-69-

Check for
Updates

HIERARCHICAL DESIGN AND EFFICIENT IMPLEMENTATION IN SETL :
A CASE STUDY,

) Edmond Schonberg
Illinois Institute of Technology
Chicago, I11, 60616

I. INTRODUCTION,

e e o e o a7 e i e e i

.The passage from formal system specification to actual implementation
continues to be a subject of intense study, particularly in the context of
formal verification systems and of languages with abstract data-types.
(see e.g [11, [4], [6]) .The paradigm which emerges from these studies(and
which was clearly set forth by Dijkstra [2]) is a follows : one starts
from a description of system modules, presented in a very-high level

(nonfexecutable) specification language, which is designed to be
partlgularly amenable to formal proof of correctness. This description
constitutes the specification of some abstract machine, whose

implementation 1is then produced by successively lower—-level machines which
realize the primitives of the original one, until the lowest level machine
in this sequence 1is <chosen to correspond to an existing set of language
primitives. A particularly lucid example of this approach is presented in
(51. The purpose of this short note is to examine the system described
therein, and present an approach to its design and implementation in the
framework of SETL [3]. This short case study will emphasize the advantages
of using set primitives at the specification level, and the ease with which
a programming language which includes these primitives (in their most
general form) can be made to yield a reasonably efficient implementation by
judicious choice of data-structure descriptions. (see [3] for a full
description of the SETL data-description sublanguage) . The fact that SETL
does not include lists among its datatypes,but provides a perfectly general
associative store, adds to the interest of this example, whose design goal
is the realization of a non-trivial list management system,

II. THE DESIGN GOAL.

o - ——— . — .~ —— — - — ot

The system to be implemented is fully described in [5]. It can Dbe
sketched as follows : a hybrid list management system, consisting of two
modules : LIST AND ULIST, is to be produced. LIST is a standard list
manipulation system, which includes the usua} primitive§ CAR,.CDR, CONS,
and the predicates ATOMP ard ISCELL. ULIST manipulates unique lists, that
is to say, the lists created by the ULIST operations are sugh that no two
of them are ever isomorphic. The operations in ULIST are similar to those
of LIST, and include UCAR, UCDR, UCONS, ATOMP and ISUCELL. The major
difference between the two modules lies in the action of UCONS. UCONS
differs from CONS in that, instead of creating a new cell upon each
invocation, the execution of UCONS (x,y) will yield the wunique cell whose
UCAR is x and whose UCDR is vy, if such a cell was already created by
previous action in ULIST. 1In this fashion lists are made to share storage,

and no redundant copies of list structures are ever produced within this
module,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953997.954000&domain=pdf&date_stamp=1979-10-01

~70 -

I71. SETL DESCRIPTION.

I D RS D RS KD S A R S S W DY G S AP s W N S i

1. The LIST module,

List elements, or <cells, are objects characterized by a unique
address, or more abstractly by a NAME(called -blank atom- in SETL). Cells
are further characterized by the fact that two single-valued relations
{maps) are defined on them : CAR and CDR., The range values of these maps
are either cells or atomic objects {i.e. objects belonging to a primitive
data—type such as Integer, Real, etc. whose internal representation does
not concern us). The LIST module is thus fully described by specifying its
action on three data-objects : a set CELLS and two maps, CAR and CDR,
whose domain is CELLS and whose range is the set CA = CELLS + ATOMS,

The primitive CONS creates a new cell and specifies its CAR and CDR,
A new cell is produced by the creation of a new name. This is achieved in
SETL by means of the primitive NEWAT (analogous to the LISP primitive
GENSYM) . The code for CONS follows :

PROC CONS({X,Y¥Y) ;

NEWCELL := NEWAT ; $ Create new cell.

CELLS WITH NEWCELL ; $ insert it in the set of all cells.
CAR (NEWCELL) := X $ and define its CAR and CDR.

