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Abstract: The programming language Euclid provides features that 
support abstract data types, but does not strictly speaking 
provide a true data abstraction mechanisms This paper assesses 
the data abstraction facilities that Euclid does provider 
examines the two ways of instantiating Euclid modu less and 
discusses other features of modules that the designers of Euclid 
chose not to include~ In particulars the paper addresses the 
issues of (1) enforceable separation between abstract definition 
and representation r (2) specifying the relationship between 
abstract definition and representations (3) type parameters in 
modules, (4) operator extensions, and (5) scope restrictions on 
identifiers. 
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I This paper also appears in Computer Systems Research Group 
Technical Report 82e "Notes on Euclids" edited by W. David 
Elliott and David To Barnard. Since the final version of th~ 
Euclid Report appeared after these papers were completedw the 
editors have effected changes and have tried to keep the papers 
as coherent as possible in spite of this sometimes radical 
surgery. Any contribution these papers have to make is a 
tribute to Jim Homing, whose consistent insights and enthusiasm 
motivated the authors (and editors) throughout. 
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I Tntroduction 

The programming language Euclid [Lampson et al. 77] was 
designed to support the writing of verifiable system software, 
with the subgoal~ as a near-term projects to differ from Pascal 
as little as possible° Hence Euclid was expressly ~o% intended 
to be a research vehicle for new ideas in programming languages. 
One notable exception the Euclid designers made was in the area 
of data abstraction. 

Virtually all data abstraction mechanisms claim lineage from 
the Simula 67 class [Dahl et alo68]. Descendent data abstraction 
mechanisms have not in general been used long enough for us to 
have much experience with their user and as a result much of the 
area of data abstraction still belongs in the realm of research. 

Although it was not absolutely necessary for Euclid to 
provide a data abstraction facility, its designers felt that such 
a programming tool would greatly contribute to the ability to 
decompose large programs so that they could be verified with 
existing verification methodso A data abstraction mechanism also 
encourages writing modular and structured programs, and thus 
helps meet other Euclid design goals. ([Homing76] provides an 
excellent summary of the advan%a gem provided by abstraction 
mechanisms, both data and procedural.) 

2 Euclid Modules 

The module in Euclid is an encapsulation mechanism whereby 
the representation of an abstract object and the implementation 
of associated operations can be hidden from the enclosing scope. 
Multiple instances of an abstraction can be realized from the 
definition of a module type by declaring variables of that type. 
Closed scopes, and modules in particular, provide explicit 
control over the visibility of identifiers. Objects, operations, 
and types defined within the module must be explicitly exported 
in order to be used; similarly, values of variables declared 
outside a module must be imported explicitly to be known inside. 

2. I Modules as Abstraction Mechanisms 

A data tire is defined by a set of values and a set of 
operations on those val~es. An abstract data type is a data type 
with a representat ion-independent definition. Thus, abstract 
data types permit access by outside routines only to the abstract 
values and operations, and not to any of the underlying 
representation. In this sense, clusters in CLU [Liskov et ai.77] 
and f qrm_s in Alphard [Wulf et ai. 76] are abstract data types, 
whereas classes in Simula 67 [Dahl et ai.68] are not, since all 
data structures in the outermost scope of a class are accessible. 
Palm, [73] has shown, however, how the necessary protection could 
be added to Simula 67 in a straightforward way. 

For reasons similar to those for Simula 67 classes, Euclid 
modules are not true abstract data types. Access to identifiers 
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within a module is severely restricted by the import and export 
clauses as well as the Euclid scope rules~ but access is allowed° 

Euclid modules can be used, hoverers to implement abstract 
data types. This would require additional programmer disciplines 
unenforceable by the language itself~ to ensure that the only 
entities accessible to outside routines are those abstract 
entities being defined. 

2.2 Two Ways of Instantiating Modules 

In Euclid there are two distinct methods of defining 
equivalent objects and their operations. A module type can be 
defined, and instances of the module type declared in the 
enclosing scope. Alternatively, a type definition can be 
exported from a module~ and objects of that type declared in the 
enclosing scope. 

