
-60-

Evaluation of Boolean Expressions on One's Complement Machines

Peter L. Montgomery

System Development Corporation
4810 Bradford Boulevard, N. Wo
Huntsv i l le , Alabama 35805

Abstract

An algorithm is presented which evaluates an arbitrary boolean expression
in terms of a small instruction set and which often generates fewer instruc-
tions than other methods the author has seen. The algorithm tel ls what code
to generate whenever a boolean operator, a branch test, a boolean assignment
statement, or a conditional expression is encountered. One's complement
arithmetic is assumed throughout.

I . Background and Assumptigns

My instal lat ion has a Control Data (CDC) 7600 for which numerous FORTRAN
programs are written. Almost everyone here uses the FTN compiler, an optimizing
compiler written by CDC which generates very good code. One area in which i ts
object code can be further improved involves the evaluation of boolean expres-
sions (called logical in FORTRAN) containing more than one relational, especially
in IFs. This paper formalizes a procedure for generating the improved code.

Because of the background, the algorithm is oriented towards the CDC CYBER
series and uses many of the conventions of the FTN compiler. In particular,
for variables stored in memory, a value of TRUE is represented by an arbitrary
negative quantity and a value of FALSE by an arbitrary positive quantity.
(Alternatively, TRUE can be represented by -0 and FALSE by +0.) Each boolean
expression is evaluated as one quantity; the algorithm does not issue a
separate branch or skip instruction for each relational in an expression. The
required hardware instructions (all of which operate on fu l l word operands)
are listed in Table l ; except possibly for ANDNOT and NXOR, these are standard
on one's complement machines. Note the add and subtract instructions are
assumed not to interrupt on overflow. Also, a sum of two complementary operands
or a difference of two identical operands is assumed to be +0, not -0.

2. Description

The algorithm specifies the code to be generated for each boolean operator in
an expression; i t is intended to be used in conjunction with another procedure
which evaluates arbitrary expressions. Before one can apply the algorithm, he
must decide what type of code should be generated for each boolean primitive,
i f the primitive were to appear alone in a branch on true. In FORTRAN, this
requires deciding upon the best code for each of the six relational operators
(.EQ., .GT., .GE., .LE., .LT., and .NE.), for each permissible type of operand
(Real, Integer, Double Precision, Complex, Character). In each case, either
the relational is recognized as identically true or identically false (i f i ts

http://crossmark.crossref.org/dialog/?doi=10.1145%2F954587.954592&domain=pdf&date_stamp=1978-12-01

-61 -

Table I . Basic Ins t ruc t ion Set Assumed by Algori thm

Ins t ruc t ion Des c r i~.t_i.oQ. Notation

Branch i f operand is +0 or -0
Branch i f operand is nonzero
Branch i f operand is posi t ive (or +0)
Branch i f operand is negative (or -0)
Branch uncondi t iona l ly
Get copy of operand
AND two or more operands*
AND two operands, negating second
Get one's complement of operand
Negative exclusive OR of two operands
OR two or more operands*
Exclusive OR two operands
Get word in which a l l b i ts are same

as sign b i t of operand
One's complement sum of two operands,

overf low ignored
One's complement d i f ference of two

operands, overflow ignored
Load +0 into a reg is te r
Load -0 into a reg is te r
Load operand from memory
Sto~e operand in memory

AND
ANDNOT
COMPL
NXOR
OR
XOR
XSIGN

÷

+0,0
-0

* I f more than two operands are present, more than one ins t ruc t ion w i l l
be required, of course.

-62-

arguments can be evaluated at compile time), or i t is replaced by a series of
computations, the last being a branch on positive, a branch on negative, a
branch on zero, or a branch on nonzero. For example, to branch when J.GT.K
has value true, the quantity K-J+O might be computed and a branch on negative
generated. The purpose of the algorithm is to decide what code to generate i f
the relational occurs in a more complicated context, while always preserving
the optimal code i f the relational stands alone.

