
-34-

ABSTRACT DATA TYPES IN EUCL!D~

by Ernest Change Neil Eo Kaden~ and Wo David Elliott
Department of Computer Science

University of Toronto
Toronto, Ontario~ M5S IA7

Canada

Abstract: The programming language Euclid provides features that
support abstract data types, but does not strictly speaking
provide a true data abstraction mechanisms This paper assesses
the data abstraction facilities that Euclid does provider
examines the two ways of instantiating Euclid modu less and
discusses other features of modules that the designers of Euclid
chose not to include~ In particulars the paper addresses the
issues of (1) enforceable separation between abstract definition
and representation r (2) specifying the relationship between
abstract definition and representations (3) type parameters in
modules, (4) operator extensions, and (5) scope restrictions on
identifiers.

Contents
I Introduction
2 Euclid Modules

2.1 Modules as Abstraction Mechanisms
2.2 Two Ways of Instantiating Modules

3 What Euclid Left Undone
3.1 Separation ~f Abstraction and Representation
3.2 Axiomatic Specification
3.3 Schemes
3.4 Operator Extensions
3~5 On Inheriting Scope

Summary

I This paper also appears in Computer Systems Research Group
Technical Report 82e "Notes on Euclids" edited by W. David
Elliott and David To Barnard. Since the final version of th~
Euclid Report appeared after these papers were completedw the
editors have effected changes and have tried to keep the papers
as coherent as possible in spite of this sometimes radical
surgery. Any contribution these papers have to make is a
tribute to Jim Homing, whose consistent insights and enthusiasm
motivated the authors (and editors) throughout.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F954373.954376&domain=pdf&date_stamp=1978-03-01

-35
ABSTRACT DATA TYPES IN EUCLID

I Tntroduction

The programming language Euclid [Lampson et al. 77] was
designed to support the writing of verifiable system software,
with the subgoal~ as a near-term projects to differ from Pascal
as little as possible° Hence Euclid was expressly ~o% intended
to be a research vehicle for new ideas in programming languages.
One notable exception the Euclid designers made was in the area
of data abstraction.

Virtually all data abstraction mechanisms claim lineage from
the Simula 67 class [Dahl et alo68]. Descendent data abstraction
mechanisms have not in general been used long enough for us to
have much experience with their user and as a result much of the
area of data abstraction still belongs in the realm of research.

Although it was not absolutely necessary for Euclid to
provide a data abstraction facility, its designers felt that such
a programming tool would greatly contribute to the ability to
decompose large programs so that they could be verified with
existing verification methodso A data abstraction mechanism also
encourages writing modular and structured programs, and thus
helps meet other Euclid design goals. ([Homing76] provides an
excellent summary of the advan%a gem provided by abstraction
mechanisms, both data and procedural.)

2 Euclid Modules

The module in Euclid is an encapsulation mechanism whereby
the representation of an abstract object and the implementation
of associated operations can be hidden from the enclosing scope.
Multiple instances of an abstraction can be realized from the
definition of a module type by declaring variables of that type.
Closed scopes, and modules in particular, provide explicit
control over the visibility of identifiers. Objects, operations,
and types defined within the module must be explicitly exported
in order to be used; similarly, values of variables declared
outside a module must be imported explicitly to be known inside.

2. I Modules as Abstraction Mechanisms

A data tire is defined by a set of values and a set of
operations on those val~es. An abstract data type is a data type
with a representat ion-independent definition. Thus, abstract
data types permit access by outside routines only to the abstract
values and operations, and not to any of the underlying
representation. In this sense, clusters in CLU [Liskov et ai.77]
and f qrm_s in Alphard [Wulf et ai. 76] are abstract data types,
whereas classes in Simula 67 [Dahl et ai.68] are not, since all
data structures in the outermost scope of a class are accessible.
Palm, [73] has shown, however, how the necessary protection could
be added to Simula 67 in a straightforward way.

