o SIGPLAN Notices 30 1974 July

Check for
Updates

SYNTACTIC RULES EMBEDDED IN PL/I

Joachim von Peschke
Telefunken Computer GmbH, D 7750 Konstanz
West Germany

Though there are already many translator writing systems [1] , we shall propose yet another one. The *philosophy
we shall follow is best outlined by a reference to Garwick [2] : "One should exploit a formal syntax as far as
possible, at the same time letting the programmer maintain complete control". This aim can easily be achieved by
embedding in PL/T syntactic rules similar to BNF,

More specific: For implementing translators (and also for other purpases) a PL{I-program may be useful that acts as
a preprocessor: it transforms a character-string or stream-file, called source-text, that may contain besides PL/I-
statements also syntactic rules (productions, categories) of a gemeral kind, into a character-string or stream-
file, called program-text, that contains only PL/I-statements, i.e. with the rules being expanded into legal
PL/I—staEements; during execution of the program-text left-right top-down analysis will be performed by recursive
descent [3] .

The source-text must have the following form (notation and unexplained variables as known from PL/I-manuals; ignore
+ in column 1):

source-text ::=
{ plt-statement | rule }...
rule ::=
rule-identifier ::={simple~spec [,]
[} redundant { simple-spec I,] Yoo 1ol
| { rule-identifier :}... PROC [parameter-list]
[RECURSIVE] RETURNS(BIT(1));
[parameterdeclaration]...
group ;
END-statement

+ + o+ + o+

group =
LY [C { iterate-spec[(LOOKUP-spec] | LOOKUP-spec Y] alternatives)
alternatives ::=
redundant alternative [1 redundant alternative] ...
redundant ::=
[11...
alternative ::=
{simple~spec [,1}...
| ;[part-statement
|position-statement | execute-statement | pli-statement],
simple~spec ::=
terminal
l reference
| group
+ .}~ simple-spec
terminal ::=
char-string-const-except-nullstring
+ | bit-string-const~except-nullstring
+ { [+)-Jarithmetic—constant
reference :i=
rule-identifier [argument-list]
| functioncreference
| variable~reference

+ +

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953224.953228&domain=pdf&date_stamp=1974-07-01

SIGPLAN Notices 31 1974 July

part-spec 3=
terminal
} reference
| group
} (expression)
+ | - part-spec
part-statement ::
[1abel-prefix]
iterate-spec :3=
)
+ | integer)
1 100 | BEGINY [TO [=1 710] expression | identifier = 1 T0 expression 1)
separator]
separator i:=
* [(LookuP-spec] alternatives *
LOOKUP-spec 3=
LOOKUP [CHAR])
name-spec ::i=
expression
position-statement ::=
[label-prefix] , variable-reference
execute-statement ::=
[label-prefix] . ;

Rules for comments and mandatory or optional use of blanks as in PL/I.

-+

0o

part-spec [, [name~spec] 1{ ;] ELSE pli~group}

+ +

++ + F o+ o+

Additional terminology: A specification is a simple-spec or a part~spec. An option is a specification that
begins with <l An alternative that contains no specification is called pseudo-alternative. The terms left-
option, main-specification and right-specification will be defined later,

The meaning of 3 source~text is found for most cases as follows: if the rules don't contain PL/I-statement, comma,
argument-1ist , label-prefix, and constructs form lines marked above by +, the grammar as specified by those syntactic
rules may be called a phrase structure grammar, and for it an equivalent in the well known usual syntax notation exists;
in order to get the equivalent delete the symbols equal and semicolon and the constructs comment and redundant, write
identifiers with lower case letters instead of upper cass letters (and ~ instead of), delete the quotes of char-
string—constants and underline the string (in most cases not necessary); substitute group brackets as follows:

<« ALTERNATIVES > by { 2lternatives ¥

<) ALTERNATIVES > by [alternatives J

<() ALTERNATIVES > by {alternatives §...

<I() ALTERNATIVES > by [alternatives 7 ...

