SIGPLAN Notices 13 1974 June

b
== technical contributions

AFTER THE GOTO DEBATE

Hilmer W. Besel

Mathematics Department

Loma Linda University
Riverside, California 92505

The current discussions about structured programming and related
topics are indeed interesting and constructive. Undoubtedly others,
like myself, are awaiting some eventual consensus on these issues
as, for example, whether strict single-entry single-exit blocks or
some modification of these are most suitable (1) (2)(3). I think
I would vote for the modification.

My purpose in this contribution is to raise a somewhat tangential
gquestion and hopefully to provide a suitable answer. The line of
thought to be presented began some vears ago with a comment by Dr.
Loren P, Meissner, a colleague during a past employment, namely
that a flowchart ought to bhe "typeable." The idea, of course, was
that then the flow chart could also be computer produced. This
was not taken very far by us at that time partly because the only
mechanism to show program structure seemed to be indentation, and
this alone does not easily nor neatly satisfy all requirements.

My question is:

after the debates of program structure and variable

binding (4), etc., have been at least somewhat settled,

how do we capitalize on these new insights in the

mundane, everyday, down-to~earth programming activities?

What I mean is:

What form shall the actual document take that the

programmer is working with day by day and that he

leaves for posterity?

I am aware of various schemes and programming systems which
routinely produce flow-charts of the old variety using large boxes
and diamonds, etc., made from lines of asterisks and such. Pre-
sumably, these kinds of systems could equally well produce the new
flow-chart symbols such as proposed in (3) and (5). I also realize
that computer graphics systems can draw symbols like these.
However, I do not consider either of these approaches entirely
satisfactory. Both imply that there exists a program listing in
addition to the flow chart. Also graphics systems are considerably
fewer in number than typewriter terminals. I agree with the crit-
icisms of present systems expressed by Ehrman (6). ~

A solution to the problem should maintain the goals espoused
in the current discussions, including: perspicuity with related
simplicity(2) and convenient revision facilities. Moreover, the
language processor and/or system facilities should do the external
as well as internal bookkeeping associated with program production.
And, ideally, the detailed version of the flow chart should be
part of, or closely associated with, the program text itself on

the same external hard copy sheets.
The following proposal is, I think, in keeping with these goals.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953233.953234&domain=pdf&date_stamp=1974-06-01

SIGPLAN Notices 14 1974 June
PROPOSAL.

The editing facilities associated with a language processor should:

1. accept as input

2. modify as directed

3. maintain intact internally

4. be able to print out

the program text in units of "pages" roughly compatable
with the typed contents of, say, an 8 1/2 by 11 inch sheet of paper.
Such an editor would ideally be a powerful on-line, interactive
program. "Page" refers merely to a convenient sub-unit of a
program, eg. a procedure, as also suggested in (2).

Further, such a "page" should have defined within it certain
standard regions which correspond to portions of the sheet of
paper and which regions are handled by the editor in ways peculiar
to each such region. I will name these regions respectively the
HEAD, STUB, BODY, and FOOT, placed as shown in the diagram.

The HEAD contains page identification

- information for the reader of the
HEAD program, with the page number being
in some form of Dewey decimal scheme
so that page insertions and deletions
are easy. The STUB contains the
line numbers of the program text for
BODY such languages as ALGOL and PL/1 that
do not use line numbers for internal
referencing. In addition the STUB
contains program flow information.
_________________________ - The BODY contains the program text,

FOOT and the FOOT contains indentifier
cross-reference information in the
form of foot~notes.

When called upon to supply program text for the language
processor, the editor transmits only the BODY portion of each
successive "page", but maintains intact the other portions. The
editor might also generate and/or update the information in these
other portions as discussed below. The complete text handled by
the editor can be basically a string of characters, with a special
character connoting the major separations: a double such character
simultaneously marks the beginning of a new page and the end of
the last, after which the first occurrence of this character marks
the end of the HEAD and the second occurrence the end of the BODY.
The STUB is separated from the BODY by an implied (and perhaps
dynamically definable) tab which is easily implemented by a count
from every carriage return within the BODY.

