SIGPLAN Notices g9 1971 September

Check for
Updates

DECISION TABLES--A TOOL FOR DOCUMENTING LOGICAL CONDITION RELATIONSHIPS

Thomas G. LaFleur, Montgomery Coumnty Government, Rockville, Maryland 20850

The decision table basic-
GENERAL FORMAT ally takes the form of a
matrix, which defines a set of IF-THEN re-
lationships. There are three basic compon-
ents of a decision table: (1) condition stub,
the IF portion; (2) action stub, the THEN
portion, (3) rules, which define the relat-
ionships of the IFs and THENs. Each rule
has two parts: (1) condition entries, which
define the condition relations, and (2) act-
ion entries, which define the action relat-
ionships. Each rule or column can be trans-
lated into a narrative IF-THEN statement.

There are basically three
GENERAL TYPES types of decision tables:
(1) limited entry, (2) extended entry, and
(3) mixed entry.

Limited entry tables are restricted to
the following: (1) Condition entries limited
to ¥, N, or -, where Y indicates that the
condition in the stub must be met, N indic-
ates that the condition in the stub must not
be met, and - indicates IGNORE, it doesn't
matter whether or not the condition is met.
(2) Action entries limited to X or blank,
where X indicates that the action in the stub
is to be performed, and blank indicates that
the action in the stub is not to be perform-
ed. Note that action statements must be
listed in order of execution.

The limited entry example in Figure 1
shows the logic of a vending machine that
sells a single product for 15¢. The mach-
ine accepts nickels, dimes, and quaters, and
returns change., The table assumes unlimited
product and change; the initial condition of
the counters is zero.

In the extended-entry form, part of the
condition or action statements are extended
into the entry portiom of the table. Note
that actions must be listed in the order of
their execution, unless the entry wvalue in-
dicates the sequence of execution.

In the vending machine example, above,
the extended-entry form would have two in-
dependent conditions: (1) Coin is ..., with
rule entries, nickel, dime, quarter, and
other; (2) nickel count = ..., with rule en-
tries 0, 1, or 2.

Figure 1

conditions

1
1. Coin is nickel Y
2, Coin is dime N
3. Coin is quarter |[[N
L, Nickel count = 1 ||~
5. Nickel count = 2 {IN

<22 ZE e
ZdZ<E W
< ZZ N2
Z2Z<2Z 0
=22 Oy
22 N
22222 00

222 o

actions

1. Reject coin X
2. Increment nickel
counter by 1
3, Increment nickel
counter by 2
4, Deliver product XXX xjxk
5. Deliver 5¢ X
6. Deliver 10¢ IX
7. Deliver 15¢ X
8, Deliver 20¢
9. Nickel count := Of |XIX|X1] IX

Accept next coin
& re-enter table XX XX KX

>

L]

Listed below are the gen~
eral rules that govern the
structure and composition of decision tables:

a. The decision rules must provide all
possible logical combinations of relation-
ships that the stated conditiomns caam reach.

b. Only one rule may satisfy a given
set of condition relationships. (Each rule
must be unique and independent).

c. No actions may appear in the condit-
ion area.

d. No conditions may appear in the act-
ion area,

e. No values may be changed by condit-
ion statements.

f. The table must have a single entry
point-~the top of the condition stub,

g+ The table must have at least one
exit point.

h, Exit points may only appear in the
action area.

i, A table re-entry may be either to
the original exit point (in the action area)
or to the beginning of the table.,

jo The wocabulary and grammar of the
language used should be understandable to

GENERAL RULES

Mlxed-entry tables are simply a combinat- those who are to use the table.

ion of limited~ and extended-entry types
within a single table.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953368.953370&domain=pdf&date_stamp=1971-09-01

SIGPLAN Notices 10

The
gen-
eral steps for building a decision table are
listed below, The first several steps may
be repeated until a workable problem defin-
ition is reached.

a., Define the problem and its limits,

b. List the conditions and actions as-

sociated with the problem (table stub).
¢, Determine the number of rules to

be accounted for: (1) in the limited-entry
case, Zn, where n is the number of independ-
ent conditions; (2) in the extended-entry
case, first determine the number of possible
entries for each independent condition, then
multiply this by 2R,

d., Layout all of the possible condition
entries: (1) First condition--Layout N/
rules for each possible value assumed by this
condition, where N = total number of rules
determined in step ¢, and M = total number
of possible values for this condition. Ex~-
ample. For a limited-entry table with five
conditions, we would layout 16 Y's in the
first 16 rule entry blocks for the first
condition (row 1) followed by 16 N's (25=32,
N/M = 32/2 = 16), (2) For each subsequent
condition--Layout N/(Mj*Mp* ... *M.) rules
in succession for each possible value of
condition (¢) in row (c), where (¢) is the
condition number. Repeat this layout in row
(¢) until all N rules have an entry for
condition (c). Example., Following the prev-
ious example, the second condition would have
8 Y'g in the first 8 decision rules, 8 N's
in the the next eight rules (N/Mp*M> = 32/2*2
= 32/k = 8). This format is repeated until
all 32 (N) rules have an entry, so that we
end up with 8 ¥'s in rules 17-24 and 8 N's
in rules 25-3%2,

e, For each column or decision rule,
specify the actions that must be taken.