Since no self-respecting abstract data type paper would be 
complete without an example of a stacks we will use the stack 
example to illustrate the two instantiation methods. Consider 
the following implementation of a bounded stack of integers in 
which multiple instances of the module will be instantiated. The 
procedure "Pop" pops the top value from the stack and assigns it 
fo the parameter pased. 

t~e Stack (Stack Size : unsignedlnt) = module 
e_x~orts_ (Pop ,Push) 
va_r IntStack: arra Z 1o.StackSize of signedInt 
va[ StackPtr: 0..StackSize := 0 

procedure Push(X: signedInt) = 
i~R~K~(~K IntStack, va[ StackPtr, StackSize) 

procedure Overflow = ... end Overflow 
if StackPtr = StackSize then 

Overflow 
else 

StackPtr := StackPtr÷1 
IntStack(StackPtr) := X 

end if 
end Push 

procedure Pop(za ~ X: signedInt) = 
!~R~(~K IntStack, yak StackPtr) 

procedure Underflow = ... end Underflow 
!~ StackPfr = 0 ~hen 

Underflow 

X := IntStack(StackPtr) 
StackPtr := StackPtr-1 

~a~ Pop 

~d Stack 
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The user would access the stack by code such as: 

z_a[ A~B: Stack (I00) 
vat Element: signedlnt 
e ~ e 

B, Push (3) ; 
A. Pop (Element) 

Note: Because functions cannot have side effects and "Pop" alters 
the stack as well as returning a value, we cannot use the more 
natural form ~Element := A. Pop"° 

Alternatively~ if the module "Stack" exported a type 
definition "Stk"~ we could have the following module: 

tx~e - Stack = module 
e xRpqEt_s (Stk, Pop, Push) 
tx~e Stk(StackSize: unsignedInt) = record 

va[ StackPtr: 0..StackSize := 0 
_vat Body: ar~a Z 1..StackSize of signedInt 
_en_d st k 

procedure Push(va__r IStk: Stk(parameter) , 
X: signedInt) = 

herin_ 
procedure Overflow = ... _end Overflow 
if IStk. StackPtr = IStk. StackSize then 
- - m  

Overflow 
else 

IStk. StackPtr := IStk. StackPtr+1 
IStk. Body (IStk. StackPtr) := X 

end if 
end Push 

~ro_ce~_ure Pop (jar_ IStk: Stk(garameter ) , 
vat_ X: signedInt) = 

b esin_ 
procedure Underflow = ... end Underflow 
i~ IStk. StackPtn = 0 then 

Underflow 
else 

X := IStk. Body(IStk. StackPtr) 
IStk. StackPtr := IStk. StackPtr-1 

end if 
end Pop 

~d Stack 

Corresponding user code might be: 

var S1: Stack 
_v_a_r A: S1.Stk(100) 
_var B: S1.Stk(299) 
vat Element: signedInt 

;  PushCB,3) 
S I. Pop (A, Element) 

[instantiates the module} 
{instantiates the object} 
[and another object] 
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The differences between these two stack implementations are 
largely stylistic° There ares ho~ever~ situations in which the 
second instantiation method is more powerful~ as shown in the 
following example° 

We would like to define a data type ~CharString ~ that 
contains a procedure "Append '~ thai operates on two strings passed 
as arguments~ The first method of instantiation requires that 
the data representation be declared inside the modu le~ and 
requires code such as: 

i~Re CharString = module 
imports (CharS, ring) 
e_~ports (Append) 
_vat X: arras Io °250 of char 
procedure Append (vat S: CharString) = 

ira_ports (X) ~oo 
_end Append 

end_ CharString 

Since "Append" must have access to the representation of the 
character string "X", it m11st be located inside the module 
"CharS,ring". The requirement that the module import itself, in 
order for "Append" to be able to access the other stringg 
however~ presents an illegal situation in Euclid. 

Using the second instantiation technique, this problem is 
easily dealt with: 

t zRe CharStringModule = module 
exports (CharS,ring, Append) 
txRe CharS,ring = record .o° end_ CharS,ring 
procedure Append (var SirS2: CharString) = 

"en_d Append 
@ • . 

en_d CharStringModule 

with user code 

x_a_r S: CharStringModule 
var Sa, Sb: S.CharString 
@ • @ 

S. Append (SatSb) 

The existence of the two instantiation methods adds to the 
complexity of the language, especially since combinations of the 
two methods are possible. The Euclid designers, however, felt 
that there were situations in which each of the two methods 
provided a more natural solution. Ins,an,taring modules avoids 
the bother of re-importing variables of an exported type. And, 
as we saw above, instantiating a type exported from a module 
provides capabilities not provided by simply instantiating the 
module. 
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3 ~hat Euclid Left Undone 

Although modules were a notable exception to the Euclid 
design guideline of no innovation, somewhat conservative design 
decisions were made concerning modules~ This section discusses 
areas where the Euclid designers could have provided further 
module capabilities. 

