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Evaluation of Boolean Expressions on One's Complement Machines 

Peter L. Montgomery 

System Development Corporation 
4810 Bradford Boulevard, N. Wo 
Huntsv i l le ,  Alabama 35805 

Abstract 

An algorithm is presented which evaluates an arbitrary boolean expression 
in terms of a small instruction set and which often generates fewer instruc- 
tions than other methods the author has seen. The algorithm tel ls what code 
to generate whenever a boolean operator, a branch test, a boolean assignment 
statement, or a conditional expression is encountered. One's complement 
arithmetic is assumed throughout. 

I .  Background and Assumptigns 

My instal lat ion has a Control Data (CDC) 7600 for which numerous FORTRAN 
programs are written. Almost everyone here uses the FTN compiler, an optimizing 
compiler written by CDC which generates very good code. One area in which i ts 
object code can be further improved involves the evaluation of boolean expres- 
sions (called logical in FORTRAN) containing more than one relational, especially 
in IFs. This paper formalizes a procedure for generating the improved code. 

Because of the background, the algorithm is oriented towards the CDC CYBER 
series and uses many of the conventions of the FTN compiler. In particular, 
for variables stored in memory, a value of TRUE is represented by an arbitrary 
negative quantity and a value of FALSE by an arbitrary positive quantity. 
(Alternatively, TRUE can be represented by -0 and FALSE by +0.) Each boolean 
expression is evaluated as one quantity; the algorithm does not issue a 
separate branch or skip instruction for each relational in an expression. The 
required hardware instructions (all of which operate on fu l l  word operands) 
are listed in Table l ;  except possibly for ANDNOT and NXOR, these are standard 
on one's complement machines. Note the add and subtract instructions are 
assumed not to interrupt on overflow. Also, a sum of two complementary operands 
or a difference of two identical operands is assumed to be +0, not -0. 

2. Description 

The algorithm specifies the code to be generated for each boolean operator in 
an expression; i t  is intended to be used in conjunction with another procedure 
which evaluates arbitrary expressions. Before one can apply the algorithm, he 
must decide what type of code should be generated for each boolean primitive, 
i f  the primitive were to appear alone in a branch on true. In FORTRAN, this 
requires deciding upon the best code for each of the six relational operators 
(.EQ., .GT., .GE., .LE., .LT., and .NE.), for each permissible type of operand 
(Real, Integer, Double Precision, Complex, Character). In each case, either 
the relational is recognized as identically true or identically false ( i f  i ts 
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Table I .  Basic Ins t ruc t ion  Set Assumed by Algori thm 

Ins t ruc t ion  Des c r i~.t_i.oQ. Notation 

Branch i f  operand is +0 or -0 
Branch i f  operand is nonzero 
Branch i f  operand is posi t ive (or +0) 
Branch i f  operand is negative (or -0) 
Branch uncondi t iona l ly  
Get copy of operand 
AND two or more operands* 
AND two operands, negating second 
Get one's complement of operand 
Negative exclusive OR of two operands 
OR two or more operands* 
Exclusive OR two operands 
Get word in which a l l  b i ts  are same 

as sign b i t  of operand 
One's complement sum of two operands, 

overf low ignored 
One's complement d i f ference of  two 

operands, overflow ignored 
Load +0 into a reg is te r  
Load -0 into a reg is te r  
Load operand from memory 
Sto~e operand in memory 

AND 
ANDNOT 
COMPL 
NXOR 
OR 
XOR 
XSIGN 

÷ 

+0,0 
-0 

* I f  more than two operands are present, more than one ins t ruc t ion  w i l l  
be required, of course. 
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arguments can be evaluated at compile time), or i t  is replaced by a series of 
computations, the last being a branch on positive, a branch on negative, a 
branch on zero, or a branch on nonzero. For example, to branch when J.GT.K 
has value true, the quantity K-J+O might be computed and a branch on negative 
generated. The purpose of the algorithm is to decide what code to generate i f  
the relational occurs in a more complicated context, while always preserving 
the optimal code i f  the relational stands alone. 