The algorithm uses ten tags, l i s ted in Table 2, to ident i fy what is known
about each intermediate expression. The tag ident i f ies which possible values
correspond to true, which possible values correspond to false, and which
values are known to be impossible. Of the ten tags, four (NEG, NONZERO, POS,
ZERO) correspond d i rec t l y to assumed hardware branch instruct ions. Four
others (ZEROM, NPLZERO, ZEROP, PLZERO) are special cases of the f i r s t four, in
which certain operand values are known to be impossible; these are essential
i f f u l l optimization is desired but can be omitted i f only moderate optimization
is necessary. The other two (FALSE, TRUE) are desirable for processing boolean
constants and for ident i fy ing dead code, although they, too, could be omitted
with l i t t l e loss. Note the table is closed under negation; i f a tag appears
in the table, i t s log ica l l y opposite tag also appears. Consequently, the
operations of branching and of negation are t r i v i a l .

Besides branching and negation, the other standard operations one must be able
to perform are the ANDing or ORing of two boolean expressions, the storing of
a boolean expression in a boolean variable, and the evaluation of a conditional
expression. The OR of two boolean expressions B1 and B2 may be expressed in
terms of one AND and three NOTs, i . e . ,

BI.OR. B2 : .NOT.((.NOT.BI).AND.(.NOT.B2)).

Tables for the other operations appear in Appendix I . The AND table is summa-
rized in Appendix I I ; the la t te r is more suitable for d i rect implementation.
Appendix I I also considers the optimal way to AND three or more expressions of
d i f fe r ing tags.

Certain sequences of instructions occur repeatedly in the tables and are given
special names (EQO, EQPO, NEO, NEPO); these return a mask of ones i f the
argument is, respectively, zero, plus zero, nonzero, not plus zero. Each
returns a mask of zeros otherwise. Formal definit ions are:

EQO(1) : NXOR(O+I,O-I)
EQPO(1) : NXOR(I,O-I)
NEO(1) : XOR(O+I,O-I)
NEPO(1) = XOR(I,O-I)

3. Examples

As a sample application, let L1 be a logical variable. Consider the FORTRAN
statement

IF(.NOT.LI) II=0

-63-

Table 2. Tags Used by Algorithm

Tad

FALSE

NEG

NONZERO

NPLZERO

PLZERO

POS

TRUE

ZERO

ZEROM

ZEROP

Meaning

Expression always fa lse.

Expression true i f value is negative,
false i f positive.

Expression true i f value is nonzero, fa lse
i f +0 or -0.

Expression true i f value is nonzero, fa lse i f
+0. Expression known not to be -0.

Expression true i f value is +0, false i f
nonzero. Expression known not to be -0.

Expression true i f value is positive, false
i f negative.

Expression always true.

Expression true i f value is +0 or -0,
false i f nonzero.

Expression true i f value is -0, false i f
+0. Expression known to be +0 or -0.

Expression true i f value is +0, false i f -0.
Expression known to be +0 or -0.

-64-

The only boolean primitive is Ll. Since logical variables are assumed true
i f negative and false i f positive, a branch on true would require a load of
Ll and a branch on negative. Therefore the code which loads L1 from memory
is generated and tagged NEG° The statement looks like

IF(.NOT.NEG(LI)) ll=O

where the argument to NEG is assumed to have already been converted to
machine code. The next operator is NOT. To negate an expression tagged
NEG, change i t s tag to POS (no addit ional code is generated). The statement
has been reduced to

IF(POS(LI)) l l :O

The next operator is IF. To branch when POS fa i ls , issue a branch on negative
instruction. The right hand side of the IF is evaluated in the standard
way. The entire statement requires one load, one branch on negative, one
load of O, and one store - no complement instruction is required.