f. Combine and simplify: (1) Where 2

STEPS IN BUILDING A DECISION TABLE

decision rules have the same series of actions

and the condition entries are the same except
for a single row, the two decision rules can
be combined into one. In the combined rule,
the entry for the row containing the differ-
ence is changed to a "-", meaning to ignore
the action. This process is repeated until
no further simplification can be achieved.
(2) The ELSE rule--In all decision tables,
rules may be combined to form an ELSE rule,
one per table. This rule is the only depen-
dent rule allowed.
match a given set of condition relationships,
then the actions indicated in the ELSE rule.
Typically, this rule is used to combine all
error conditions into a common decision rule.

If none of the other rules

1971 September

There are sever-
al practical
methods of dev-
eloping and simplifying the decision rules
without listing all possibilities beforehand.
These techniques are useful where the number
of possibilities is very large.

1., Method I. Reduce the number of cond-
itions by forming assumptions. With this
method, we simplify the problem to a reason-
able gize, We develop and simplify, then
expand the table by eliminating assumptions,
adding a condition or two at a time, TFor
each condition added, we double the number
of decision rules (in a limited-entry table).
We then simplify, and continue to add condit=-
ions until we have developed the table in
full.

2, Method II, Set the decision rule en=-
tries for the first X conditions to one val-
ue. Then insert the entries for the remain-
ing conditions. TFor a limited-entry table,
we should have 277X decision rules, with the
first X conditions of each having the same
value, Simplify these decision rules. Now
change one value for ome of the first X con-
ditions and repeat the process. This must
occur for each of the entry combinations
taken by the first X conditions (2X for the
limited-entry case), As each iteration is
developed, simplification can occur, with all
of the decision rules developed during prev-
ious iterations.

VARTATIONS TO CONSTRUCT-
ING DECISION TABLES

APPLICATIONS OF DECISION During detail-
ed analysis and

TABLES IN DATA PROCESSING .
documentation

of an existing system (manual or otherwise),
the use of decision tables can assist in de-
fining policies, regulations, interpretat-
ions, and actual methods of operation. In=-
consistencies may be uncovered in addition
to achieving a thorough understanding of a
policy or method of operation. Decision
tables can assist in redefining user proced-
ures, including input preparation, report
usage, and reconciliation. Procedures, as
well as corrective actions for problems en-
countered, can be effectively defined in
table format, Finally, documentation of
program specifications and detailed program
logic can be accomplished in all or in part
in table format (see Figure 2). "

Listed
below
are some comparisons of decision tables and
flowcharts:

1. .In a flowchart, it is difficult to
identify each decision rule,

DECISION TABLES AND FLOW CHARTS

LAFLEUR

SIGPLAN Notices 11 1971 September

2. Ia a flowchart, it is difficult to

determine whether all combinations of cond- Figure 2
itions have been accounted for. RL R2 R3 B4 RS R6 R7 R8 R9 R10 R11 mI2
3. In a decision table, the entire pro- c1 Y9 Y Y Y Y Y Y{ NN N] N] N
blem and solution is in full view for exam~ ca Yy yyyreryiNlylvlyl| nt -
ination. A flowchart normally takes many C3 NI Nf N N Y Y] =) =] o) e] =)
pages, and is difficult to follow. Ch =l = =]~} -]~ -1 ¥ Y!IY] Y] N
4, Wnen changes occur, it is more dif- cs YI Y| Nf N| -] ==l Y¥Yl¥IN |-} -
é’igglt to update a flowchart than a decision Ccé Y| NJ Y] NJ Y| N]-{ Y N[~}]| =
able.,
5. Decision tables and flowcharts are ﬁ; X X X X X1 X
not mutually exclusive; they can be used in NIRRT RS X| X X
combination. A X X)X
Ak X X|x
oot) AS || X X x| x X | x X
DECISION TABLES AND bpt"m“? °§d1t8b°an]
PROGRAM CODING g arrived at by am- Figure 3
alysis of a decision
table describing the logic to be coded. Gen~ S;cart
eral rules for analyzing a table prior to ‘n-——--—-N-Cl
coding are listed below: N ¥ ¥
1., Examine all coadition rows. Select '““‘"'“‘?E Y
the condition with the fewest "-" entries. N c3
(If more tham one, select one of the condit- N ¢!
ions with this minimum number of "= emtries). —c6 Y
This will be the first condition tested. RS
This test splits the table into two sets of
decision rules, —>R6
2. Now examine one of the rule-sets or N ¥
legs determined from step (1). Select as the ‘ q; Y
next condition to be tested in this leg the --wa6
row with the fewest "-" entries. R
3. Continue breaking down the table R11
until no further condition tests are requir- ey R2
ed to identify uniquely each rule to be i
followed. —C6
L, Examine the action entry portion of v !
the rules for uniqueness. Identify those R3
action~rules that are identical. e pl
S. Additional analysis may be made on
the action portiom: (a) the relative freq- ————>R2
uency, if known, of processing each rule, N ¥
(b) action groupings and identification of -—-—--—-.__.cf Y
those rules requiring these groupings. N c2
The above analysis will assist the pro=- N+ ¥
grammer in determining how best to code the Cf Y
program, i.e., in identifying main line code J—CG
and subroutines, Figure 3 shows the flowchart y 7!
obtained by applying these rules to the de~- R2
cision table in Figure 2. L—>R9
—3
DECISION TABLE TRANSLATORS Computer soft- o
. ware exists, S d R1 1
generally called decision table preprocessors,
which accept decision tables as input. These 2
Preprocessors generate Cobol or other high~ Note: The Rn entries, above, refer
level language programs, The better ones only to the Action portions of the rules,
perform optimizing analysis, as mentioned since the Cn entries exhaust the condition
above, while generating the output program. entries, Thus, we can substitute rules