The algorithm uses ten tags, l i s ted in Table 2, to ident i fy  what is known 
about each intermediate expression. The tag ident i f ies  which possible values 
correspond to true, which possible values correspond to false, and which 
values are known to be impossible. Of the ten tags, four (NEG, NONZERO, POS, 
ZERO) correspond d i rec t l y  to assumed hardware branch instruct ions. Four 
others (ZEROM, NPLZERO, ZEROP, PLZERO) are special cases of the f i r s t  four, in 
which certain operand values are known to be impossible; these are essential 
i f  f u l l  optimization is desired but can be omitted i f  only moderate optimization 
is necessary. The other two (FALSE, TRUE) are desirable for processing boolean 
constants and for ident i fy ing dead code, although they, too, could be omitted 
with l i t t l e  loss. Note the table is closed under negation; i f  a tag appears 
in the table, i t s  log ica l l y  opposite tag also appears. Consequently, the 
operations of branching and of negation are t r i v i a l .  

Besides branching and negation, the other standard operations one must be able 
to perform are the ANDing or ORing of two boolean expressions, the storing of 
a boolean expression in a boolean variable, and the evaluation of a conditional 
expression. The OR of two boolean expressions B1 and B2 may be expressed in 
terms of one AND and three NOTs, i . e . ,  

BI.OR. B2 : .NOT.((.NOT.BI).AND.(.NOT.B2)). 

Tables for  the other operations appear in Appendix I .  The AND table is summa- 
rized in Appendix I I ;  the la t te r  is more suitable for d i rect  implementation. 
Appendix I I  also considers the optimal way to AND three or more expressions of 
d i f fe r ing  tags. 

Certain sequences of instructions occur repeatedly in the tables and are given 
special names (EQO, EQPO, NEO, NEPO); these return a mask of ones i f  the 
argument is, respectively, zero, plus zero, nonzero, not plus zero. Each 
returns a mask of zeros otherwise. Formal definit ions are: 

EQO(1) : NXOR(O+I,O-I) 
EQPO(1) : NXOR(I,O-I) 
NEO(1) : XOR(O+I,O-I) 
NEPO(1) = XOR(I,O-I) 

3. Examples 

As a sample application, let  L1 be a logical variable. Consider the FORTRAN 
statement 

IF(.NOT.LI) II=0 
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Table 2. Tags Used by Algorithm 

Tad 

FALSE 

NEG 

NONZERO 

NPLZERO 

PLZERO 

POS 

TRUE 

ZERO 

ZEROM 

ZEROP 

Meaning 

Expression always fa lse.  

Expression true i f  value is negative, 
false i f  positive. 

Expression true i f  value is nonzero, fa lse 
i f  +0 or -0. 

Expression true i f  value is nonzero, fa lse i f  
+0. Expression known not to be -0. 

Expression true i f  value is +0, false i f  
nonzero. Expression known not to be -0. 

Expression true i f  value is positive, false 
i f  negative. 

Expression always true. 

Expression true i f  value is +0 or -0, 
false i f  nonzero. 

Expression true i f  value is -0, false i f  
+0. Expression known to be +0 or -0. 

Expression true i f  value is +0, false i f  -0. 
Expression known to be +0 or -0. 
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The only boolean primitive is Ll. Since logical variables are assumed true 
i f  negative and false i f  positive, a branch on true would require a load of 
Ll and a branch on negative. Therefore the code which loads L1 from memory 
is generated and tagged NEG° The statement looks like 

IF(.NOT.NEG(LI)) ll=O 

where the argument to NEG is assumed to have already been converted to 
machine code. The next operator is NOT. To negate an expression tagged 
NEG, change i t s  tag to POS (no addit ional code is generated). The statement 
has been reduced to 

IF(POS(LI )) l l :O 

The next operator is IF. To branch when POS fa i ls ,  issue a branch on negative 
instruction. The right hand side of the IF is evaluated in the standard 
way. The entire statement requires one load, one branch on negative, one 
load of O, and one store - no complement instruction is required. 