The las t example involves only a negation and a branch, so i t is very simple.
A more complicated example is

IF(II.GT.5 .OR. 12. EQ.O) GO TO 20

To branch when II.GT.5 is true, one would compute 5-11 and branch on negative
(note the result cannot be -0). To branch when 12.EQ.O is true, one would
load 12 and branch on zero (both +0 and -0 are considered equal to zero).
The statement is therefore transformed into

IF(NEG(5-11) .OR. ZERO(12)) GO TO 20

To evaluate the OR, negate both operands

IF(.NOT.(POS(5-11) .AND. NONZERO(12))) GO TO 20

Evaluation of the AND reduces the code to (see rule for ANDing a POS tag and
a NONZERO tag in Appendix I)

IF(.NOT. NONZERO(ANDNOT(12, XSIGN(5-11)))) GO TO 20

as a s h i f t and an ANDNOT ins t ruc t ion are generated. Evaluation of the NOT
changes the NONZERO tag to ZERO; no fur ther transformation i s required
before the IF. The statement is evaluated as though i t were

IF(ZERO(ANDNOT(12, XSIGN(5-11)))) GO TO 20

The statement requires 7 instructions (2 loads, 1 load immediate, 1 subtract,
l shi f t , l and with complement, l branch on zero). This compares to lO
instructions (2 loads, l load immediate, l load of +0, 2 subtracts, l add, l
negative exclusive or, l or, l branch on negative) generated by version 4.6
of FTN.

-65-

4. Further Optimizations

The ANDing of two NONZERO or NPLZERO tags, or the ORing of two ZERO or
PLZERO tags, deserves special a t ten t ion , as hidden oppor tuni t ies fo r opt imiza-
t ion w i l l often occur. The statement

IF(I.EQ.3 .OR. I.EQ.-7) GO TO 60

is t ranslated in to (note I-3 and I+7 are never -0)

IF (PLZERO(I-3) .OR. PLZERO(I+7) GO TO 60

and then into

IT1 : I -3
IT2 = I+7
IF (ZERO(XOR(ITI+IT2, IT I - IT2))) GO TO 60

Here ITl and IT2 are compiler-generated variables. Note ITl and IT2 are
defined in terms of addition and subtraction, but only their sum and their
difference are used. Furthermore, i t is unimportant here whether ITI+IT2
and ITI-IT2 evaluate to +0 or -0 i f they are indeed zero; hence the standard
mathematical identities about addition and subtraction may be used freely.
A better expansion would be

IF (ZERO(XOR(I+I+4,-IO))) GO TO 60

This opportunity arises whenever an integer variable is being compared against
twodif ferent constants. Incidentally, since both constants have the same
parity (i .e . , 3 and -7 are both odd), a divide by 2 can be used to further
simplify the code to

IF (ZERO(XOR(I+2,-5))) GO TO 60

5. Conditional Exp.ressions

The FORTRAN language does not allow conditional expressions (except that some
of i ts intr insic functions like ABS may be thought of as conditional) Nonethe-
less, a sophisticated compiler should be able to recognize when a user is
thinking in terms of conditional expressions, as in

REAL SCX, SCAX
IF(SCX.LE.O) THEN
SCAX = l.O
ELSE
SCAX = SCX
END IF

On some machines optimal code is gotten by loading both SCX and 1.0 into
registers, evaluating SCX.LE.O.O as a mask of zeros or a mask of ones, and

-66-

using hardware boolean instructions to complete the evaluation - no branch
instruction is generated. The relational SCX.LE.O.O is equivalent to POS(O-SCX)
(integer subtract). To convert this to a mask of zeros or a mask of ones
(i .e . , to change the tag from POS to ZEROM or ZEROP), apply the XSIGN operator.
The expansion is

IT1 = XSIGN (O-SCX)
SCAX = OR(AND(SCX,ITI), ANDNOT(I.O,ITI))