<()* ALTERNATIVES-1 * ALTERNATIVES-2 > by
{ alternatives-2 [alternatives~1 alternatives-2]... }

H(O)* ALTERNATIVES-1 * ALTERNATIVES~2 > by 7
[alternatives—2 [alternatives—1 alternative&—Z]... b

(Remark: These small deviations from the usual notation are necessary in order to remain wi thin theS6~character-set
of PL/I, to simplify.the preprocessor (so that it needs only 1 pass and no recourse to syntactic analysis of PL/I~
statements). Note that a part-statement in its simplest form is only another representation of a specification, but
is capable of extensions. See example 1 below.}

Some additional points must be observed:

A) The program-text, generated for a source~text, contains no_automatic provision for lefterecursion and back-up
(back-up is meant relative to the sequence of tokens (atoms, symbols); these are found by other means, i.e.
by lexical analysis, see later); therefore, if a phrase structure grammar is specified it must be restricted
accordingly. Elimination of left-recursion in favour of iteration raises in practice no difficulty. Back-up may
be handled by means that are outside the possiblities of phrase structure grammars as defined above (example 10).
(If we had not singled out these special cases, they would slow down the execution of any grammar considerably,)

SIGPLAN Notices 32 1974 July

B) A pseudo—alternative is always regardec as non-matching (exsmples later).

C) An alternative consisting only of (1 or more) options is regarded as non-matching if not at least 1 of its
options matches (that is {[a] [b]Y ist taken to mean[a b Ja | b7J). If the largest group contained in
a rule is optional, also all references of this rule must be written as options (so that the preprocessor can
handle an optional rule as non-optional rules). (These conventions avoid an option within an iterative group
to cause unlimited cycling when the reading position is not advanced.)

D) The alternatives of a rule are normally tested in the order in which they are written, with the first matching
one terminating the test; thus the question of uniqueness of the grammer does not arise {one may have for
instance two alternatives, the former being a special case of the latter, see the definition of iterate-spec
above). (See later the exception with LOOKUP.)

£) The source~text must not contain some identifiers, all of which end with a break-character (they are reserved
for use by the preprocessor; note that ELSE is not reserved).

The expansion of a rule into procedural form, i.e. into PL/I~statements, will be performed by the preprocessor
in agreement with our conventions essentially as follows: If the specification is a reference (especially a
reference of a rule)

IF reference THEN ...

will be generated; if it is another expression (especially a char-string-constant)

If TERMINAL (expression) THEN ...

will be generated. The ELSE-path for completion of the If-statement depends on the position of the specification
within the sequence that makes up the alternative; let us distinguish between

left-options,
the main-specification (i.e. the first non-optional specification),
and all following specifications as right-specifications,

so that we can say: optionsare completed by
ELSE;
If no left-option occurs, the mein-specification is completed by
£LSE GOTO alternative—did~not-match;
(i.e. got to the begin of the next alternative or if no next one exists to the end of the group), otherwise by

ELSE DO; IF at—lea§t1—1eft—option—matched
THEN CALL backup;
GOTO alternative~did-not-match; END;

where backup stands for TBACKUP_ if the expansion contains TERMINAL , for GBACKUP_ if the specification is
a group, and for BACKUP_ otherwise. The ELSE~-path for a main-statement after the second * of a group with separater
tests also if the control variable of the group equals 1. A non-optional rigth-sepcification is completed by

ELSE DO; CALL backup;
GOTO alternative~did-not-match; END;

There will be a simpler expansion if the preprocessor is informed that the subroutine TBACKUP_ does not return
control (i.e. if it is not an application like example B in the last chapler below: then the G0TO after TBACKUP_
will be suppressed and TERMINAL_ will be combined with TBACKUP_ to a call of TERMINAL . A rule with ::=not
followed by a group, is completed by group bratkets; 51m11arly, the parts before and after the second * of a
group with separator are completed to groups if necessary. An opening group bracket is expanded to a PROC-statement
or a DO~statement of the kind

00 [v=18Y1];
At the end of each alternative a suitable GOTO~ or RETURN-statement is included.