The las t  example involves only a negation and a branch, so i t  is very simple. 
A more complicated example is 

IF(II.GT.5 .OR. 12. EQ.O) GO TO 20 

To branch when II.GT.5 is true, one would compute 5-11 and branch on negative 
(note the result cannot be -0). To branch when 12.EQ.O is true, one would 
load 12 and branch on zero (both +0 and -0 are considered equal to zero). 
The statement is therefore transformed into 

IF(NEG(5-11) .OR. ZERO(12)) GO TO 20 

To evaluate the OR, negate both operands 

IF(.NOT.(POS(5-11) .AND. NONZERO(12))) GO TO 20 

Evaluation of the AND reduces the code to (see rule for  ANDing a POS tag and 
a NONZERO tag in Appendix I) 

IF(.NOT. NONZERO(ANDNOT(12, XSIGN(5-11)))) GO TO 20 

as a s h i f t  and an ANDNOT ins t ruc t ion  are generated. Evaluation of the NOT 
changes the NONZERO tag to ZERO; no fur ther  transformation i s  required 
before the IF. The statement is evaluated as though i t  were 

IF(ZERO(ANDNOT(12, XSIGN(5-11)))) GO TO 20 

The statement requires 7 instructions (2 loads, 1 load immediate, 1 subtract, 
l shi f t ,  l and with complement, l branch on zero). This compares to lO 
instructions (2 loads, l load immediate, l load of +0, 2 subtracts, l add, l 
negative exclusive or, l or, l branch on negative) generated by version 4.6 
of FTN. 
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4. Further Optimizations 

The ANDing of two NONZERO or NPLZERO tags, or the ORing of  two ZERO or 
PLZERO tags, deserves special a t ten t ion ,  as hidden oppor tuni t ies fo r  opt imiza- 
t ion w i l l  often occur. The statement 

IF(I.EQ.3 .OR. I.EQ.-7) GO TO 60 

is t ranslated in to  (note I-3 and I+7 are never -0) 

IF (PLZERO(I-3) .OR. PLZERO(I+7) GO TO 60 

and then into 

IT1 : I -3 
IT2 = I+7 
IF (ZERO(XOR(ITI+IT2, IT I - IT2 ) ) )  GO TO 60 

Here ITl and IT2 are compiler-generated variables. Note ITl and IT2 are 
defined in terms of addition and subtraction, but only their sum and their 
difference are used. Furthermore, i t  is unimportant here whether ITI+IT2 
and ITI-IT2 evaluate to +0 or -0 i f  they are indeed zero; hence the standard 
mathematical identities about addition and subtraction may be used freely. 
A better expansion would be 

IF (ZERO(XOR(I+I+4,-IO))) GO TO 60 

This opportunity arises whenever an integer variable is being compared against 
twodif ferent constants. Incidentally, since both constants have the same 
parity ( i .e . ,  3 and -7 are both odd), a divide by 2 can be used to further 
simplify the code to 

IF (ZERO(XOR(I+2,-5))) GO TO 60 

5. Conditional Exp.ressions 

The FORTRAN language does not allow conditional expressions (except that some 
of i ts intr insic functions like ABS may be thought of as conditional) Nonethe- 
less, a sophisticated compiler should be able to recognize when a user is 
thinking in terms of conditional expressions, as in 

REAL SCX, SCAX 
IF(SCX.LE.O) THEN 
SCAX = l.O 
ELSE 
SCAX = SCX 
END IF 

On some machines optimal code is gotten by loading both SCX and 1.0 into 
registers, evaluating SCX.LE.O.O as a mask of zeros or a mask of ones, and 
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using hardware boolean instructions to complete the evaluation - no branch 
instruction is generated. The relational SCX.LE.O.O is equivalent to POS(O-SCX) 
(integer subtract). To convert this to a mask of zeros or a mask of ones 
( i .e . ,  to change the tag from POS to ZEROM or ZEROP), apply the XSIGN operator. 
The expansion is 

IT1 = XSIGN (O-SCX) 
SCAX = OR(AND(SCX,ITI ), ANDNOT(I.O,ITI)) 