6. Other Uses of Boolean Expressions

Some operations have been le f t out of the tables. The use of a boolean expres-
sion (other than a boolean variable) as a procedure argument is a special case
of an assignment statement. Similarly, the output of a boolean procedure is
treated as a special case of a boolean variable. The equivalence or the
exclusive or of two boolean expressions, neither operand having tag TRUE or
FALSE, may be processed by f i r s t converting each tag to NEG, POS, ZEROM, or
ZEROP, then generating an exclusive OR instruction and tagging the result
appropriately. Also omitted is the evaluation of a conditional expression
which is i t se l f type boolean and in which the operands may be evaluated without
danger of interrupt; a sequence such as

LOGICAL L
L=B2
IF (Bl) L = B3

may be replaced by

L : (B3.AND.BI) .OR. (B2.AND..NOT.BI).

One optimization is to check i f B2 and B3 have the same tag; i f so the tag can
be applied to L and the statements can be treated l ike a regular conditional
expression. Also, i f any of Bl, B2, B3 are tagged TRUE or FALSE, the expression
can be simplified by standard identit ies.

-6? -

APPENDIX I

Changing the Tag of an Operand

To Convert To Convert To Convert
T a ~ o f I to NEG to ZEROM to ZEROP

FALSE +0 +0
NEG I XSIGN(1)
NONZERO NEO(1) NEO(1)
NPLZERO NEPO(1)* NEPO(1)
PLZERO EQPO(1)* EQPO(1)
POS COMPL(1) COMPL(XSIGN(1))
TRUE -0 -0
ZERO EQO(1)** EQO(1)
ZEROM I I
ZEROP COMPL(1) COMPL(1)

-0
COMPL(XSIGN(1))
EQO(1)
EQPO(1)
NEPO(1)
XSIGN(1)
+0
NEO(1)
COMPL(1)
I

Choice of Branch Inst ruct ion, and Negation of Operand

Tag of To branch To branch Tag of
Operand on Success on Fai lure Negat!on

FALSE never always TRUE
NEG negative posi t ive POS
NONZERO nonzero zero ZERO
NPLZERO nonzero zero PLZERO
PLZERO zero nonzero NPLZERO
POS posi t ive negative NEG
TRUE always never FALSE
ZERO zero nonzero NONZERO
ZEROM negative posi t ive ZEROP
ZEROP posi t ive negative ZEROM

* On the 7600, a l te rna t ive expansions are COUNT(1)+377777B for NPLZERO
and COUNT(1)-1 fo r PLZERO. Here COUNT denotes population count,
and 18-b i t ar i thmet ic is used.

** An a l te rna t i ve 7600 expansion is SHIFT(MASK(1), COUNT(1)), where
SHIFT, MASK, and COUNT have the obvious meanings.

-68 =

ANDing Two Expressions

Tag of I* ~ * Out u ~

NEG NEG NEG
NEG NONZERO NONZERO
NEG NPLZERO NPLZERO
NEG PLZERO NEG
NEG POS NEG
NEG ZERO NEG
NEG ZEROM NEG
NEG ZEROP NEG
NONZERO NEG NONZERO
NONZERO NONZERO NONZERO
NONZERO NPLZERO NONZERO
NONZERO PLZERO NONZERO
NONZERO POS NONZERO
NONZERO ZERO NONZERO
NONZERO ZEROM NONZERO
NONZERO ZEROP NONZERO
NPLZERO NEG NPLZERO

NPLZERO NONZERO NONZERO
NPLZERO NPLZERO NONZERO
NPLZERO PLZERO NPLZERO
NPLZERO POS NPLZERO
NPLZERO ZERO NPLZERO
NPLZERO ZEROM NPLZERO
NPLZERO ZEROP NPLZERO
PLZERO NEG NEG
PLZERO NONZERO NONZERO
PLZERO NPLZERO NPLZERO
PLZERO PLZERO PLZERO
PLZERO POS ZEROP
PLZERO ZERO ZERO
PLZERO ZEROM ZEROP
PLZERO ZEROP ZEROP
POS NEG NEG
POS NONZERO NONZERO
POS NPLZERO NPLZERO
POS PLZERO ZEROP
POS POS POS
POS ZERO ZEROP