For reasons similar to those for Simula 67 classes, Euclid
modules are not true abstract data types. Access to identifiers

-36-
ABSTRACT DATA TYPES IN EUCLID

within a module is severely restricted by the import and export
clauses as well as the Euclid scope rules~ but access is allowed°

Euclid modules can be used, hoverers to implement abstract
data types. This would require additional programmer disciplines
unenforceable by the language itself~ to ensure that the only
entities accessible to outside routines are those abstract
entities being defined.

2.2 Two Ways of Instantiating Modules

In Euclid there are two distinct methods of defining
equivalent objects and their operations. A module type can be
defined, and instances of the module type declared in the
enclosing scope. Alternatively, a type definition can be
exported from a module~ and objects of that type declared in the
enclosing scope.

Since no self-respecting abstract data type paper would be
complete without an example of a stacks we will use the stack
example to illustrate the two instantiation methods. Consider
the following implementation of a bounded stack of integers in
which multiple instances of the module will be instantiated. The
procedure "Pop" pops the top value from the stack and assigns it
fo the parameter pased.

t~e Stack (Stack Size : unsignedlnt) = module
e_x~orts_ (Pop ,Push)
va_r IntStack: arra Z 1o.StackSize of signedInt
va[StackPtr: 0..StackSize := 0

procedure Push(X: signedInt) =
i~R~K~(~K IntStack, va[StackPtr, StackSize)

procedure Overflow = ... end Overflow
if StackPtr = StackSize then

Overflow
else

StackPtr := StackPtr÷1
IntStack(StackPtr) := X

end if
end Push

procedure Pop(za ~ X: signedInt) =
!~R~(~K IntStack, yak StackPtr)

procedure Underflow = ... end Underflow
!~ StackPfr = 0 ~hen

Underflow

X := IntStack(StackPtr)
StackPtr := StackPtr-1

~a~ Pop

~d Stack

-37-
ABSTRACT DATA TYPES IN EUCLID

The user would access the stack by code such as:

z_a[A~B: Stack (I00)
vat Element: signedlnt
e ~ e

B, Push (3) ;
A. Pop (Element)

Note: Because functions cannot have side effects and "Pop" alters
the stack as well as returning a value, we cannot use the more
natural form ~Element := A. Pop"°

Alternatively~ if the module "Stack" exported a type
definition "Stk"~ we could have the following module:

tx~e - Stack = module
e xRpqEt_s (Stk, Pop, Push)
tx~e Stk(StackSize: unsignedInt) = record

va[StackPtr: 0..StackSize := 0
_vat Body: ar~a Z 1..StackSize of signedInt
_en_d st k

procedure Push(va__r IStk: Stk(parameter) ,
X: signedInt) =

herin_
procedure Overflow = ... _end Overflow
if IStk. StackPtr = IStk. StackSize then
- - m

Overflow
else

IStk. StackPtr := IStk. StackPtr+1
IStk. Body (IStk. StackPtr) := X

end if
end Push

~ro_ce~_ure Pop (jar_ IStk: Stk(garameter) ,
vat_ X: signedInt) =

b esin_
procedure Underflow = ... end Underflow
i~ IStk. StackPtn = 0 then

Underflow
else

X := IStk. Body(IStk. StackPtr)
IStk. StackPtr := IStk. StackPtr-1

end if
end Pop

~d Stack

Corresponding user code might be:

var S1: Stack
_v_a_r A: S1.Stk(100)
_var B: S1.Stk(299)
vat Element: signedInt

; PushCB,3)
S I. Pop (A, Element)

[instantiates the module}
{instantiates the object}
[and another object]

-38-
ABSTRACT DATA TYPES IN EUCLID

The differences between these two stack implementations are
largely stylistic° There ares ho~ever~ situations in which the
second instantiation method is more powerful~ as shown in the
following example°

We would like to define a data type ~CharString ~ that
contains a procedure "Append '~ thai operates on two strings passed
as arguments~ The first method of instantiation requires that
the data representation be declared inside the modu le~ and
requires code such as:

i~Re CharString = module
imports (CharS, ring)
e_~ports (Append)
_vat X: arras Io °250 of char
procedure Append (vat S: CharString) =

ira_ports (X) ~oo
_end Append

end_ CharString

Since "Append" must have access to the representation of the
character string "X", it m11st be located inside the module
"CharS,ring". The requirement that the module import itself, in
order for "Append" to be able to access the other stringg
however~ presents an illegal situation in Euclid.