3~I Separation of Abstraction and Representation 

In CLU [Liskov et alo77], Mesa [Geschke et ai.77], and 
alphard [ ~ulf et al. 76 ], it is possible to write the 
specification of an abstract data type as an entity completely 
distinct from its implementation. In this way, it is possible to 
change representations quite easily and %0 implement libraries of 
data abstractions and implementations, both of which 
capabilities are highly desirable. 

Euclidr howeverw proviaes no syntactic mechanism to ensure 
that this separation is preserved. It is possible in Euclid to 
i mple ment interchangeable modules for the same abstract 
specifications, but the specification would have to be textually 
copied between modules in order to do so. Also, there would be 
no way within the language of ensuring that the textually copied 
specifications remain the same. 

3.2 Axiomatic Specification 

In order to be able to prove that a particular representation 
of an abstract data type does indeed implement the specified data 
abstraction, a language must provide a formal means of specifying 
the relationship between the concrete representation and abstract 
definition. Although Euclid did not originally provide such a 
mechanism, the ill-defined abstraction function now fulfills that 
role, in much the same way that the (somewhat misnamed) _r_e R 
function does in CLU. In Alphard this relationship between 
concrete and abstract is specified in the representation section 
of the form. None of these languages, however, provide an 
adequate means for axiomatic specification [Guttag et ai.76]. 

3.3 Schemes 

Types in Euclid are allowed %o have formal parameters. Such 
parameters are typed constants, but need not be manifest. It is 
possible to defer fixing the value of a parameter by specifying 
it as ~_nz, unknown_, or p_aramete_r, but it is not possible %o pass 
types as parameters to a parameterized type. 

Mitchell and Wegbrei% [76] have coined the term "scheme" as a 
generalization of parameterized types in which type values can be 
passed as parameters to the definition mechanism. The 
instantiation of a scheme is a (possibly parameterized) abstract 
data type. Thus, for example, passing type "integer" as a 
parameter to a scheme definition could produce a bounded stack of 
integers data type. This data type can in turn be instantiated 
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to produce a particular abstract data object° Such facilities 
exist in both CLU and Alphard~ as well as in ELI [Wegbreit7~]o 

3.4 Operator Extensions 

Operator extensibility in Euclid is strictly procedural in 
nature~ The generic operators equality and assignment are 
identical for all modules~ though to be used they must be 
explicitly exported. A new operator defined on a data type can 
be viewed only as a routine~ not as a new infix or prefix 
o pe ra for o 

Operators can be redefined in both CLU and Alphard~ and even 
equaliiy and assignment can be redefined in CLU~ Alphard also 
allows operators to be defined as infix or prefix~ which 
contributes to readability. 

3.5 On Inheriting Scope 

The Euclid designers took much of the advice of Wulf and Shaw 
[73] to heart in attacking the problems of aliasing and global 
variables. Unlike the designers of Gypsy [Ambler et al.77]~ who 
discarded the Algol notion of nested scopes, the Euclid designers 
chose to reinforce Algol-like block structuring with further 
restrictions. In particular, Euclid requires import lists for 
closed scopes, prohibits redeclaration of variables within a 
scope, prohibits "sneak access" to variables via procedure calls~ 
and disallows functions with side effects~ Euclid allows 
different types of access (e.g., reade write) to be associated 
with an exported or imported variable, as does Alpha,d. 

Both Euclid and Alphard require that an identifier be passed 
through all intervening scopes in order to be known within an 
inner scope. (Similarly, in Euclid all ancestors of a machine- 
dependent module must be made machine-dependent.) Since Gypsy 
does not permit a hierarchy of routine declarations, there are no 
intervening scopes that need simply pass an identifier along. 

4 Summary 

Euclid provides features that support abstract data types, 
but does not strictly speaking provide a true data abstraction 
mechanism. With modules, the Euclid designers struck a balance 
between providing abstraction capabilities and ensuring that the 
capabilities provided could be fairly easily implemented. In 
particular, Euclid could have provided fur%her capabilities in 
the areas of enforceable separation between abstract definition 
and representation, specifying the relationship between abstract 
definition and representation, type parameters in modules, 
operator extensions, and scope restrictions on identifiers. 
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