POS ZEROM NEG
POS ZEROP POS
ZERO NEG NEG

FALSE *To save space, the tags TRUE and
are considered in Appendix I I .

have been omitted from

Output
E~ression

AND(I,J)
AND(J,XSIGN(1))
AND(J,XSIGN(1))
AND(I,EQPO(J))
ANDNOT(I,J)
AND(I,EQO(J))
AND(I,J)
ANDNOT(I,J)
AND(I,XSIGN(J))
XOR(I+J,I-J)
XOR(I+J,I-J)
AND(I,EQPO(J))
ANDNOT(I,XSIGN(J))
AND(I,EQO(J))
AND(I,J)
ANDNOT(I,J)
AND(I,XSIGN(J))
XOR(I+J,I-J)
XOR(I+J,I-J)
AND(I,EQPO(J))
ANDNOT(I,XSIGN(J))
AND(I,EQO(J))
AND(I,J)
ANDNOT(I,J)
AND(J,EQPO(1))
AND(J,EQPO(1))
AND(J,EQPO(1))
I+XOR(I,J)
XOR(I,XSIGN(J)-I)
J+XOR(I,J)
XOR(I,COMPL(J)-I)
XOR(I,J-I)
ANDNOT(J,I)
ANDNOT(J,XSIGN(1))
ANDNOT(J,XSIGN(1))
XOR(J,XSIGN(1)-J)
OR(I,J)
XOR(XSIGN(1)+J,XSIGN(I'
-J)
ANDNOT(J,I)
OR(I,J)
AND(J,EQO(1))

this table, but

-69-

o f I

ZERO
ZERO
ZERO
ZERO

ZERO
ZERO

ZERO
ZEROM
ZEROM
ZEROM
ZEROM
ZEROM
ZEROM

ZEROM
ZEROM
ZEROP
ZEROP
ZEROP
ZEROP
ZEROP
ZEROP
ZEROP
ZEROP

Ta~o f j

NONZERO
NPLZERO
PLZERO
POS

ZERO
ZEROM

ZEROP
NEG
NONZERO
NPLZERO
PLZERO
POS
ZERO

ZEROM
ZEROP
NEG
NONZERO
NPLZERO
PLZERO
POS
ZERO
ZEROM
ZEROP

Qutput Tag

NONZERO
NPLZERO
ZERO
ZEROP

ZERO
ZEROP

ZEROP
NEG
NONZERO
NPLZERO
ZEROP
NEG
ZEROP

ZEROM
ZEROM
NEG
NONZERO
NPLZERO
ZEROP
POS
ZEROP
ZEROM
ZEROP

Output
Expression

AND(J,EQO(1))
AND(J,EQO(1))
I+XOR(I,J)
XOR(XSIGN(J)+I,
XSIGN(J)-I)
I+XOR (I , l+J)
XOR(COMPL (a)+ I ,
COMPL (a) - l)
XOR(J+I,J-I)
AND(I,J)
AND(I,J)
AND(I,J)
XOR(J,COMPL(1)-J)
ANDNOT (l ,a)
XOR (COMPL (I)+J,
COMPL (I)-a)
AND(I,J) or l+J
ANDNOT(I,J) or l -J
ANDNOT (J , I)
ANDNOT (j , I)
ANDNOT (J, I)
XOR (a, l -J)
OR(I,J)
XOR(I+J, I-J)
ANDNOT(J,I) or J-I
OR(I,J)

~70-

i)

i i)

i i i)

iv)

v)

APPENDIX II

Evaluation of T l (l l) AND ... AND Tn(In)

Partit ion the Ti(I i) into six classes depending on Ti:

Class I:
Class II:
Class I l l :
Class IV:
Class V:
Class VI:

T i = FALSE
T i = TRUE
T i = POS or ZEROP
T i = NEG or ZEROM
T i = PLZERO or ZERO
T i = NONZERO or NPLZERO

I f Class I is nonempty, the AND is ident ical ly FALSE.
Terminate.

