication problems. Work in these two areas is in

progress.

SIGPLAN Notices 21 1974 January

In addition, two other problems closely related to the
above, but of considersble impottance in thelr own right,
must be dealt with carefully.

A. We anticipsate that the process of accomodating the
lTanguage to specific hardware may rnecessitate the addition
of a rumber of machine dependent operators correspanding to
those order codes of the source assembler language which are
not sasily expresszed in tevms of the nucleus language. Such
a langusge extention could be accomplished in at least +two

ways:
1. By adding these operators directly to the syntax
of the language at the desired opsrator precedence
leveal.

2. By adding global tunctions written in terms of the
nucl eus 15n~u~ge which simulate the action specified
by the order code in question. These global functions
could bBe defined in & common area that would be
accessible to all programs in the operating system.

B. We will also nesd to bs akle to simulate the activity of
certain harduares vregisters and indicators in the nucleus
language extension. This could be done by adding new
declarations to the syntax, or, eguivalently, by designating
global warlables in the common area, corvesponding to these
registers and indicators.

We hope to automate the decompilation of the operating
system as much as is practically possible. A working
decompiler written by Barry Housel, a Purdue Fh, 0.
candidate, will ke wused to produce complete and automatic
control flow and variable usage analysis for the programs to
be decompiled, and to automatically coalesce reglster and
core/register manipulations into single higher 1 evel
statements whenever possible. This decompiler already
performs some loop and loop index recognition functions, and
work is under way to include procedure recognition and other
features as well. The code generators of the decompller are
currently being changed to produce code for the nucleus
language, and a compiler for the nucl eus language
implementation on the Microdata 1621 is being debugged.

VII. A FINAL WORD

It is important to realize that the nucleus language is
Tehdpd as the target languaqe for chumleatlnn and not
imply as systems programming language. It is therefore
ite simple in structure, sspecially with respect to the
d%fa structures that have besen lncorporated Into 1ts syntax.
MNeverthless, it is hoped that ressarch directed toward the
develapment of such a higher level language might alsc
contribute to a better unde Etandlng of the code and data
structuras most often employed by ewxperienced systems

Qe

i—-" 51
IYO

SIGPLAN Notices 22 1974 January

programmers, In addition, this res
Tight upon The arswers to Some of t

garch may also shed some
i]
auch subjects as:

e guestions dealing with

(1) the practical problems of translating a program
with goto's to one without them;

(2) the extendability and transferability of the
ayntax of any la"gU‘gE zimilar to the nucleus

language;
[2) the relative merits of goto wversus goto-less

systems oriented programming languages;

ru} the general pnrtablllt\ of amall computer

operatlng systems.
This, in itself, should he of considerable valus in all
efforts towsard thg development of higher level languages fnr
asystems implementation by helping ws to galn new insight
into the relastions hetwsen programming languages, program

structures, and opsrating systems,

Heknowl edgements

I am indebted to Professors Victor B, Schreider and John
L. FPomeranz for thelyr MEy helpful commeants ard
suggestions. I would also liks to thank my colleagus M,
Dennis Mickunas for his assistance in the use of the
Translator Writing System which he has developed at Purdue.

SIGPLAN Notices 23 1974 January

HFFEMDIX A
ARCHITECTURAL CHARACTERISTICS OF THE CLASS OF MACHINES M

bwte oriented, ssqguential CPU with a limited instruction
t

0 e
S

o

2} one or more operand registers, a program counter, and
warious index registers and condition indicators

31 one' s complement loglcal operations

41 two’s complement arithmetic operations

5} conditional transfers andfor skip instructions

i) & program interrupt facility of at least 1 level
Tl instructions for accessing hardueare status words

basic I/0 instructions for byte-by-byte or cycle-steal I/

o

1

&

SIGPLAN Notices 24 1974 January

HRFERMDT> B
LAMGURAGE SYMTHRT
I the following, the syntax for <name>, <number>, <sguids,
sprocids, <funcid:, grplds, and <arralds: are assumed 1o be
koo .

