Check for
Updates

SIGPLAN Notices 21

1974 October

Reply to a paper by A.N. Habermann

on the programming language Pascal

Olivier Lecarme and Pierre Desjardins

Research group on programming systems
and languages,

Département d'Informatique,

Université de Montrésal,

C.P. 6128, Montréal 101,

Canada.
Summaxry .

A.N. Habermann recently published some "critical
comments on the programming language Pascal'. His
reproaches are principally that numerous constructs
are ill-defined, that there is "confusion" amongst
ranges, types and structures, and that the goto
statement should have been abolished. The present
reply successively deals with points that are clearly
refutable, those which are debatable and those which
constitute valid criticism. Its principal aim is
to encourage the reader to form his own opinion.

1. Introduction

The stated purpose of the paper by A.N. Habermann
[1] is to demonstrate that the programming language
Pascal, as defined in the Revised Report [2], is not
suited to any of its objectives: it is claimed that it
lacks some fundamental constructs, that it is a poor
teaching tool, that it contains some totally inade-
quate features, and finally that it is incompletely
described by a document full of errors.

The reputation of its author [3,4,5] can make
the paper harmful to Pascal, so we think a reply is
in order. We will attempt to correct the unfavourable
impression that readers, without any knowledge of
Pascal, could get from Habermann's criticisms.

We will not follow his argumentation point by point,
but rather classify the subject matter into four
parts: clearly refutable points, points which

are at least debatable, valid criticisms and finally
misunderstandings and minor errors. The aim of our
reply is to encourage the reader to form his own
opinion, if possible by practical experience with
the language, or in any case, at least by a careful
reading of the basic papers relevant to Pascal
(I6lor better {2], [7] and [8]).

2. Refutable points

In this section, we deal-with points which are;
in our opinion, clearly refutable, i.e. criticisms
which resulted. from a misinterpretation of the basic
aims of Pascal or ‘a misunderstanding of some major
aspects of the language itself. It is possible
that some people might have preferred a different
distribution of points-‘between ‘this sectionand the
following one.

2.1. Useful constructs not included iﬁ Paseal

Habermann suggests -four such constructs, of
very unequal importance. :The main point to note
is that it would be very easy to-continue adding
constructs to-the language indefinitely: Pascal
does not contain all the constructs which may-be

using the sieve 'of Eratosthenes.

considered useful, nor even all those present

in other programming languages. This is because
creation of an endless list of constructs is
clearly not the right direction to follow for

the development of better programming languages.
The most unfortunate attempt in this direction

is that of PL/I [9], and even its most irreclaima-
ble addicts and most enthusiastic eulogists

always seem to find more constructs to incorporate
in it [10,11].

In fact, one of the principal strengths
of Pascal is that it is a simple and concise
language, including only what is vital for reaching
its aims. We remind the reader that there are
only two of them: to allow the teaching of pro-
gramming as a systematic discipline, and at
the same time to be implementable in a reliable
and efficient way. These objectives are
precisely the most difficult ones to reach
when using languages which try to incorporate
all '"useful comstructs'. The author of Pascal
has therefore severely restricted the number of
facilities, and it is quite sure that almost
everyone will find missing certain of his
favourite constructs. In section 3, we shall
examine three of the:'left out" constructs
regretted by Habermann.

2.2. An exercise in programming in Pascal

The simple exercise worked out for the
reader by Habermann is supposed to prove.that
Pascal is a poor tool for teaching programming.
All that such an example demonstrates is simply
that it is possible to use Pascal badly, which
is of course true for any tool. If.one tries -
to learn to write using his pencil upside down,
the bad results will not be in any way the
fault of the pencil. Consequently,” we prefer
to rework the. part of the example which is
given, to.show that in. actual Pascal no difficul-
ties arise.. :

The. problem is to.compute prime numbers.
A-comparison
of the: different algorithms available; even.
superficially, should be useful before

trying to put.down:-a solution [10,12], but

-this precise algorithm is not so bad, and it has

been: particularly well investigated by Dijkstra
[13] ,~Hoare [14} and: Wirth 05,16].