6. Other Uses of Boolean Expressions 

Some operations have been le f t  out of the tables. The use of a boolean expres- 
sion (other than a boolean variable) as a procedure argument is a special case 
of an assignment statement. Similarly, the output of a boolean procedure is 
treated as a special case of a boolean variable. The equivalence or the 
exclusive or of two boolean expressions, neither operand having tag TRUE or 
FALSE, may be processed by f i r s t  converting each tag to NEG, POS, ZEROM, or 
ZEROP, then generating an exclusive OR instruction and tagging the result 
appropriately. Also omitted is the evaluation of a conditional expression 
which is i t se l f  type boolean and in which the operands may be evaluated without 
danger of interrupt; a sequence such as 

LOGICAL L 
L=B2 
IF (Bl) L = B3 

may be replaced by 

L : (B3.AND.BI) .OR. (B2.AND..NOT.BI). 

One optimization is to check i f  B2 and B3 have the same tag; i f  so the tag can 
be applied to L and the statements can be treated l ike a regular conditional 
expression. Also, i f  any of Bl, B2, B3 are tagged TRUE or FALSE, the expression 
can be simplified by standard identit ies. 
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APPENDIX I 

Changing the Tag of an Operand 

To Convert To Convert To Convert 
T a ~ o f  I to NEG to ZEROM to ZEROP 

FALSE +0 +0 
NEG I XSIGN(1) 
NONZERO NEO(1) NEO(1) 
NPLZERO NEPO(1)* NEPO(1) 
PLZERO EQPO(1)* EQPO(1) 
POS COMPL(1) COMPL(XSIGN(1)) 
TRUE -0 -0 
ZERO EQO(1)** EQO(1) 
ZEROM I I 
ZEROP COMPL(1) COMPL(1) 

-0 
COMPL(XSIGN(1)) 
EQO(1) 
EQPO(1) 
NEPO(1) 
XSIGN(1) 
+0 
NEO(1) 
COMPL(1) 
I 

Choice of Branch Inst ruct ion,  and Negation of Operand 

Tag of To branch To branch Tag of 
Operand on Success on Fai lure Negat!on 

FALSE never always TRUE 
NEG negative posi t ive POS 
NONZERO nonzero zero ZERO 
NPLZERO nonzero zero PLZERO 
PLZERO zero nonzero NPLZERO 
POS posi t ive negative NEG 
TRUE always never FALSE 
ZERO zero nonzero NONZERO 
ZEROM negative posi t ive ZEROP 
ZEROP posi t ive negative ZEROM 

* On the 7600, a l te rna t ive  expansions are COUNT(1)+377777B for  NPLZERO 
and COUNT(1)-1 fo r  PLZERO. Here COUNT denotes population count, 
and 18-b i t  ar i thmet ic  is used. 

**  An a l te rna t i ve  7600 expansion is SHIFT(MASK(1), COUNT(1)), where 
SHIFT, MASK, and COUNT have the obvious meanings. 
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ANDing Two Expressions 

Tag of I* ~ *  Out u ~  

NEG NEG NEG 
NEG NONZERO NONZERO 
NEG NPLZERO NPLZERO 
NEG PLZERO NEG 
NEG POS NEG 
NEG ZERO NEG 
NEG ZEROM NEG 
NEG ZEROP NEG 
NONZERO NEG NONZERO 
NONZERO NONZERO NONZERO 
NONZERO NPLZERO NONZERO 
NONZERO PLZERO NONZERO 
NONZERO POS NONZERO 
NONZERO ZERO NONZERO 
NONZERO ZEROM NONZERO 
NONZERO ZEROP NONZERO 
NPLZERO NEG NPLZERO 

NPLZERO NONZERO NONZERO 
NPLZERO NPLZERO NONZERO 
NPLZERO PLZERO NPLZERO 
NPLZERO POS NPLZERO 
NPLZERO ZERO NPLZERO 
NPLZERO ZEROM NPLZERO 
NPLZERO ZEROP NPLZERO 
PLZERO NEG NEG 
PLZERO NONZERO NONZERO 
PLZERO NPLZERO NPLZERO 
PLZERO PLZERO PLZERO 
PLZERO POS ZEROP 
PLZERO ZERO ZERO 
PLZERO ZEROM ZEROP 
PLZERO ZEROP ZEROP 
POS NEG NEG 
POS NONZERO NONZERO 
POS NPLZERO NPLZERO 
POS PLZERO ZEROP 
POS POS POS 
POS ZERO ZEROP 