FHEXE PIAIN COMPOMENTS # %44
R A A i A MK A O A S
e §

<imtegers o= <number> SSRVRNUM

= ramet S SEAVRNEM

#
/

ol
u
L
had
’r-h
e
(...u
byl
ey
i &
¥

iy "o -

Cprograms s SPGEHSTE sgine <program blooks

<hegire 1= begin | <name> @ ALABELP <hegir:

»

bloclks <defimition bloc

program blaoclks 1o

leclaration blocks> end
sz blocks

Zdefinition blocks = <procedure definitions
"{dﬁfiﬂiifmﬁ blacks: <procedure definitions

P

N g P T

| <ztatement list> <statements> ; JCLRITF

<oecliaration blocks: = <declaratiorns
claration blocks: ;3 ACLRELTH <declarations

"The capitalized identifiers pracedsed by s
ramezs of the routines defining the "rule of tr
the production to which they are attached,

L

e R
f k= =
Lo

el R o

X
i
o
il
]
Al
i

FE i Y

o
Y

i)
il
o
5

[
=

"y

ol
i

(v
[k
5

[yl
£

__."..u,._i

s glwen by the assembler language code that is generated by
the rnamed voutine in the language compller. For more
details, refer to [Sc 63]. The specification of the rules

o
T
‘_i.
[}
=

o
—
jai]
b e
o
"

i i
of translation in the grammar iz not o

SIGPLAN Netices 25 1974 January

<declaration> ::= <procedure declaratior>
<length> <group declaration>
<length> <tuplex

<proocedure definition> !:= <procedure heading>
<program block> <endpros

<sndpro> = end /PRCEND
| end <procids /PRNEND

| procedure <procids /PRCOEF
{ <formal parametersz)} ; /SAVFCT

<procedure heading> ::= procedure <procid> ; /PRCDEF

<formal parameters> ::= Zidentifier> /ADTFCT
| «formal parameters> , <identifier> /ADTFCT

S IR LT SR

ks DECLARATIVE ELEMENTS ** ¥
R K AOK Ok R R KK KR K

<tupler 1:i= <tuple element>
| “<tuple> , <tuple elements

<tuple element> ::= <identifier> /VARDEF
<array designator> /ARRADS
<identifier> = /IVLNAM «<simple exprezsion>

FGENVAL

| <identifier> = /EQUNAM <simple expression>
FEETEQU

| <array designator> = (/GETBRS

<constant tuple>)} /GENRST

<constant tuple> ::= <constant tuple element> /ARRAIN
| <constant tuplex , <constant tuple element>
/ARRATN

<constant tuple element> ::= <Lconstant>
<strings
<integer>» /MULSAY * <Zconstants

S S ER 2 EERESE SRS EEEE R EL S S

wRxEx PROCEDURE AND RREAY DECLARMATIONG * ¥k *
K K A KO K K R K R N HOK KO SE K RO ROk Ok

<procedure decleration> ::= procedure <identifiers
/PRCNAM
|external /SETEXT procedure <identifier>
£ PRCMAM

| <procedure declaration> , <idertifier>

SIGPLAN Notices 26 1974 January

/PRCMNAM

<length> :1:= byte /SETBYT
| word /SETURD

<artay designator> 1= <identifler> /HARRMNAM
[=unsigred constant> /SETLTH]

LRSS SRR PESSEFES ST

#HRE X GROUP SPECTFICATION %% *xx
ER R R R R S R R RUR R S R R

<group declarationz 1= group <identifier> /TYPNAM
[«ocomponent listz> /TYFLTH]
<group variasble list»

<component Tist> ::= <component> JBNDTST
| <component listex , <component> /BNDTST

seomponent> = <identifier> [<unsigned constants
FOETBLT)

lcidentifier> { <unsigned constant>

FSETBLY) = <constant> /EQUSET

<group varilable lists 1:=

<gr
| “group wvaria

OLp wvariables
able list> , <group wvarlable>
<group variable> 1= <identifiers /GRENAM

| <array designator: /GRPNMAM

S RS E RS EE R S

#AKKE BOSTC STATEMENTS *¥#xt
ERE S SR EEE TR

<statement> 1:= <identifier> /LABELS : <statement>
<exits
<repeat>
“<assigrment>
zoto <simple expression> /GENJMP
move (<variable>» , <variable> ,
cunsigned constant>) JGENMVC
<procedure call>
return /EXTFRC | return <name> /LDEXPC
ccase clause>» <alternatives> <else clause>
Lendocasex
| «if clause - then clause - 1 >
<statement list>'<else clause> <endifx
cycle JENTCYL @ <statement ITist> <endcycle>
<for head> <statement list> <endior>
<io statement>

n’x_‘ H

SIGPLAN Notices

27 1974 January

i [=unsigned constant>
<unsigned constant> |
<unsigned constantz> , «<secondary>)

csave conditions
<o conditions
=t condltions

sk kr GTATEMENT COMPONENTS # ks
b e A O T IR S L A 4

L DO

i

et condition> ::s set

lition> r:= on <conditior> do @ <statement list>

<condition: to <ovalues

<save condition: y= save <condition» in <identifier>

e oy

<ghdoycles

1= and /GNEFOR

| end <identifier> SGMENFR

= end /GNECHL

[erd <identifier> /GNENCY

cendif> = and SGMEIF

<endoasas

| 2nd <identifier> /GMNENIF

1= end JGNECRS

| end <identifiers /GNENCS

Zio statement> 1= xilo (<devices,<address>,<functionz,

<for heads

Zalternatives> @i Zal

<modi fiers)