Habermann chooses to represent the
numbers. between 2 and n by an array of integers,

~.in which every element contains.-its own. index:

to remove a number from. the sieve, one will 3551gn

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953343.953345&domain=pdf&date_stamp=1974-10-01

SIGPLAN Notices 22

a zero to the corresponding element. Although using
the set structure of Pascal should be far better

[14,15], we shall use simply a Boolean array, not

only because it seems more natural but because we

will encounter the same problems with indexes as
Habermann did. A natural way to start-off the program
is:

const n = 1999;
type sievesize = 2..n;
var A : array [sievesizel of Boolean;
1 : silevesize;
begin for 1 := 2 ton do A 1] := true
The constant and type declarations for »n and
sievesize are not mandatory but very useful: they
contribute to the clarity of the program; the
number 1999 textually appears in only one place;
a modification of the program to deal with 3000 or
200 numbers would require modification of the
constant declaration only.

Using as pretext the ideas of Dijkstra [17],
Habermann then proposes to replace the for statement
by a repeat statement. This modification is comple-
tely useless, since the for statement is perfectly
adapted to situations where the number of iterations
is known before entering the loop. Moreover, the
program could become less efficient, and will surely
be less clear. But the modification brings forth
an interesting point: in a repeat or while loop
simulating a for loop, the control variable needs to
take on one more value than in the for loop. This is
not inherent to Pascal but to the meaning of these sta-

tements, The natural solution in Pascal is to declare
7 on a subrange longer by one than the index type of A:
const n = 1999;
type stevesize = 2..n; indexsize = 1..n;
var A : array [stevesizel of Boolean;
i ¢ indexsize;
begin i = 1;

repeat i := i+l; A [1] := true

until i =n

Furthermore, there is no problem in using the
operator +, since all operators which are defined on
integer operands also accept operands whose type is
a subrange of the type integer. This is quite
obvious, otherwise, there would have been no
point in defining subrange types. Furthermore, all
the above 15 clearly stated in Axiomatic Description
of Pascal [8], as we shall see in section 2.3. Si-
milarly, there would be no problem if we choose to
write 7 := suce(i) instead of ¢ := ¢+I:as a general
rule the suce function has no cognizance of whether
or not its argument was declared to be of a scalar
type or of a subrange of that type. So in the case of
1 := suce(1) when < = 1999, the successor value is defi-
ned since 2999 does have a successor in the base type
integer. Finally, the fact that the index type of A
is not ‘the same as the type of £ is no problem either;
both have the same base type, i.e. integer, and the only
validity condition for array references is: that index
values fall within array bounds, as in all programming
languages.

The next section of the program deals with the
search for prime numbers, and is straightforward, Add
a variable k of type 0..n (which can, for the sake of
simplicity, serve also for %) then:

1974 October

if 4 14] then
begin write(i);
{erase all multiples of 1 :}

i
+ i; A [kl := false end

Habermann's
quently so does ours.
by Habermann is that
teaching programming

example stops here, conse-

The conclusion derived
Pascal is no more suited to
than any other language.
We have already said at the beginning of the
present section that one can without proving
anything, write bad programs in any language.
What seems more serious to us is that this section,
as well as the remainder of Habermann's paper,
places criticisms of the style of the Report,
and criticisms of the language itself, on the
same level, and incorrect interpretations
which may result from the former are used to try
to belittle the latter, by systematically
using its possibilities at the wrong time.

2.3. Subranges and types
One of the most original aspects of Pas-

cal is the whole notion of type. To use the same
terminology as Habermann, this one notion unifies
different concepts which may be named 'type"
(the manner in which bit patterns must be inter-
preted),''range' (the set of possible values for a

-variable of the given type) and '"structure"

(a template for storing data). We shall defer
until section 3.5 the debatable parts of this
novel approach, and examine here only the clearly
positive points.