SIGPLAN Notices 33 1974 July

In order to provide maximum flexibility, syntactic analysis is not dome entirely by the code generated from
the syntactic rules; rather it relies partly on an environment to be supplied by the user. The environment
consists of those PL/I-statements in the source-text that declare (among others) the function TERMINAL which
may have the description -

ENTRY(CHARC™)) RETURNS(BIT()

and serves (after suitable initialization) to compare a terminal (especially a char-sting-constant) with a token

in the input-stream, This function will not cope with back-up, i.e. successive calls of TERMINAL_ will use the

same token, termed current foken, until the first match between terminal and token occurs; thereafter for the next
call the next token is used. The environment must also contain the parameterless backup-subroutines (see example 9)
and a function TERMINAL _ which works like

TERMINAL_ : PROCCSTRING) RETURNS(BIT(1));
DCL STRING CHAR(*);
IF TERMINAL_(STRING) THEN RETURN('1'8);
CALL TBACKUP 5 STOP;

END TERMINAL ;

Among the facilities that exceed phrase structure grammars are the following ones:

1) A rule may have parameters and (correspondingly) a specification may have arguments (examples 3 and &).
Terminals may also be constants of other type than CHAR (they have the same form as data in a stresm for
PL/I-list-directed I/0, example 2). A part-statement may be labeled (restriction: the classification into
left~options, main-specification and right-specifications must not be disturbed by jumps) and it may contain
a specification for comparison with any scalar expression (example 68). A = before 2 group means that each specification
within a group will be prefixed by the bit-string-operator = .

2) PL/I~statements may be included in a rule for execution either in the case a specification matches or in the
case of no match (ELSE) (example 5). A GOTO leading out of an ELSE-path will in gemeral have as destination the
begin of the next alternative or the begin of a pseudo-alternative added at the enc of the group. PL/T-
statements are copied to the program-text without inspection, If no ELSE~path is specified one will be
supplied automatically as already explained.

%) Repetition may be controlled by a variable (example 6C). The construck

(iterate~spec
is expanded as follows:
() to DO v =1BY 15
(00 identifier) to D0 identifier =18Y 1;
(integer) to D0 v = 1 10 integer;
(D0 TO expression) to Do v = 1 T0 expression;
(DO identifier = 1 T0 expression) to 00 identifier = 1 710 expression;

with v supplied automatically. Iterative groups of the first two kinds try to match as often as possible,
whereas the other ones are regarded as successful only after they matched the specified number of times
(regardless of what may follow). By specifying BEGIN a new scope for declarations will be introduced, i.e. a
BEGIN-statement will be included before the DO-group. (Note that an optional iterative group is taken to mean
the same as a non—iterative option that contains a non-optional iterative groups)

k) The LOOKUP-spec serves for optimization; it indicates that each alternative on that group-level begins with
{ terminal ';=terminal[,[name—spec]]; }

(note: no ELSE~path), all these terminals have the same data type,and may be tested in any order (wheress
normally alternatives are tested in the order in which they are written). The last alternative may be a
pseudo-alternative. The program-text generated (near the end of the group) will be of the kind

OCL char-string=array(s..) STATIC INIT (...)
ALIGNED VAR CHAR(.eu);

GOTO 1abel(LOOKUP_(char-string~array));

SIGPLAN Notices 34 1974 July

Similar expansions for other data types (especially integers). The environment must contain a declaration for
the entry LOOKUP_ that compares the current token with the terminals (example 9). If LOOKUP CHAR is specified
it is assumed that the tokens (and terminals) will be 1 character long; then the generated program-text will

be of the kind

DCL INDEX BUILTIH;
GOTO label(INDEX(CURRENT_TOKEN,char-string~constant));

with the entry CURRENT TOKEN contained in the environment (example 9). (Remark: it is up to the PL/T—compiler
to produce optimal code for the GOT0. Note some similarity with transition tebles.) The expansion of a
right-specification in a group with LOOKUP will contain an ELSE~path with a STOP-statement instead of a
GOTO-statement.

5) An execute-statement is expanded to
CALL EXEC_;
A position-statement is expanded to
CALL POSITION_ﬁvariable—reference);

If a specification is followed by a comma, the following CAll-statement is included in the THEN-path of the
expansion: if the specification is a group:

CALL GNAME_(position, name~spec);
or CALL GSAVE_(position);

if the expansion of the specification contains TERMINAL (or TERMINAL):
CALL TNAME_(position,namespec);
or CALL TSAVE_(position);
otherwise
CALL NAME_(position, name-spec);
or CALL SAVE_(position);

where position is a bit-variable or bit—constant of value '"M'B if the specification in the slternative is the
first matching one with a comma following. The environment must contain suitable entries. (See example &)
(Note that also for an option only the THEN-path is concerned and the ELSE-path remains emoty.)