CDR (NEWCELL) := Y
RETURN NEWCELL ;

°
g
»
I

END ;

The predicate ISCELL ascertains whether a given object X is an

existing cell. This corresponds to performing a membership test for X in
CELLS:

PROC ISCELL (X) RETURN (X IN CELLS) ; END ;

Equivalently, ISCELL(X) can be stated as the following predicate :
PROC ISCELL(X) ; RETURN (CAR(X) /= OM AND CDR(X) /= OM) ; END ;

i.e. X is a cell if both its CAR and CDR are defined, (OM 1is the SETL
'undefined wvalue', obtained when trying to access a map value on a point
outside of its domain). Note that if the membership test is implemented in
fully protected fashion (i.e. if the test (X IN CELLS) c¢an be performed
regardless of the type of X), then there 1is no need to specify any
exception conditions., The same holds for the handling of the maps CAR and
CDR: if X 1is outside of the current domain of definition of CAR, then
CAR(X) yields OM., Delicate boundary conditions and exception conditions
need not be examined, because the SETL processor itself provides the
required environment protection,

71 =

2., THE ULIST module.

The cells manipulated by the ULIST module {ucells) are characterized
by the fact that for a given pair of values (x,y) (taken from the range
values of CAR and CDR) there is at most one cell whose CAR is x and CDR is
Yo A set UCE%Lgy is the first data object needed to describe ULIST. The
uniqueness condition is expressed by the existence of a single-valued map ,

UCELL : CA x CA -> UCELLS

Tbe ?redicate ISUCELL(X) is simply a membership test for X in UCELLS.
ycong is implemented as follows \

PROC UCONS (X, YY)

IF (ISUCELL(X) OR ATOMP(X)) AND (ISUCELL(Y) OR ATOMP(Y)) THEN

IF UCELL{PAIR := [X,Y]) = OM THEN S Create new cell,
NEWCELL := CONS(X,Y) : $ Using standard CONS .
UCELLS WITH NEWCELL; $ Enlarge set of unique
$ cells,
UCELL (PAIR) := NEWCELL ; $ Update map from pairs
$ to unique cells,
END IF ; $ Else such ucell exists
RETURN UCELL (PAIR) ; $ already.
ELSE $ Invalid arguments.
RETURN OM
END IF ;
END PROC ;

Note that the semantics of SETL insure that UCELL is a single-valued
map, as long as the only updates on it take the form UCELL(X) :=Y ; as in
the code above.

Finally, UCAR and UCDR are simply the restrictions of CAR and CDR to a
subset of their domain (i.e. UCELLS rather than CELLS). The code for
UCONS above insures that Ucells are built only out of atoms or other Ucells
(as specified in [5]).

IV.EFFICIENCY CONSIDERATIONG - INTRODUCING BASED REPRESENTATIONS.

The sets CELLS and UCELLS, and the maps CAR, CDR AND UCELL, together
with the procedures CONS, UCONS, UCAR, UCDR and the membership predicates
ISCELL and ISUCELL, provide an implementation of the proposed system. The
correctness of this implementation (which , as it stands, 1s indeed
executable in SETL),follows from the informal remarks made in the previous
sections, and from the fact that the SETL primitives realize faithfully the
semantics of the theory of finite sets,

The implementation thus produced is clearly very inefficient, both in
terms of storage and execution speed since

a) A given cell may appear in as many as 9 instances or copies : as
an element of CELLS, an element of UCELLS, an element of the domain or/and
range of CAR,etc, :

b) To evaluate the CAR or the CDR of a given <cell, a general
associative retrieval operation must be performed, instead of the simple
dereferencing operation which would be used in standard 1list manipulation
sytems.

Both these glaring inefficiencies can be eliminated, by introducing
based representations. Very briefly, based representations are specified
for a SETL program by introducing special sets, called BASES,in terms of
which actual program objects (sets, maps,etc.) are specified. This
specification can take a number of forms : a set may be a subset of a
base, a map may have a subset of a base for its domain (and/or range), an
object may be an element of a base, etc, (see [3] for an extensive
discussion of the syntax and semantics of base declarations). The
following points can bermade :

a) We note first thac UCELLS cCELLS, than DOMAIN (CAR) = DOMAIN(CDR) =
CELLS, and that RANGE (UCELL) €CELLS. This leads us to choose CELLS as a
base set, in terms of which the other data-objects can be described.

b) The set UCELLS is used for membership tests (predicate ISUCELL) and
for insertions (by means of UCONS). As no other operations are performed
on 1it, it can most economically be represented as a local subset of CELLS,
i.e. by attaching to each element of CELLS a single membership bit
specifying its presence in UCELLS.

c¢) The maps CAR and CDR are total over CELLS. They are best described
as local maps, i.e. their values are attached to the element block of each
cell in CELLS. (This element block can be thought of, in LISP terms, as a
fixed-length property list).