One must not fear that declaring a varia-
ble of subrange type makes that variable lose all
the properties of the base type from which the sub-
range is taken. On the contrary, this variable
inherits all the properties of the base type,
plus the possibility of having run-time checks
performed whenever values are assigned to that
variable and also the property of possibly
taking up less space in memory. Another most
important point to understand is that the type of
an expression is not always the same as the types
of variables in it. This is true even in Fortran
or Algol 60 for example, in Algol 60, 1/2 is of
type real while its operands are of type
integer, and I < 2 is of type Boolean. The
Axiomatic Description of Pascal is perfectly
clear on the matter. Given a scalar type T and a
subrange type S extracted from T, if a and b are
variables of type S and ® an operator defined on
type 7, then the expression a ® b is legal, and
yields a result of type 7. The assignment state-
ment is handled in a similar way, but assignment
of a value of type T to a variable of type 5 is not
always legal.

Of course it is true that most of the
validity checks involved in subrange types must
be made at run time, but ‘it is an easy thing
to have them performed only when the user requests
so (or better still, always have them made unless
the user explicitly says otherwise); moreover,
they constitute an invaluable debugging aid.

SIGPLAN Notices

Subranges have other important qualities. Their
mnemonic and descriptive value is such that a well-
written Pascal program generally does not contain

any integer variables : they are replaced by variables
whose type is a subrange of type integer. Another
important aspect is that they allow the user to control
the space occupied by a variable of subrange type,

for example when he includes one as an element of a
packed structured type; this is much more general

and machine-independent that the long or short attri-
butes of regl and imt in Algol 68 [18].

unstructured

23 1974 October

Section 5 of Habermann's paper concludes
with a tree diagram supposed to represent the type
hierarchy in Pascal. A more correct version of
this diagram follows. It uses Hoare's terminology
[19], since Pascal implements most of the ideas
presented in this paper. One can see that the
type "pointer" is not explicitely named, since in
Pascal a pointer variable always designates a
value of a given type; pointers do not constitute
a true type, but are only a method used to imple-
ment recursive data type [20].

[primitive | | subranges |
-integer
-real ! —
-integer cartesian array | { powerset | { sequence |
product -array -set -file
-record .
) (without
]enumerationl variant) | discriminated recursive
~Boolean union
~user-defined -record (with
variant)

2.4.

In seetion 2.2, Habermann writes in an example
the expression u [€] * u [£], and adds as comment
that Pascal has no operator for exponentiation. For
this precise case, Pascal gives the function sqr(x),
which squares its argument (real, integer or subran-
ge thereof]. For most compilers, the generated code
for a multiplication would be better than the one for
u [42] + 2, which would probably require evaluation of
a logarithm and an exponential. More generally, the
exponentiation operator was not made a part of Pascal
for the sake of simplicity and clarity. 1If one tries
to completely describe it, for all valid and invalid
combinations of operand types, signs and precisions,
one inevitably obtains several pages of complicated
explanations and tables [21].

Miscellaneous

Another clearly refutable suggestion is the one
which is made in section 6, to have a default passing
mode for structured values in procedure calls. Such
a proposal would only introduce an incoherent parti-
cular case into the language, making programs less
clear,
default options' which depend on context and on the
nature of objects, éspecially in parameter passing.
One of the basic principles of Pascal is to hide
nothing from its user, and to do nothing in his.place,
as would be the case if a parameter was supposed to
be variable simply because it was a structured one.

3, Debatable points

In this section, we deal with points on which
reasonable people can disagree in-all honesty. . Gene-
rally, the direction chosen in Pascal is clearly: not
the only reasonable one, and a different approach
would surely have its qualities. However, the solu-
tions taken for Pascal generally fit well in the whole

The example of PL/I ‘clearly shows the danger of

philosophy of the language, especially as to
clarity and simplicity.
3.1. - Block structure

Pascal does not provide a block structure
in exactly the same sense as Algol 60 [22}, since
all declarations are made at the procedure level,
the program itself being a degenerate procedure.
Therefore, it is not possible to open a block in
the middle of another, simply by introducing
some declarations after the pegin symbol. - However,
it is very important to clearly distinguish
between the different possibilities given by
the block structure of Algol 60, and to see what
possibilities Pascal lacks because of its different
approach. - Both languages provide dynamic storage
allocation of variables, as well as the notion
of locality of declarations. Only Algol 60 offers
the possibility of including two-disjoint blocks
within a single other one, thus saving-storage
by assigning variables of both blocks .to the same
area.. In Pascal, this economy:is only possible
at the -procedure level.