Examples

1) A rule that may usually be written

a:::b{c n}[ﬂ

may now be written with quotes and angular brackets as follows:
Azz=8<C DY
e > <IF>
Note that stacking of alternatives is still possible. An argument-list may be specified as follows:
ARGUMENT_LIST =:= *(* <()*','* EXPRESSION > ')'

2) Since also integers may be used as terminals, the lexical analysis performed by the procedure TERMINAL_ may
associate 1 or more integers (representing lexical categories) with a token and test for an integer. In order
to improve readability, et specification of the form (variable) may be used instead of integer (but see the
restriction with LOOKUP),

SIGPLAN Notices 35 1974 July

%) If an arithmetic expression is to be parsed without regard of operator priority, a rule of the following kind

b

et

may be used:
EXPR ::=<()*OPERATOR* OPERAND | (" EXPR *)' D> 3
Prioritites are taken into account (without need for back-up) by calling EXPR(0), where
[XPR: PROCCPRIOMIN) RECURSIVE RETURNS(BIT(1));
< <oegrans bor(roExer(D) D' >
<F() OPERATOR(PRIOMIN,PRIO) EXPR(PRIO) >

7
END EXPR;

OPERATOR is the lexical category of the infix operators with (nom-negative) priority greater than its first
parameter; OPERATOR assigns the priority of the current token to its second parameter.

A specification may do some unorthodox additional tests; for instance
MEMORY (rule~identifier~1, rule-~identifier~2)

may call ruleZ only if the last but one procedure activation is one of rulel (may be used to combine two
rules that differ only slightly, depending on left context). Other dependencies on earlier parts of the
analysis may be specified by

BOTH (expression, rule-identifer)
(see also exzmple 10). The specification
LOOKAHEAD (array-of-terminals, rule-identifier)

will call the specified rule only after successful comparison of the current token with 1 or more terminals

in the same way as TERMINAL would do but without giving permission for the reading position to advance to

the next token after success {mey be used for optimizing rules that can start only with the specified terminals
but need many activations before calling TERMINAL_ in the orcinary way . (In special cases a set of integer
terminals may be compressed in a bit string to perform the operation & on it instead of using an array.)

Also many other specifications depending on right context may be useful as well as a specification that
matches any current token (see COMIT and SKOBOL frv examples)s Note that we have based our language on a very
simple 2lgorithm; the more complex kinds of scanning and replacement operations may be performed by refinement;
this is possible because of a cereful design of the interface between the environment and the control structure
represented by the rules.

fxecutable PL/I-statements may be embedded in rules for whatever fecility is needed, for instance to build an
intermediste parge tree (using the list processing facilities of PL/I) that mey or may not reflect the
structure of the parse; or they may store identifiers in a symbol table or deliver code; they may aid syntactic
analysis by cownting parentheses, or by checking if a list has more elements than permitted or by other error
checking (for instance an error message in a pseudo~zlternative at the end of a group). A GOTO-statement

may be used to get a more compact syntactic description; for instance an alternative of the kind

alv {alc)

may be substituted by

[v[cl]a
if after ¢ a GOTQ-statement is included that abnormally terminates 2 groups and skips the specification a
(may be plus some adjustment of the tree). A GOTO-statement may select an alternative by using a label-array
that is initialized by a prefix before the first statement of each alternative of the same group; the
selection may depend on earlier parts of the analysis, for instance on data types associated with identifiers
or constants. For declarative PL/I-statements within a rule see example 6C.