I f Class I I I has more than one element, replace by a single member
of Class I I I . This requires the issuance of several OR instructions,
with the result tagged POS or ZEROP.

I f Class IV has more than one element, replace by a single member
of Class IV. This requires the issuance of several AND instructions,
with the result tagged NEG or ZEROM.

I f Class V has more than one element, replace by a single member
of Class V. This requires the repeated replacement of

ZERO(I).AND.ZERO(J) by ZERO(I+XOR(I,I+J))
ZERO(I).AND. PLZERO(J) by ZERO(I+XOR(I,J))
PLZERO(1).AND. PLZERO(J) by PLZERO(I+XOR(I,J))

Alternatively, i f Class V is large, replace

PLZERO(PI).AND AND.PLZERO(Pk).AND.
ZERO(ZI):AND AND.ZERO(Z m)

by

ZEROP(XOR(TEMP ,O-TEMP))

where

TEMP : OR(Pi,...,Pk,Zi+O,...,Zm+O)

A third possibi l i ty , on the CDC 7600, is to use PLZERO(COUNT(TEMP)).
Here COUNT returns the number of l bits in i ts argument and TEMP
is defined as above. S t i l l another possib i l i ty , i f the machine
has a load magnitude instruction, is to test the OR of the abso-
lute values for +0.

-71 -

vi)

v i i)

v i i i)

ix)

x)

I f Class VI has more than one element, replace by a single member
of Class VI. This requires the repeated replacement of

NONZERO(1).AND.NONZERO(J) by NONZERO(XOR(I+J,I-J))
NONZERO(1).AND. NPLZERO(J) by NONZERO(XOR(I+J,I-J))
NPLZERO(1).AND. NPLZERO(J) by NONZERO(XOR(I+J,I-J))

As mentioned in Section 4, i t wi l l often be possible to optimize
during this process.

Merge Class IV into Class I l l . I f both classes are nonempty, this
requires issuing an ANDNOT instruction and tagging the result NEG
or ZEROM. Alternatively, i f the machine has an ORNOT instruction
and Class V is nonempty, use the ORNOT and tag the result POS or
ZEROP.

Merge Class V into Class I l l . I f both classes are nonempty, t h i s
requires changing the tag of the Class I I I member to ZEROP, then
replacing

PLZERO(I).AND.ZEROP(J) by ZEROP(XOR(l ,J - I))
ZERO(1).AND.ZEROP(J) by ZEROP(XOR(J+I,J-I))

Alternatively, i f the Class I l l member has tag NEG, then change
the tag of the Class V member to NEG, issue an AND, and tag the
result NEG.

Merge Class VI into Class I I I . I f both classes are nonempty, this
requires changing the tag of the Class I I I member to ZEROM or to
ZEROP, then issuing an AND or an ANDNOT, and tagging the result
the same as the Class VI member.

I f Class I I I is empty, the AND is identically TRUE. Otherwise
Class I I I contains precisely one member; this is the output of the
AND.

~72 -

REFERENCES

Control Data CYBER 170 Series, CYBER 70 Series, 6000 Series, 7000 Series
Computer Systems- Fortran Extended Version 4 Reference Manual (Pub. No.
60305600)". Control'Data Cor'poration,' Software' Dacumentation, SunnyVaT~
California, 1971.

Control Data 7600/CYBER 70 Model 76 Compute r Systems -. Hardware Reference
Manual (Pub. No'.' 6d367200). Control Data Corporation, TeChnical' Publica-
tions Department, Arden Hil ls, Minnesota, 1972.

Nichols, J. E., The Structure and Design of Programming Languages,
Reading, Massachusetts. Addison-Wesley, 1975, pp. 295-417.

"Draft proposed ANS FORTRAN, BSR X39, X3J3/1976," SIGPLAN NOTICES, 11,3
(March, 1976).