. The advantage of the approach taken in
Pascal is, once more, that of simplicity. .
Declarations: are-clearly separated: from instruc.
tions, being grouped between the heading and
body of procedures (and functions). The begin
symbol has only one purpose, which cannot be
modified by what follows it. In Algol 60,
it is ‘not ‘obvious whether variables local to the
body of a procedure are declared at the same
level as parameters, or one level higher. “Another
source of difficulties is the fact that the
introduction of a-declaration at the beginning
of -a-compound statement changes the scope of

SIGPLAN Notices 24

every label defined within this construct.

In fact, the resulting simplification and cla-
rification in Pascal does not seem to be disadvanta-
geous, since experience shows that for a program built
in a modular and systematic way, the need for disjoint
blocks which are not procedures seldom occurs. When
it does, the price to pay is not heavy: define two
procedures without parameters, one for each block, and
call them in place of the blocks. The block then
becomes a particular case of a more general construct.
To define as procedures the modules used during
program design is more general and natural than to
replace them with disjoint blocks. In fact, it is
a logical consequence of top-down design, which is one
of the bases of structured and systematic programming.

3.2, Dynamic arrays

The bounds of an array declared in Pascal must
be known at compilation time, so changing these bounds
implies recompilation of the program. Although ge-
nerations of programmers have submitted daily to this
constraint when using Fortran, it is true that it
is an inconvenience. Before condemning Pascal,
however, it is worth examining the magnitude of this
inconvenience, and to see whether the inconvenience
is not compensated by some advantages.

First, we remark that it is the computer which
must recompile the program, and not the programmer,
and that moreover a Pascal compiler can be fast enough
to compile and load a given program in a time compara-
ble with the loading time required by a classic link-
editor for an equivalent Fortran program (already
compiled) [7,23]. Second, the possibility of cons-
tant and type declarations in Pascal makes it extremely
easy to simultaneously change the bounds of one or
severdl “arrays, subrange declarations, limits of loops
and any other points concerning the array; see for
example the partial programs given in section 2.2
of this paper. Third, to be able to choose array
bounds -at run time frequently leads the programmer
to leave the user with responsibility of choosing
sufficient limits, checking that they are not over-
flowed, and even of counting his data by hand (compu-
ters count much better than people).

On ‘the other hand , the knowledge of array bounds

by the compiler itself allows more efficient access
to individual elements. With variable bounds,
access 'to an element necessitates a search. in the
allocation stack, at-a place which is known only
indirectly, for the value of each bound. For a
two=dimensional array, this requires four memory
accesses which are not required with fixed bounds.
Another important point is to examine the consequences
of allowing dynamic arrays in a language which has
to be both general and simple: ~ the implementation
and behaviour of records or files with array components
would become" unbearably complicated, costly and

. error-prone.

3.3... Conditional expressioﬁs

Habermann judges that the statement. < := {f ¢ = 7
then 1 else 1 + 1 expresses more clearly than the
“statement {f £ = 7 then 7 := 1 else i := 1 + 1 that a
certain value: is assigned to <. This point seems to
~beat the very least debatable, and our experience
- shows that-in"Algol 60 programmers use almost exclu-

1974 October

sively the second form, which has the advantage
of allowing the replacement of either of the
two assignments by a compound statement without
modifying the other.

The only way to allow full generality
in that sense would be (depending on the chosen
point of view) to unify or to confuse the notions
of statement and expression, yielding an expres-
sion language like Algol 68 [18] or Bliss [5].
The consequences of such a decision for the
language structure and for its compilation are
very complex, and exceed by far the doubtful
advantage quoted before. As may be seen in
several examples in [5] or [18], the normal use
of an expression language yields formulas which
are much too deeply parenthesized (be it explicitly
or not) to be easily understandable. Just as the
human mind can manage only small amounts of program
at a time [13], it has a mental stack of a very
limited depth. This is a more important reason
for the lack of understandability of APL programs
than the plethora of different operators.