POS ZEROM NEG 
POS ZEROP POS 
ZERO NEG NEG 

FALSE *To save space, the tags TRUE and 
are considered in Appendix I I .  

have been omitted from 

Output 
E~ression 

AND(I,J) 
AND(J,XSIGN(1)) 
AND(J,XSIGN(1)) 
AND(I,EQPO(J)) 
ANDNOT(I,J) 
AND(I,EQO(J)) 
AND(I,J) 
ANDNOT(I,J) 
AND(I,XSIGN(J)) 
XOR(I+J,I-J) 
XOR(I+J,I-J) 
AND(I,EQPO(J)) 
ANDNOT(I,XSIGN(J)) 
AND(I,EQO(J)) 
AND(I,J) 
ANDNOT(I,J) 
AND(I,XSIGN(J)) 
XOR(I+J,I-J) 
XOR(I+J,I-J) 
AND(I,EQPO(J)) 
ANDNOT(I,XSIGN(J)) 
AND(I,EQO(J)) 
AND(I,J) 
ANDNOT(I,J) 
AND(J,EQPO(1)) 
AND(J,EQPO(1)) 
AND(J,EQPO(1)) 
I+XOR(I,J) 
XOR(I,XSIGN(J)-I) 
J+XOR(I,J) 
XOR(I,COMPL(J)-I) 
XOR(I,J-I) 
ANDNOT(J,I) 
ANDNOT(J,XSIGN(1)) 
ANDNOT(J,XSIGN(1)) 
XOR(J,XSIGN(1)-J) 
OR(I,J) 
XOR(XSIGN(1)+J,XSIGN(I' 
-J) 
ANDNOT(J,I) 
OR(I,J) 
AND(J,EQO(1)) 

this table, but 
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o f  I 

ZERO 
ZERO 
ZERO 
ZERO 

ZERO 
ZERO 

ZERO 
ZEROM 
ZEROM 
ZEROM 
ZEROM 
ZEROM 
ZEROM 

ZEROM 
ZEROM 
ZEROP 
ZEROP 
ZEROP 
ZEROP 
ZEROP 
ZEROP 
ZEROP 
ZEROP 

Ta~o f  j 

NONZERO 
NPLZERO 
PLZERO 
POS 

ZERO 
ZEROM 

ZEROP 
NEG 
NONZERO 
NPLZERO 
PLZERO 
POS 
ZERO 

ZEROM 
ZEROP 
NEG 
NONZERO 
NPLZERO 
PLZERO 
POS 
ZERO 
ZEROM 
ZEROP 

Qutput Tag 

NONZERO 
NPLZERO 
ZERO 
ZEROP 

ZERO 
ZEROP 

ZEROP 
NEG 
NONZERO 
NPLZERO 
ZEROP 
NEG 
ZEROP 

ZEROM 
ZEROM 
NEG 
NONZERO 
NPLZERO 
ZEROP 
POS 
ZEROP 
ZEROM 
ZEROP 

Output 
Expression 

AND(J,EQO(1)) 
AND(J,EQO(1)) 
I+XOR(I,J) 
XOR(XSIGN(J)+I, 
XSIGN(J)-I) 
I+XOR ( I ,  l+J ) 
XOR( COMPL (a)+ I ,  
COMPL (a ) - l )  
XOR(J+I,J-I) 
AND(I,J) 
AND(I,J) 
AND(I,J) 
XOR(J,COMPL(1)-J) 
ANDNOT ( l ,a )  
XOR (COMPL ( I )+J, 
COMPL ( I )-a) 
AND(I,J) or l+J 
ANDNOT(I,J) or l -J  
ANDNOT (J , I )  
ANDNOT ( j ,  I ) 
ANDNOT (J, I ) 
XOR (a, l -J  ) 
OR(I,J) 
XOR(I+J, I-J) 
ANDNOT(J,I) or J-I 
OR(I,J) 
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i) 

i i )  

i i i )  

iv) 

v) 