Possible variations of this scheme include letting the STUB
extend upward and/or downward to the paper's edges. Also a right
hand STUB could be defined in addition to or in place of the left.
The BODY could be divided into sub-regions for declarations and
imperative text as was done in NELIAC (7). Note that line number-
ing may repeat on each "page".

The foot-notes in the FOOT region can be numbered, and their
antecedent markea in the BODY by enclosing the numbers in special

!
]
|
i
i
!
|
t
]
|
|
!
|
|
1
J
t
4
i
]
i

STUB

SIGPLAN Notices 15 1974 June

characters. For example, in PL/1, the otherwise unused double

quote character would do nicely. Thus in the BODY, an identifier,
say, would be referenced as ... €indent) "5" ... , and in the

FOOT would appear: 5 {cross-reference information) . In this way
also, variable binding information might be documented. Of course,
the editor should delete such foot-note references when transmitting
BODY text to a language processor.

The implementation of an editor such as envisioned here could
be on at least two levels. The least sopisticated approach would
not provide for any feedback from the language processor to the
regions of a "page." The programmer would simply provide the text
for the various regions to the editor so as to come up with a well
documented final copy, but would have to revise the various entries
on line as changes are made to the program. At a higher level of
sophistication the editor could receive information back from the
language processor and automatically produce or modify the docu-
mentation in the HEAD, STUB and FOOT regions.

The various regions on a "page" have been discussed in.a
general way. By far the most important aspect of this scheme is
the specific flow information which appears in the STUB. Since
this is best shown by examples, my contribution concludes with some
samples which are self-explanatory, and include various flow-units
discussed in (3).

7 //A\\\ e o
/:\/\ P : o . \f/, -
% 050 CALL ... 7. 500 IF THEN ...
. 510 ELSE ...
(100 BEGIN .
. ? . 550 IF ... THEN ... /
/ /
) 150 END // . ya
. ? 600 IF ... s
. . 610 THEN DO
+ 200 DO . \\\\
670 END \\:>
. . 680 ELSE ... 7
- 250 END . o
. ? 700 IF ...
*A 300 DO I = ... ? A 710 THEN IF ...
. | B 720 THEN ...
*B 340 DO J = ? B 730 ELSE IF ...
. 740 THEN ... \>>
. 750 'ELSE DO ,
/B 380 END . Vs
/A 390 END . 4
. 790 END
. A 800 72 =W |
400 DO CASE I . |
%1 410 CALL |
%2 420 CALL
3 430 X =Y 3 900 RETURN (VALUE) ~
&l 440 RETURN (BAD)
END CASE /////\\\\\\\/,,/

SIGPLAN Notices 16 1974 June

A system such as outlined above would make programming a
delight, and go a long way toward reducing the cost of building
programs.

REFERENCES

(1) McCracken, Daniel D., "Revolution in Programming: An Overview,"
Datamation, 19, 12, December, 1973, p. 50.

(2) Donaldson, James R., "Structured Programming," Datamation,
12’ 12, December, 1973, p. 52.

(3) ©Nassi, J. and Shneiderman, B., "Flowchart Techniques for
Structured Programming," SIGPLAN Notices, 8, 8, August,
1973, p. 12.

(4) George, James E. and Sager, Gary R., "Variables--Rindings
and Protection," SIGPLAN Notices, 8, 12, December, 1973,
p. 18.

(5) Celko, Joe, Letter to Editor, SIGPLAN Notices, 8, 10, October,
1973, p. 3.

(6) Ehrman, John R., "System Design, Machine Architecture, and
Debugging", SIGPLAN Notices, 7, 8, August, 1972, p. 8.

(7) Halstead, Mauris Eoward. Machine Independent Computer
Programming. Washinaton: Spartan Books, 1962.

