
-56- 

Using a High Level Language as a Cross Assembler 

Paul Rutter 
Computer Systems Research 

Philips Labs 
Briarcliff Manor, NY 10510 

Abstract 

This paper describes how existing high level languages can be 
used to simplify assembling moderate size programs for new 
machines. A cross assembler for the Motorola 68000 has been 
built using these ideas. 

Approach 

The basic idea is to write a high level language procedure for 
each type of machine instruction. Operands to the instruction 
are written as arguments to the procedures. An assembly language 
program is written as a sequence of procedure calls. Some 
additional procedures must be written for defining labels, 
reserving storage, and handling symbolic references. The object 
program is produced by compiling the entire program and executing 
it. As each procedure call is executed it produces the 
appropriate machine instruction for the target machine. If there 
is sufficient space on the host machine, a simplification is 
possible by constructing the entire object program in a memory 
array rather than writing the instructions out to a file as they 
are generated. This is generally easier and faster than doing 
file I/O and also simplifies the process of patching up forward 
references. Symbol table managment can be done in any way that 
is convenient; I found that using a combined symbol and patchup 
table was particularly easy. Each table entry stores the symbol 
itself, an address, and a flag telling whether the address is the 
value of the symbol (the entry is a definition), or the address 
of a location that is to be patched with the value of the symbol 
when it is defined (the entry is a reference). At the end of the 
assembly language program, a patchup procedure is run which 
searches the table and makes all the necessary patches to the 
object program. It also checks for duplicate symbol definitions 
and undefined symbol references. Then the array containing the 
machine language program is written out in whatever format is 
needed. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F954269.954277&domain=pdf&date_stamp=1981-02-01


-57- 

Advantages 

The principal advantage of this approach to writing a cross 
assembler is that it is reasonably easy to do. Although so- 
called universal assemblers exist which allow one to define new 
machine architectures relatively easily (e.g. the UCSD Adaptable 
Assembler) it can still be a difficult task to become 
sufficientl~ familiar with these tools to understand and debug 
them. Such tools also tend to be large programs and usually 
constrain the input and output file formats to a particular style 
which may be unsuitable. In constrast, the high level language 
approach guarantees that all the mechanics of the assembler are 
accessible, and assumes only the availablity of a high level 
language. 

The high level language simplifies things tremendously by already 
having built-in facilities to evaluate arithmetic, conditional, 
and iterative expressions, manipulate strings, and handle I/O. 
It also gives one the ability to call arbitrarily complex 
procedures at assembly time, something which cannot be done even 
with powerful macro assemblers. Writing conditional and 
iterative macros, and constructing complex initialized data 
tables is much easier than with a normal assembler. One 
additional capablility is that of redefining a procedure for 
debugging purposes. For example, the procedure which defines 
labels can be redefined so that in addition to defining the 
label, it outputs machine code that prints the symbol on the 
target machine's terminal -- thus obtaining a symbolic trace of 
program execution with very little effort. 

Disadvantages 

The main disadvantage of this approach is that most high level 
languages do not have a syntax similar to the traditional 
assembler style, which is basically line oriented with tokens 
separated by spaces. This generally means that it takes a few 
additional characters to write each assembly language statement 
as a high level language procedure call than it would in a normal 

assembler. 

Example : 

Pascal "Cross Assembler" Typical Assembler 

l('loop'); add (rl,r2); loop add 
cmpc (rl,1000); cmp 
blt ('loop'); blt 

rl,r2 
rl, #I000 
loop 

Doing a prepass over the text to eliminate this problem was 
considered, but rejected on the grounds that the additional 
complication was not worth it and might lead to syntactic 
problems of mixing "assembly" procedure calls with "normal" 



-58- 

procedure calls~ Another potential problem with this approach is 
assembly speed. If the host machine is not very fast and the 
high level language does not allow for separate compilation of 
the assembler procedures, then the overhead of recompiling these 
procedures with each assembly may be painful° For both speed and 
space reasons, this type of assembler is probably not suitable 
for writing very large assembly language programs~ Since I 
believe assembly language should only be used in bootstrap 
situations or for writing kernels, this was not a problem for me~ 

Experience with Pascal and the Motorola 68000 

The technique described above has been used in constructing an 
assembler for the Motorola 68000. The assembler was written in 
UCSD Pascal and runs on a DEC LSI-ii. The application (a small 
special purpose interpreter) only requires that about 90% of the 
instructions and 75% of the address mode possibilities of the 
68000 be used, so only those cases are implemented by the 
assembler. Implementing the instructions, some macros, the 
symbol/patchup table procedures, and all the error and I/O 
routines takes about 700 lines of Pascal. Writing the assembler 
was completed before the manufacturer's cross assembler (written 
in Fortran and requiring a large host machine) became available. 

Certain pecularities of the 68000 architecture were masked by the 
assembler to give the appearance of a simpler machine. For 
example, to set a register to a constant is just one instruction 
in the assembly language, but the procedure implementing it 
chooses from four possible machine instructions depending on the 
size of the constant and whether the register is an address or 
data register. Overall, my experience with the assembler was 
quite satisfactory; the inability to write procedures in Pascal 
which take a variable number of arguments or arguments of varying 
type made things somewhat tedious at times, but not impossible. 

Summa ry 

While the idea seems strange at first, using a high level 
language compiler as an assembler is relatively easy to do and 
results i n an understandable and maintainable tool that is more 
than sufficient for assembling reasonable size programs. Once 
one learns to live with the syntax of the host language for 
assembly language programming, an assembler of this kind offers 
the power of a high level language system to help one write and 
debug assembly language programs. 