APPENDIX II 

Evaluation of T l ( l l )  AND ... AND Tn(In) 

Partit ion the Ti( I  i )  into six classes depending on Ti: 

Class I: 
Class II:  
Class I l l :  
Class IV: 
Class V: 
Class VI: 

T i = FALSE 
T i = TRUE 
T i = POS or ZEROP 
T i = NEG or ZEROM 
T i = PLZERO or ZERO 
T i = NONZERO or NPLZERO 

I f  Class I is nonempty, the AND is ident ical ly FALSE. 
Terminate. 

I f  Class I I I  has more than one element, replace by a single member 
of Class I I I .  This requires the issuance of several OR instructions, 
with the result tagged POS or ZEROP. 

I f  Class IV has more than one element, replace by a single member 
of Class IV. This requires the issuance of several AND instructions, 
with the result tagged NEG or ZEROM. 

I f  Class V has more than one element, replace by a single member 
of Class V. This requires the repeated replacement of 

ZERO(I).AND.ZERO(J) by ZERO(I+XOR(I,I+J)) 
ZERO(I).AND. PLZERO(J) by ZERO(I+XOR(I,J)) 
PLZERO(1).AND. PLZERO(J) by PLZERO(I+XOR(I,J)) 

Alternatively, i f  Class V is large, replace 

PLZERO(PI).AND . . . . .  AND.PLZERO(Pk).AND. 
ZERO(ZI):AND . . . .  AND.ZERO(Z m) 

by 

ZEROP(XOR(TEMP ,O-TEMP) ) 

where 

TEMP : OR(Pi,...,Pk,Zi+O,...,Zm+O) 

A third possibi l i ty ,  on the CDC 7600, is to use PLZERO(COUNT(TEMP)). 
Here COUNT returns the number of l bits in i ts argument and TEMP 
is defined as above. S t i l l  another possib i l i ty ,  i f  the machine 
has a load magnitude instruction, is to test the OR of the abso- 
lute values for +0. 
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vi) 

v i i )  

v i i i )  

ix) 

x) 

I f  Class VI has more than one element, replace by a single member 
of Class VI. This requires the repeated replacement of 

NONZERO(1).AND.NONZERO(J) by NONZERO(XOR(I+J,I-J)) 
NONZERO(1).AND. NPLZERO(J) by NONZERO(XOR(I+J,I-J)) 
NPLZERO(1).AND. NPLZERO(J) by NONZERO(XOR(I+J,I-J)) 

As mentioned in Section 4, i t  wi l l  often be possible to optimize 
during this process. 

Merge Class IV into Class I l l .  I f  both classes are nonempty, this 
requires issuing an ANDNOT instruction and tagging the result NEG 
or ZEROM. Alternatively, i f  the machine has an ORNOT instruction 
and Class V is nonempty, use the ORNOT and tag the result POS or 
ZEROP. 

Merge Class V into Class I l l .  I f  both classes are nonempty, t h i s  
requires changing the tag of the Class I I I  member to ZEROP, then 
replacing 

PLZERO(I).AND.ZEROP(J) by ZEROP(XOR( l ,J - I  ) ) 
ZERO(1).AND.ZEROP(J) by ZEROP(XOR(J+I,J-I)) 

Alternatively, i f  the Class I l l  member has tag NEG, then change 
the tag of the Class V member to NEG, issue an AND, and tag the 
result NEG. 

Merge Class VI into Class I I I .  I f  both classes are nonempty, this 
requires changing the tag of the Class I I I  member to ZEROM or to 
ZEROP, then issuing an AND or an ANDNOT, and tagging the result 
the same as the Class VI member. 

I f  Class I I I  is empty, the AND is identically TRUE. Otherwise 
Class I I I  contains precisely one member; this is the output of the 
AND. 
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