Using the second instantiation technique, this problem is
easily dealt with:

t zRe CharStringModule = module
exports (CharS,ring, Append)
txRe CharS,ring = record .o° end_ CharS,ring
procedure Append (var SirS2: CharString) =

"en_d Append
@ • .

en_d CharStringModule

with user code

x_a_r S: CharStringModule
var Sa, Sb: S.CharString
@ • @

S. Append (SatSb)

The existence of the two instantiation methods adds to the
complexity of the language, especially since combinations of the
two methods are possible. The Euclid designers, however, felt
that there were situations in which each of the two methods
provided a more natural solution. Ins,an,taring modules avoids
the bother of re-importing variables of an exported type. And,
as we saw above, instantiating a type exported from a module
provides capabilities not provided by simply instantiating the
module.

-39-
ABSTRACT DATA TYPES IN EUCLID

3 ~hat Euclid Left Undone

Although modules were a notable exception to the Euclid
design guideline of no innovation, somewhat conservative design
decisions were made concerning modules~ This section discusses
areas where the Euclid designers could have provided further
module capabilities.

3~I Separation of Abstraction and Representation

In CLU [Liskov et alo77], Mesa [Geschke et ai.77], and
alphard [~ulf et al. 76], it is possible to write the
specification of an abstract data type as an entity completely
distinct from its implementation. In this way, it is possible to
change representations quite easily and %0 implement libraries of
data abstractions and implementations, both of which
capabilities are highly desirable.

Euclidr howeverw proviaes no syntactic mechanism to ensure
that this separation is preserved. It is possible in Euclid to
i mple ment interchangeable modules for the same abstract
specifications, but the specification would have to be textually
copied between modules in order to do so. Also, there would be
no way within the language of ensuring that the textually copied
specifications remain the same.

3.2 Axiomatic Specification

In order to be able to prove that a particular representation
of an abstract data type does indeed implement the specified data
abstraction, a language must provide a formal means of specifying
the relationship between the concrete representation and abstract
definition. Although Euclid did not originally provide such a
mechanism, the ill-defined abstraction function now fulfills that
role, in much the same way that the (somewhat misnamed) _r_e R
function does in CLU. In Alphard this relationship between
concrete and abstract is specified in the representation section
of the form. None of these languages, however, provide an
adequate means for axiomatic specification [Guttag et ai.76].

3.3 Schemes

Types in Euclid are allowed %o have formal parameters. Such
parameters are typed constants, but need not be manifest. It is
possible to defer fixing the value of a parameter by specifying
it as ~_nz, unknown_, or p_aramete_r, but it is not possible %o pass
types as parameters to a parameterized type.

Mitchell and Wegbrei% [76] have coined the term "scheme" as a
generalization of parameterized types in which type values can be
passed as parameters to the definition mechanism. The
instantiation of a scheme is a (possibly parameterized) abstract
data type. Thus, for example, passing type "integer" as a
parameter to a scheme definition could produce a bounded stack of
integers data type. This data type can in turn be instantiated

-40-

ABSTRACT DATA TYPES IN EUCLID

to produce a particular abstract data object° Such facilities
exist in both CLU and Alphard~ as well as in ELI [Wegbreit7~]o

3.4 Operator Extensions

Operator extensibility in Euclid is strictly procedural in
nature~ The generic operators equality and assignment are
identical for all modules~ though to be used they must be
explicitly exported. A new operator defined on a data type can
be viewed only as a routine~ not as a new infix or prefix
o pe ra for o

Operators can be redefined in both CLU and Alphard~ and even
equaliiy and assignment can be redefined in CLU~ Alphard also
allows operators to be defined as infix or prefix~ which
contributes to readability.