3.4. Labels and goto statement

This precise point is the most characte-
ristic of those aspects of programming languages
about which reasonable people may disagree in all
honesty. Excommunication of languages which
include, or do not include, labels and goto's is
never the proper attitude to adopt. However,
let us remark that Pascal restricts the use of
labels severely. They are not at all manipulable
objects, they must be declared in all cases [8,15],
it is not allowed to enter a procedure or a struc-
tured statement from outside [15}, and so on.
Since you cannot prevent the users from writing
bad programs if they like to do so, and since
a goto exiting a procedure is the sifiplest way to
handle error cases where the structure of the pro-
gram must be irreparably broken [20], the choice to
maintain labels and goto's in Pascal is as well de-
fensible as the other solutions currently proposed
[5,24}.

3.6.

As we said in section 2.3, the notion of
type in Pascal includes three different concepts,
which we call type, range and structure, to use the
same terminology as Habermann. The decision to
name 'type'' what is in some cases a description of
a storage template, namely for all structured ob-
jects (arrays, records, sets and files), is indeed
debatable, but the important question is not the
appropriateness. of the particular labels chosen,
More important is the fact that a structured object
can,: in all sensible situations, be handled as an
unstructured one, For example, an array may be a
component of a file or another array, or a field of
a record; assignments are valid for almost all ob-
jects, provided that the left-hand and right-hand
sides have the same type, consequently one can in a
single statement copy a record (without variant) or
an array; some operators may have structured ope-
rands, for .example = and # for records, or all the
comparison operators for packed arrays of charac-
ters (called "strings" in many languages).

 'The result of the approach chosen in Pas-
cal is that the whole notion of a data type is sim-

Structured types

ple and coherent, as imay be seen in the tree dia-

gram at the end of section 2.3. In this schema,

SIGPLAN Notices 25

all structured types are made from other types, which
can themselves often be structured, but ultimately
lead to unstructured types, and from there to either
primitive types of enumeration-defined types. The set
of primitive types could indeed be extended to include,
for example, complex numbers, but they have no counter-
part in most hardware, and may be simulated at a very
small cost with the data structuring tools offered by
Pascal. We do not think that the lack of distinction
between types, ranges and structures, by labelling all
of them as type, is a source of confusion, but it may
hinder somewhat the understanding and explanation of
subrange type particularities.
3.6. Side-effect in functions

While the original Report on Pascal [6] recom-
mended that a function make no modification to non-
local variables (but did not pretend that they could
not), the Revised Report does not say anything on the
matter. In fact, to enforce such a restriction would
be extremely difficult and costly, if not impossible,
unless one forbids variable parameters and procedure
calls within the body of a function. This is another
instance of the situation where you cannot prevent
the user from writing silly programs, unless you
prevent him from writing any program at all. More-
over, the Revised Report allows declaration and call
of a parameterless function, which is of no use if it
cannot modify any non-local variable. Such functions
are useful in some cases, and several standard func-
tions have (or sometimes have) no parameter.

4, Valid criticisms

This section deals with points which are indeed
deficiencies in Pascal, and should perhaps be changed
in a future version of the language (if possible).
The brevity of this section is in itself a good ar-
gument in favour of Pascal.

4.1. Array parameters

Since the bounds of an array are part of its
type (or, more exactly, of the type of its indexes),
it is impossible to define a procedure or function
which applies to arrays with differing bounds.

During two years of intensive programming in Pascal,
we encountered only one case where this restriction
was of any importance. The reason is probably that,
because array bounds are static, different arrays with
components of the same type generally have the same
bounds, not exactly fitted to the set of data during
a precise run. To suppress this limitation would
probably be extremely difficult, and not worth the
trouble.

4.2. Variable initialization’-

Pascal doés not presently allow initialization
of variables at compilation time, at least. in its
official version. The richness of data structuring
tools makes such a possibility very difficult to
define, but it is indeed in the course-of study, and
will probably be available before long [15].