where the actions sequences are the same
for more than one rule.

LAFLEUR

SIGPLAN Notices 12

Some of the advantages and disadvantages ot
decision table programming via preprocessor
are listed below.

1. Decision table language is designed
to make simple, clear, unambiguous state-
ments, Its notation, borrowed from symbolic
logic, assures greater accuracy and complete-
ness in problem definitiom. Systems mainten-
ance due to overlooked situations or incon-
sistencies should be reduced,

2. Decision tables are an excellent
tool for analysis and programming. They can
therefore simplify communication between the
systems analyst and the programmer,

3. Programming time is considerably re-
duced. According to users' experience, de-
cision table processors require less time in
problem definition (flow charting vs. decis-
ion table) less time in coding, and less time
debugging.

4, Although total computer time utiliz~
ed for implementing a program should decrease,
individual program compile time (due to table
preprocessing) will increase.

1971 September

5. Adequate education on the use of de-
cision tables is required, First attempts
at vsing decision tables can be slow and pais-
ful, as with any new tool,

NOTE: Montgomery County, Maryland (Data
Processing) has been using decision tables
for approximately one year, and can attest
to the pain of learning, but have become en-
thusiastic users of decision tables for pro-
blem definition, analysis, and programming.

McDaniel, H, (editor) Applic-
ations of Decision Tables,
Brandon Systems Press, Inc. 1970, This book
is a series of extracts by many authors, and
includes many references tc the use of de-
cision table processors,

McDaniel, H, Decision Table Software,
Brandon Systems Press, Inc. 1970.

StClair, Jr., Paul R. Decision Tables
Clear the Way for Sharp Selectionm, Computer
Decisions, February 1970, pages 14—13.

REFERENCES

UTILIZATION OF A DECISION TABLE TRANSLATOR FOR BASIC PROGRAM CREATION

Henry 0. Arnold, Jr, Management Systems Development Office

This decision table
translator is part of a
package of programs written in Basic to gen-
erate and execute Basic programs. This pack-
age allows the programmer to use symbolic
addresses rather than program line-numbers,
and multiple conditions in IF-statements.
The package generates line numbers incre-
mented by 100, and provides several levels
of statement indentation, for i/o, program
transfers, paragraph names, etc.

The decision table is generated in=line
with the remainder of the program.

I. DESCRIPTION

A The coding generated
II. ADVANTAGES resembles the input
table to the point that individual condit-
ions or actions can be changed without re-
generating the program; also, condition and
action entries are stored in the program as
DATA~st~tements, and can easily be changed
in the generated program.

The action entries are sequenced for
each rule, so that actions can be executed
in different sequences in each rule, as op=-
posed to normal sequence from top to bottom.

Table coding is not dependent on col=-
umns, but is controlled by delimiters.

If need be, additional rules may be
added, by modifying DATA-statements, without
regenerating the progran,

IIT. LIMITATIONS Only one table can be
senerpted within a pro-
ram,

Other DATA-statements used by the pro~
grammer must be entered after the table.

Certain variables are used by the table,
and should be used elsewhere only with dis-
cretion.

The program generated is probably larg-
er than that created by other translators.

Maximum table size, at present, is: 9
conditions and actions, and 10 rules.

Program-~
ming lan~
guage is essentially Basic, as implemented
by Alcom's timesharing system, with certain
modifications:

l. No line numbers are used,

2, @ is used in place of ",

IV. PROGRAMMING CONSIDERATIONS