:= for JENTFOR <identifier> = <expressions
SERVERS step <expressione JSAVETE until
VEND do AHDLGERM

<expressions= S5H

ternatives:> <labels> FCASSEL
<atatement 1ist> JEXTCOAS
| <labelss FCESSEL. <statement lists> JEXTCHS

seonatants> SLABELE
] “labels: cconstant> /LABELR :

repeat /RPTCYL

repeat onamex /SRPTNCY

repeat /ENTRPT until <relations
SGEMRPU

| repest <names JENTHNRFP until
<relations AGEMNRPU

SIGPLAN Notices 28 1974 January

cprocedure callz = <procids /PRCCAL

\

| -é?utld« JPRCCAL («=s
SNUMATS

ﬁ
b’
w
i
h
i
in
fr
]
3
s
’.Jn
i3
g
W
—?

/RDDACT
. <expressions> FADORCT

<axitx
FERTITNA

sasslgrment> o= 2

Tt

aaions SGNSIND
551 on funtﬂD
«mwn*“ AN TMND
et SGRNSTND

D

e
-+
s Rt

HE I L R 1]
o o
~+
—
1

=+,
e
o~
-y,

leftpartl> 1= adusignators = FGEMNSTH
| '1-dwﬂlerafﬁr' FGEMSTH

<leftpart2> ::= [<expressilons] = /SGENSTH

Cif clause> <then clauses

]
|
-
pny
Xi
=
1
i
A
.‘I
o
H
—
.5
il
5,

<if olause
Z1if clause - then clause - 2% ::= <if clauses <then clause>

Zoase clause> =

e JENTCHE <simple expression> in

<if clause> ::= if JENTIF <relatiors /GEMIF
<then olausex ::= then /LHBGMT

<else clausex ::= else /LABGNZ : <statement lists

fi

ok ok R ok R K
EEXREF [PPEQ [U”T dok kR
FEE AR R R

srelation= = <simpl 55l or “relops
wzimple expression: /SIMREL
{ tex , <ralop> ,

<variable> , <unsigned constant>)
JCOMVAR

| compare ([<varishler , <relop> , <string>
. <unsigred constant>) fbuﬁﬂWP

| =conditions <cwalues

<simple expressions 1= <term>
| + =term>

SIGPLAN Notices 29 1974 January

<ml> <terms

] Pxpieaw‘lonx + <term> FADD

> expression» - <term> JEUR

& expression> v <term> FOR

B e p}ES‘luﬁw or <term> FOR

g expression» xor <terms> JXOR

= AGT | gt AGT
= /EQ | ey /EQ
/NE | ne /NE
= /GE | ge fGE
% SLE le /LE

dE orae -

Stermz = <factors
<term> ~ <iactors JAND
<ierm> and <factor> SHAND
<term> ¥ <factor> /AMUL
Zterme / <factor> /DIV
Ztermx mod <factors /MOD
<factore> 1= <shiftovs

! ~ <ahiftor> SNOTGERN

Zashiftor> 1= i%ecmndary}

<shiftop> 1:= slo | sro | sre | sglo

secondary> 1= ;11mﬂryf
. <primary= JGEMINMND
<function call=

zfurnction callz ::+= <funcid> /FNCALL
| wfuncide: AFNCALL
{<axpression Tistz) /NUMATS

Sprimary> 1= ators
esignators

l

wpressions)
gred constant> /LLORDCH
ignments>)

i-—'rm""i Ji —+

log =wvariablex /GENRDR
Zerpids /LORDGR

wdesignator> :

<l-designators ::= <variabler = /GENADR
| <variable> (<unsigned constant> /AFTBIT
=+ zunsigned constant>/RHTBIT)} /VBTOMS