4.3. Pavametric procedures
Pascal presently contains, in one respect, a lack

of rigorous specification which either leads to a
certain inefficiency, if one wants to do.all the

1974 October

necessary checks, or to a certain insecurity if
they are not all done. In the specification of a
function or procedure passed as a parameter (we
shall say "parametric procedure'), the type and
number of parameters are not specified at all, so
it is generally impossible to easily detect at
compile time the following error (this example

is ours):

procedure P (procedure Q); begin Q(2,"A") end;
procedure R (x: Boolean); beqin write (z) end;
begin P(R) end.

Some restrictions have already been made
to the use of parametric procedures a parame-
tric procedure was at first not allowed to have
procedure or function paramaters [6], and now it
cannot have variable parameters either [15], lea-
ving only value parameters. While useful and not
constricting, these restrictions do not suffice
to ensure complete security, and they are not
made explicit in the syntax. However, it is very
easy to make the simple syntactic modification
which appears below, redefining the non-terminal
< formal parameter section > in section 10 of the
Revised Report,

< formal parameter section > 1=
< parameter group > |
var < parameter group > |
function < procedure skeleton > :
< type identifier >
{, < procedure skeleton > :
< type identifier > } |
procedure< procedure skeleton >
{,< procedure skeleton >}
< procedure skeleton > = < identifier >|
< identifier > (< type identifier >
{ , < type identifier >7})

With this modification, the restrictions
quoted before appear explicitly in the syntax,
and the heading of our procedure P must be either

procedure P(procedure @Q(integer,char))

which will allow detection of an error when P is
called with R as a parameter, or

procedure P(procedure Q(Boolean))

which will allow rejection of the call to ¢ in the
body of P. The verification of compatibility
between formal and actual parameters of parametric
procedures can thus be made completely (and cheap-
1y) at compile time, even with a one-pass compiler,
if it adopts the convention of pre-declaring pro-
cedures (see [2], section 13). &

5. ‘Misunderstandings-and minor errors

We shall consider in this section only
the misunderstandings. and errors made by Habermann
which may lead the reader to a false idea of Pascal.
We shall ignore many petty points; and make no
comment -about the general:philosophy of. the.paper
itself. : .

SIGPLAN Notices 26

§.1. BSyntactic errors in examples

In Pascal, all declarations precede the
body of a procedure or of the program. Thus, in
both examples of section 3, begin should occur after
the declarations. Similarly, a begin. should be placed
in front of the last line of the example in section
6. In section 2.2, however, this is done correctly.

One error is repeated consistently through-
out the whole paper: the lower and upper limits of
a subrange (in a type declaration or as an index
type) should be separated by '"..'" instead of "...".

In fact, when it is said in section 3 that
a program "results in an error indication at the
operator *+", an actual Pascal compiler would have
indicated four errors before encountering this opera-

tor (begin before declarations; "..." in a subrange
twice; and 7 = £ + 1 instead of ¢ := < + 1), and none

at that point.

5.2. Errors concerning the notion of type

At the beginning of section 5, it is said
that, since scalar types are subranges, the declara-
tion

var A array [real]l of integer
is legal. Of course, this is false: the type real

constitutes a singular case of scalar type, since

"the number of values of this type is unknown, and
there is no unique ordering among these values' { 15].

Similarly, it is said near the end of the
same section that, since a simple type may be repre-
sented by a type identifier, a file or array type
may serve as index for an array. This is patently
absurd, and it is evident that a type identifier
does not always represent a simple type.

In section 7, it is said that "a constant
has no type". This is obviously false, and the
Report clearly specifies in section 4 the type of
the value represented by each kind of constant.

5.3, Miscellaneous errors

In the middle of section 4, a question is
asked "wheter or not a label in front of the state-
ment part of a procedure declaration is considered
as in the procedure or not". The answer is that
a label is forbidden in such a place, as the Report
clearly states.

In: section 7, it is asked why the symbols *
and ® are introduced, since the notation { } was
introduced just before. The answer is that the braces
apply only to a sequence of symbols, while * and
® apply to one symbol only.