The range of CAR and CDR includes both cells and atoms and is simply
described as having general (i.e. unrestricted) type.

73

The representations for our data-objects are now specified by the
following declarations

BASE CELLS ;

REPR
UCELLS : LOCAL SET(& CELLS) ;

q

CAR, CDR : LOCAL SMAP (€& CELLS) GENERAL ;
NEWCELL : CELLS ;

’

UCELL : SMAP ([GENERAL, GENERAL])e CELLS ;

END ;

The code for CONS and UCONS is unmodified, except for the removal of
the explicit insertion of NEWCELL in CELLS in line 2 of CONS. This
insertion is performed automatically by virtue of the declaration for
?§?CELL as a element of the base set CELLS and the semantics of base sets.

The effect of the deslarations above is to realize for CAR and CDR the
usual pointer structure on the set of cells. UCELL remains of course an
associative structure, as it must in any efficient implementation. (See
the careful discussion of its realization in INTERLISP in [5]) .

V. REMAINING INEFFICIENCIES.

—— A — Y — — - —— " — S " o TV >

There are three remaining inefficiencies in storage usage in the
system we have obtained.

a) The element blocks in CELLS are larger than a list cell need be,
because the range of CAR and CDR has been described as an object of general
type, and this will force the allocation of a full word for each.Without
more precise information about the range values of CAR and CDR, there is no
way for the SETL processor to realize that each of these values occupies
only the space required for a pointer. In some machines, this may be

(tolerably) wasteful.

This situation indicates, however, a weakness in the current set of
basing declarations : there is no way to specify that the range of CAR is
EITHER an element of the base set CELLS, or an elemegt of the sgt
ATOMS (which might actually be useful as a base set also).Unlon types are 1in
any case absent from the data-description language of SETL.

b) The element blocks in CELLS are also larger than usual 1list cel}s
because they hold the unique NAME (produced.by.NEWAT whengver CONS is
invoked) that identifies it. This added field is 1nd%sgepsable if we want
to preserve the usual semantics of CONS. The definition of a cell as an
ordered pair [X,Y] would lead to a similar implementation of ULIST as the
one proposed above, put LIST itself could not be realized, because the set

T4

CELLS would contain no dup! ate pairs. In the absence of the concept of
Machine address in the nguage, there 1is no other way but to create
arbitrary tags to refer to w:fferent set elements whose structure may be
identical,

¢) . The third inefficiency appears in the storage of the map UCELL

its domain is a set of pairs [X, ¥}, where X and Y are the CAR and CDR of
some ucell, The values of X and Y must be stored in a pair , as a point in
the domain of UCELL, even though these values also appear as the CAR and
CDR of the «corresponding element block in the base CELLS, Careful
hand-coding of the map {(associative store) UCELL will use the element block
directly, 1i.e. the entry corresponding to a certain hash-value will point
to an element block in CELLS rather than to a separate ordered pair I[X,v].
Such refinements are of course beyond the capabilities of the fixed formats
provided by the SETL data-structuring mechanisms.

REFERENCES,

———— iy o -

[1] ACM conference on language design for reliable software, O
Wortman ,E4d.(1977)

{2] pahl, 0,J., Dijkstra, E.W., and Hoare, C.A.R : structured
programming., Academic Press, New York, 1972,

[3] Dewar,R.B.K., Grand,A., Liu, S.C., Schonberg, E., and
Schwartz,J.T.: Programming by refinement, as exemplified by the SETL
representation sublanguage. TOPLAS,1,1 (July 1979) to appear.

{4] Liskov,B., and Zilles,S. : specification techniques for data
abstraction., IEEE trans. Software Eng. SE-1,1 (march 1975) 7-19,

[5] spitzen,J, Leavitt, K., and Robinson,L. : An example of
hierarchical design and proof. CACM, Vol,. 21,no0, 12 (Dec 1978) pp
1064-1075.

(6] Wulf.,W.a, London,R.L., and Shaw, M. : and introduction to the
construction and verification of ALPHARD programs. IEEE trans. Software
eng. ©SE-2,4 (dec., 1976) pp 253-265,