SIGPLAN Notices 36 1974 July

6) A part-statement may not only test tokens;j in the case of a successful test it may edditionzlly perform an
action, Since this action is a CALL to a user—defined procdure in the environment the user may choose what
is to be done with the last token. In a very simple case he may choose to substitute the last token by
another string (of equal length) and never use it again, but more often he will wish to keep the result of
analysis easily accessible for a longer time, i.e. to store a copy.of the last token in a separate variable
or to store the current reading position in a variable of type FIXED BIN. Or he may proceed in building s
parse tree that reflects the structure of the rule activations and that has tokens and names of rules
stored in the nodes (in order to get the name of the rule a function would be needed that returns a string
similar to that printed by the SNAP-option in on-units), or with the result of the name-spec stored in the
nodes; but the name-spec may as well provide a variable in which to store a pointer (of any scope and
storage~class) to the last part of the tree or an entry to a code generating routine. Note that these
actions could as well be done by explicit PL/I-statements.

Examples:

A) /* REORDERING OF ITEMS */
=B ITEM1; =C ,ITEM2; PuT EDITC ITem2 [} Irem1) (a);
B) =COMPARATIVE,ITEM; ='aND'; =(ITEM);
¢) oL (4,8)(3) PIR INIT((ZNULL);
000 J=17103); =X,A(J); =Y,8(J);

then some actions using A and B D

7) 4 position-statemént may be regarded as a part-statement without test; it may be used to store the reading
position or a pointer to the last part of a3 tree.

8) An execute-statement may be used to execute a subroutine or to evaluate s function, with entry and parameters
taken from the last parts of a tree (these parts may be regarded as a stack) and then updating the tree. Or it
may deliver the text so far accumulated in the last parts of a tree.

9) Primitive example of an environment; assumption for this example: each token 1 char long.

BACKUP_: TBACKUP_: GBACKUP_: PROC;
O CONDITION(SNAP) SNAP; SIGNAL CONDITION(SNAP);
STOP; ‘
END BACKUP_:
DCL TOKEN. CHAR(1) STATIC, VALID FOR_TESE, BIT(1) INIT('0'B) STATIC;
CURRENT_TOKEN : PROC RETURNS(CHAR(1)Y;
IF VALID FOR_TEST_ THEN DO; GET EDITCTOKEN)(AC1));
VALTD_FOR_TEST_=*1'8; END;

RETURNCTOKEN) ;
END CURRENT_TOKEN_;
TERMINAL_: PROC(STRING) RETURNS(BIT(1));
DCL STRING CHAR(1);
IF CURRENT_TOKEN_ = STRING THEN DO; VALID_FOR_TEST_ = '0'8;
RETURN('4'B); END;
RETURNC'0'B);
END TERMINAL_;
LOOKUP_: PROC(STRINGS) RETURNS(FIXED BIN);
DCL STRING(*) ALIGNED VAR CHAR(*), HBOUND BUILTIN;
TOKEN_ = CURRENT_TOKEN;
DO I =4 70 HBOUND(STRINGS);
IF TOKEN_ = STRINGS(I) THEN RETURNCI);
END;
RETURNCO) ;
END LOOKUP_;

SIGPLAN Notices 37 1974 July

10) Now let us see how the well known methods of handling back-up fit in our framework. If efficiency is of

1)

importance, back-up should be avoided; this may be done in simple cases by merging left parts common to
several alternatives [li,5] s 1.e for instance

abfac
2 ¢} a
{ref :=}... espression;

are substituted by

aivlec }
a[c]
ref {:= ref Yeoo Lespression~tail] ;

See also the syntax of iterate-spec as defined above. In more complex cases, for instance if the above changes
of the syntactic description would lead to a lenguage structure regarded as unsuited for semantic description,
or if in a language without reserved identifiers an assignment-statement has to be distinguished from
statements of other type, then a (single, simple) prepass may be considered that gathers information, so that
decisions in the main pass can be made early enough by a specification of the kind

BOTH (bit-variable, rule-identifier)

that tests for the rule only if the variable, set in the preprass, equals '1'B. (I7 a prepass is used it
would reasonably do some additional work, namely change thie source into a more machine-oriented form and
attach to each token 1 or more classifying integers, so that the main pass cen work with integers instead of
strings.) A more general but less efficient approach is the following one. That part of the grammar in which
back-up is needed, is arranged such that it has its own scope. The specifications in this scope 2re supplemented
in general by a comma. The environment for this scope contains a CONTROLLED variable whose generations give
for each active alternative the reading position on entry to the alternative. A generation is allocated and
freed by the save-routines introduced by specifications followed by a comma. The backup~routines reset the
reading position according to the last generation and free it (as a preparatory step for printing error
messages, the backup—routines may also store the rightmost reading position ever reached). In general, a
non—optinal right-statement will have no ELSE-path, so that one is supplied automatically as explained above,
i.e. one that calls a backup-routine and then jumps to the next alternative. But those part-statements that
always must match, are supplied by the user with