6. Conclusion

The main point to note in conclusion of this
reply is that the Report on Pascal is aimed to serve
both as a defining document and as a manual and
tutorial for programmers. Such a paper must necessa-
rily rely on some natural good will on the part of
the reader, unless it is to grow into PL/I-1like

" dimensions [9,21] or Algol 68 unreadability [18].

1974 October

The second point is that the Report has an
indispensable complement and companion, the Axio-
matic Description [8}, which defines in a rigorous
manner all the semantics of Pascal and occupies
only nine printed pages. Moreover, it is quite
readable.

Acknowledgments. Our colleague Neil Stewart was
most helpful in improving the style and correctness
of this paper. Jim Horning was even more helpful
by strongly criticizing the emotional and technical
contents of a first version,

References

1. Habermann, A.N.: Critical comments on the
programming language Pascal. Acta Informa-
tica 3, 47-57 (1973).

2. Wirth, N.: The programming language Pascal
(Revised report). Berichte der Fachgruppe
Computer-Wissenschaften, EidgenUssische
Technische Hochschule, Zlrich (December 1973).

3. Habermann, A.N.: Prevention of system
deadlocks. Communications of the A,C.M, 12,
7 (July 1969).

4. Habermann, A.N.: Synchronisation of commu-

nicating processes. Communications of the
A.C.M. 15, 3 (March 1972).

5. Wulf, W.A., D.B. Russell and A.N.Habermann:
Bliss: a language for systems programming.
Communications of the A.C.M. 14, 12 (Decem-
ber 1971).

6. Wirth, N.: The programming language Pascal.
Acta Informatica 1, 35-63 (1971).

7. Wirth, N.: The design of a Pascal compiler,
Software practice and experience 1, 4
(October 1971).

8. Hoare, C.A.R. and N. Wirth: An axiomatic
definition of the programming language
Pascal. Acta Informatica 2, (1973).

9. PL/I language specifications. IBM Cor-
poration, Form C28-6571.

10. Dijkstra, E.W.: The humble programmer. Com-

munications of the A.C.M. 15, 10 (October

1972).)

Holt, R.C.: Teaching the fatal disease (or)

introductory computer programming using

PL/I. Sigplan Notices 8, 5 (May 1973).

Wirth, N.: From programming techniques

to programming methods. International

Computing symposium 1973, edited by Glinther

et al., North-Holland, Amsterdam (1974).

Dijkstra, E.W.: Notes on structured

programming., Structured programming, by

Dahl et al., Academic Press, London (1972).

Hoare C.A.R.: Proof of a structured pro-

gramming the sieve of Eratosthenes.

Computer Journal 15, (1973).
15. Jensen, K. and N. Wirth: A user manual for
Pascal. Institut flr Informatik, Eidgends-
sische Technische Hochschule, Zlrich (April
1974).
Wirth, N.:
introduction.
Cliffs (1973).
17. Dijkstra, E.W.: A short introduction to the
art of programming. Department of Mathema-
tics EWD-316, Technische Hogeschool, Eind-
hoven (1971).
van Wijngaarden, A, et al.: Report on the
algorithmic language Algol 68. Numerische
Mathematik 14, 1 (February 1969)7

11.

12.

13.

14.

16. Systematic programming - An

Prentice-Hall, Englewood

18.

19.

20.

21.

22.

23.

24,

SIGPLAN Notices 27

Hoare, C.A.R.: Notes on data structuring.
Same reference as [13].
Hoare, C.A.R.: Recursive data structures.

Computer Science Department CS-400, Stanford
University (October 1973).

PL/I(F) reference Manual. IBM Corporation,
Form C28-8201.

Naur, P. (editor): Revised report on the
algorithmic language Algol 60. Communi-
cations of the A.C.M. 6, 1 (January 1963).
Hoare, C.A.R.: Hints on programming language
design. Computer Science Department (CS-40,
Stanford University (December 1973).
Leavenworth, B, (editor): Control structures
in programming languages. Sigplan Notices 7,
11 (November 1973).

1974 October

