
-76-

STRUCTURED PROGRAMMING CONSIDERED HARMFUL

William Slater
COMPUTER SCIENCE DEPARTMENT

UNIVERSITY OF TEXAS AT ARLINGTON

Howard Modell
DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF ARIZONA

It should be obvious that considerable attention has been
lavished on improving the Programming Art by attempting to
give it some discipline. This attention has produced control
structures, like IF-THEN-ELSE, DO-WHILE, DO-UNTIL, SELECT-WHEN,
and Coroutines, as well as new languages like PL/i BLISS, PASCAL,
EUCLID, AND SL5. In addition, a set of techniques for the
design and coding or programs has been proclaimed, called STRUC-
TURED PROGRAMMING." (SP)

One of the earliest tenets of SP was that the BRANCH con-
trol structure, epitomized by FORTRAN's GOTO statement, is
inherently dangerous. This arose from the idea that unrestricted,
undisciplined use of it led to programs that were difficult,
if not outright impossible, to follow or debug. This led to
a deluge of articles expounding on the virtue of removing all
GOTO's from one's program, and replacing them with more advanced
control structures.

We feel that the advocates of SP have gone a trifle awry
in their zeal. By saying that the traditional control struc-
tures and programming methods are obsolete or dangerous, and
that the newer structures and methods are THE WAY to go, we
feel that the advocates of SP are stifling the creative, artis-
tic element in programming.

Therefore, we propose the following additional constructs
which we feel will add new life, new gracefulness and new chal-
lenge to programming.

First and foremost, we advocate replacing all GOTO's with
COMEFROM's.* The semantics of "COMEFROM label" say that con-
trol continues at the statement following the COMEFROM immediately
after executing the statement with the indicated label. Varia-
tions on this statement include: COMEFROM (Li,L2,L3,...) where
control passes after executing a statement with one of the
listed labels; COMEFROM (Li,L2.,.), IV where IV is an index
into the list of labels, = a Computed COMEFROM; COMEFROM IV,
(11,12...) which is an ASSIGNED COMEFROM. In a case of multiple
COMEFROM's referring tO the same label, the last executed
COMEFROM would have preference.

* "A Linguistic Contribution to GOTOless Programming"
R. Lawrence Clark, DATAMATION Dec. 1973, pg. 62-63

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953411.953418&domain=pdf&date_stamp=1978-04-01

-77 -

From STRUCTURED PROGRAMMING IN APL (Geller & Freedman),
we steal the construct SKIP n, which says control passes to
the nth statement following the SKIP.

To oppose this, we also offer a variety of REPEAT con-
structs:

- REPEAT FROM label -- which passes control to
the specified label,

- REPEAT FROM labell TO label2 -- which causes
reexecution of the specified block of statements,
and then control continues following the REPEAT,

- REPEAT FROM ii TO 12 UNLESS boolean
- REPEAT FROM ii TO 12 UNTIL boolean -- which

are simply conditional forms of the second case,
- REPEAT NEXT n
- REPEAT LAST n -- which causes the previous or

next n lines to be repeated. Execution then continues
with the statement after the REPEAT.

- REPEAT NEXT n UNTIL boolean
- REPEAT NEXT n UNLESS boolean -- conditional

repeats.

Next, we present a variety of flexible IF statements.
For example, the construct "IF boolean THEN block UNLESS boolean
INWHICHCASE block ELSE block." Then there are the triplets
"IF boolean MAYBE block," "IF boolean SOMETIMES block," and
"IF boolean PERHAPS block," all of which randomly execute the
action-block provided the boolean is .TRUE./'i'B.

For the FORTRAN devotees, we propose
IF (boolean) Li,L2,L3

which transfers to L1 if the boolean is .TRUE., to L3 if the
boolean is .FALSE., and to L2 if it is .MAYBE..

For new block structures, we propose:
-DO UNLESS (boolean) ;
-DO MAYBE (boolean) ;
-DO SOMETIMES (boolean) ;
-DONT WHILE (boolean) ;
-DONT UNTIL (boolean) ;
-DONT UNLESS (boolean) ;
-DONT;

We strongly suggest replacing the attribute/datatype REAL
with the more sensible RATIONAL. Until computers with infinite
word lengths become practical, it is confusing, not to men-
tion erroneous, to talk about REAL data.

-78-

Further, it is suggested that DECLARE be made into an
executable statement, or instead provide a REDECLARE state-
ment. This is advocated in the knowledge that there will be
times when a variable's attributes might now be decided upon
until certain other data is computed or read-ino Also, there
will be occasions when it is desirable to redefine a variable's
attributes at runtime.

To enhance the flexibility of the basic assignment state-
ment, we present

VAR ~= EXPRESSION /* Unassignment, which states that
whatever value the VAR may have had before, it does
not have the value of the EXPRESSION now. ~/

VAR ~=~ EXPRESSION /* Exemption, which says
that VAR cannot ever have had the value of the
expression. */

VAR ~N EXPRESSION /* Approximation, which
says that the value of VAR is approximately the
value of expression. This is useful in processing
RATIONAL data, where exact values are often
improbable. */

VAR =~ EXPRESSION /* Restriction, which states
that VAR can only have the value of EXPRESSION */

The last item is a general, all-inclusive EQUATE / DEFINED /
EQUIVALENCE statement. We feel it should be permissible to
perform the following equates:

SQRT = ** (function name equated to special symbol)
ADD = + (Alternate form of symbol or operator)
3 = A (redefinition of constant. Practical in

FORTRAN.)
2 = 1 (equivalence of constants)
+ = function (user defined operator)
* = X + 1 (expression replace symbol -- MACRO

expansion)

It is of interest that several of the above equates are
already implemented in one language or another (SNOBOL's OPSYM
function, for example).

Just to show that these are indeed useful constructs, we
conclude this article with several sample short programs.

-79-

(z)

(2)

(3)

(4)

BEGIN; SUM = 0; COUNT = 0
COME FROM BLARG;
UNTIL (EOF) DONT BEGIN;

COUNT ~=~ 0;
AVERAGE = SUM / COUNT;
PUT DATA (AVERAGE);
STOP;
END;

GET LIST (X) ;
COUNT = COUNT + i;

BLARG: SUM = SUM + X;
END;

GCD: Procedure (M,N) OPTIONS (RECURSIVE);
DO UNLESS (M=>N); M <-> N; /~ <-> I~ EXCHANGE
OPERATOR ~/

N = M - N;
DO UNLESS (N = 0) ; M = GCD (M,N) ;

RETURN (M) ;
END;

IF BOOLi THEN DECLARE X RATIONAL;
UNLESS BOOL2

INWHICHCASE DECLARE X CHAR(3);
ELSE DECLARE X FIXED BIN(3) ;

UNLESS BOOL3
INWHICHCASE DECLARE X BIT(l);

IF A=B THEN X = X + i;

UNLESS B>C

INWHICHCASE X = X - i;

ELSE X = 3;