SIGPLAN Notices

<r-desigrnators

variables o

Leonstants

<conditions

i

T3 e

l- T

oflow | intr
intrp3 | in

30

bl fiers SLOFDW
tal

=1

<unsigned constarnt>
| <m2 mUhul&ned riumkb e

= SLORDED

<integers>

£ SHVHER

ablex SLOBDWVL
lex [cunsigred
naigred constants
figr> Eif -""fﬁllf

constants
SRHTBIT 3 /MSTOVE

f
o JARRREEF [<expr

FIMEGHEER

= \uHEigﬁed rimn b e

Coval ues e

Zoewloex o

<address> 1= eslpnators

Zfunctionz ::= <designators

—-I £
e
LJ n
[ni]
~
“
i
M
o
el
LA}
o
%}
=
£
s
[
=
o

<mocdl

<strimg> 1= § JSAVSTR

1974 January

SGRPTOMS

JLFTELT

SIS TOGF

SIGPLAN Notices 31 1974 January

BIBL TOGRAFHY

R 71] Ashoroft, PFdward and Zokar Manna, “The Translation
jf GOTO Programs to WHILE Programs,” IFIP, 1971, Booklet TR-
2, pp. T47-52,

(Byr 721 Brown, F. J., "Levsls of Language for Portable
Software, " CHCM (15,12), December, 1372, pp. 10L9-B2.

e, B L., and Jl 0 Horning, "System Language
SIGRLAM (6,3), Cctober, 13971, pp. Ta-85.

[CH 71]

Clar
For Froject SUE,"

[Co B9] Coulouris, G. F. "A Machine Independert Assembly
2 for Systems Programs,” HAnnual Rewview In Automatic
B,2), 1969, pp. 89-10Y,

=Tat-OF-T
Fi o RS irng {

[Co T3] Cox, George, private communication, 1973

ﬁ nf De

IBM 681 IBEM Corwporation, IBEM_ 1130 Disk Monitor Swvstem,
Egﬂ;ign“gL“Pgogg_nmwr and Qpnratora Gu ide, File Mumber 11

35, Form C26~-3717~4%,1968

Harry, B PL/T Approach to Programming
i

Fuerbach, Ino, Frinceton, M. .,

[KF 711 Krouth, Donald E. qu Fobart Floyd, "Notes on
l:q"-,"Di.CH,H‘{‘ GOTO Statements i = irg 2
(1,11, February, 1971, Fp

[La ﬂg] L1ﬂd, Phatlr“ F., "SAL - Systems Fssembly Languages,

a

Leaverwor th, H. 1. (editor), “The GOTO

[Le 7T2]
Controversy,
(MHW 70] Meokeeman, W M., . . Horning and D, B.
Wortman, SIGPLAM Notices (7,11), November, 1372, pp. 54-31.
A Compiler Gensrator, Prentice-Hall Inc., Englewodd Cliffs,
M., 1870,

[RH 72] Rain, Mark and P. Holagevr,, "The Present ... Word
about lLabesls In MERY," Machine 0rlentcﬁ Larguages Bulletin

Mumbizr 1, MNorwegian Institute of Techrology, Uniuversity of

Trondhain, Nﬂtmdy, 1372, pp. 139-26.

[Ri £9] Richards, Martin, "BCPL:A Tool for Cumpi!ur Weriting
and System Frogramning, " SJCC, 1963, pp. 557-LEG.

SIGPLAN Notices 32 1974 January

[Ze BY9] 5o
fchrvmmlr' j
Volunes I4, _JCC THHU pp. 7

For Designing Fast
Froc, HFIFS Conf.,

[Sh 53] Shew, J. ©., "JOVIRL - A Frogranming Language for
Real Time Command Systems, " Honuwsl Review in Hutomatic

. Ra-T120,
Fherhard, af
5 e Oriented |anzuszes

[nwt] of rVihﬂHYura i

X .,,fl
Nmrway, 19?2, pp. h-12.

[BRET Wirth, M. and C. A
>

B, Hoare, "A Contribution to
the Development of FALGOL, " '
1

[N a
M (3,81, June, 1966, pp. 413-

£] mir+h5 M., "PLIED, H Programming Langua
15,1, Jdanuary, 1888, pp. 3

(Wi 741 Wirth, MW, "The Programming Language PHSCAL, " Hota
Informatica 1, 1477, pp. 35-63,

[Wu 7171 Walf, W, A, "Prm:r%mmimg Without the GOTD," IFIF,
1971, Hooklet,TH-3, pp. H4-88.

[u Flal ol f, o,
Hrogramming Langus

43,

.. RFeflections on a Syste

(6,91 Qotober, 1971, pp