3.5 On Inheriting Scope

The Euclid designers took much of the advice of Wulf and Shaw
[73] to heart in attacking the problems of aliasing and global
variables. Unlike the designers of Gypsy [Ambler et al.77]~ who
discarded the Algol notion of nested scopes, the Euclid designers
chose to reinforce Algol-like block structuring with further
restrictions. In particular, Euclid requires import lists for
closed scopes, prohibits redeclaration of variables within a
scope, prohibits "sneak access" to variables via procedure calls~
and disallows functions with side effects~ Euclid allows
different types of access (e.g., reade write) to be associated
with an exported or imported variable, as does Alpha,d.

Both Euclid and Alphard require that an identifier be passed
through all intervening scopes in order to be known within an
inner scope. (Similarly, in Euclid all ancestors of a machine-
dependent module must be made machine-dependent.) Since Gypsy
does not permit a hierarchy of routine declarations, there are no
intervening scopes that need simply pass an identifier along.

4 Summary

Euclid provides features that support abstract data types,
but does not strictly speaking provide a true data abstraction
mechanism. With modules, the Euclid designers struck a balance
between providing abstraction capabilities and ensuring that the
capabilities provided could be fairly easily implemented. In
particular, Euclid could have provided fur%her capabilities in
the areas of enforceable separation between abstract definition
and representation, specifying the relationship between abstract
definition and representation, type parameters in modules,
operator extensions, and scope restrictions on identifiers.

Acknowledqements:
patiently edited
c o mine nts

-41
ABSTRACT DATA TYPES IN EUCLID

We appreciate the efforts of Inge Weber, who
this document. Ric Holt provided helpful

References

[Ambler e% alo77]
AoA~ Amblers D.I. Goodw J.Co Browne~ W.F. Burgers R.M. Cohens
CoG. Hoch~ and RoE. Wells~ Gypsy: A Language for
Specification and Implementation of Verifiable Programs;
SIGPLAN Notices 12,3 (March 1977) pp. 1-10~

[Dahl et ai.68]
O.-J. Dahl, B~ Myhrhaug, and K. Nygaard; The Simula 67 Common
Base Language; Norwegian Computing Center, Oslo (1968)

[Geschke et aI~77]
CoM. Geschke, J.H~ Morris, and E.H. Satterthwaite; Early
Experience with mesa; to appear in CACM.

[Guttag et ai.76]
J.V. Guttag, E. Horowitzs and
Types and Software Validation;
Institute Technical Report (1976).

D.R. Musser; Abstract Data
USC Information Sciences

[Horning76]
J.J. Horning; Some Desirable Properties of Data Abstraction
Facilities; Proceedings of Conference on Data: Abstraction,
Definition and Structure, SIGPLAN Notices 11, Special Issue
(March 1976) pp. 60-62.

[Lampson et ai.77]
B.W. Lamps,n, J.J. Homing, R.Lo London, J.G. Mitchell, and
G.J. Pop,k; Report on the Programming Language Euclid;
SIGPLAN Notices 12,2 (February 1977) pp. 1-79.

[Liskov et ai.77]
B. Liskov, A. Snyder, R. At kinson, and C.
Abstraotion Mechanisms in CLU; to appear in CACMo

Schaffert;

[Mitchell and Wegbreit76]
J.G. Mitchell and B. Wegbreit ; A Next Step in Data
Structuring for Programming Languages; Proceedings of
Conference on Data: Abstraction, Definition and Structure,
SIGPLAN Notices 11, Special Issue (March 1976) pp. 69-70.

[Palm,73]
J. Palm,; Protected Program Modules in Simula 67; Research
Institute of National Defense, Stockholm (1973).

[Wegbreit75]
B. Wegbreit; The Treatment of Data Types in EL1; CACM 17,5
(May 1974) pp. 251-264.

[Wulf and Shaw73]
W.A. Wulf and M. Shaw; Global Variable Considered Harmful;
SIGPLAN Notices 8,2 (February ~973) pp. 28-34.

-42 -

ABSTRACT DATA TYPES IN EUCLID

[Wulf e% al.76]
Wo A. Wulff Ro Lo London, and Mo Shaw; Abstraction and
Verification in Alphard$ Carnegie-Mellon Universi%y (also USC
Information Sciences Institute) Technical Report (1976) o