£LSE CALL ERROR(error—number) ;

so that in case of an error a message can be printed and the analysis of that part of the grammar can be
reinitialized (including the CONTROLLED variable). If a tree is used, reading positions may be saved in the
tree so that no CONTROLLED variable is needed (storing reading positions may be useful slso for other
purposes).

The language that is input to our preprocessor, i.e. PL/I extended by a variant of BNF, is a means for
compact but easy to read formalization of many problems with complex logic; this is due to its possibility
of separating the program control structure from the operations, the first being concentrated in "rules"
and the second making up an "environment™, i.e. the interpretation of the rules. Thus this language gives
a framework that is general enough not only for writing translators for formal languages, but also for other
purposes, for instance for computational linguistics (note some similarity with the approach of WOods(:6],
based on LISP, and his critique concerning transformational grammars), as macro language (compile-time
facility) and for other kinds of symbol manipulation and pattern matching. It may also be used for merely
defining a language, for instance the more complex features of PL/I; this saves the user the bother of
learning an additional language (like the metalanguage VOL that is designed only for the purpose of
defining and cannot be used for programming as well).

SIGPLAN Notices 38 1974 July

Some problems do not fit well in our framework, for instance (1) enumerating a1l strings (up to @ fixed length)
that can be tested successfully by'a given rule, or (2) quasi-parallel execution of the alternatives, i.e,
immediately after successful execution of one alternative another one of the same group must be selected and
executed, possibly with some comparison of results on re-unification of thepaths at the end of the group.

For these cases the straightforward solution would require something like co-routines, but there are no
suitable primitives in PL/T for use in the expansion.

In most cases it will be reasonable fo define 2 new language as extension of one for which @ compiler is already
available, so that only a preprocessor has to be implemented. This poses constraints on the language designe
Otherwise one could introduce new elements by systematic revision instead of merely adding them. The starting-point
for such a revision may be the following observation: Like PL/I-FORMAT-statements whose meaning changes according
to their use with GET- or PUT-statements, it is possible to use rules, by merely changing the emvironment, not

only for syntaetic snalysis but also for instance for

A) concatenating a string (or stream-file) out of severalstrings; then the procedure TERMINAL would do the
concatenation and return alweys '1'B;

B) performing Boolean operations; sequencing of specifications in en alternative is interpreted as the operation &
in the following environment:

TERMINAL :PROC(STRING) RETURNS(BIT(1));
OCL STRING BIT(1); RETURN(STRING); END;

BACKUP = TBACKUP_ : GBACKUP : PROC; END;
0) allocating (and initializing) storage to the components of an aggregate (the rule is then an explicit
representation of a tree).

Note that a compiler for such a language should avoid redundancies if the entries of the environment are
INTERNAL and of the simple kinds mentioned under A and B above., A new systematic lanquage would also provide a
case-statement, i.e something like

If scalar-expression = group {;’ ELSE pll~group }

This would be in lime with what is usually called goto-less or structured programming. The main advantege of
a lanquage that is more systematic would be a simpler description of its semantics (mey be by prose rather then
by a formal metalanguage) and the possibility to construct suitable hardware.

References

1e JoFeldman, D.Gries: Translator Writing Systems,
Comm,ACH 11(1968% p. 77-113

2. JuV. Garwick: GARGOYLE, A Llenguage for Compiler Writing,
Comm.ACM 7(1964), p. 16

3. RoM.McClure: An Appraisal of Compiler Technology,
Spring Joint Computer Conference 1972, p. -9

b, D.Cohen: A List Strwcture form of Grammars for Syntactic Analysis,
Comp.Surveys 2(1970), p. 6582

5. J.M.foster: A Syntax Improving Program,
Comp.J. 11(1968), p. 31-34

6. W.A. Woods: Transition Network Grammars for Natural language Analysis,
Comm.ACM 13(1970), p. 591-606.

