
SIGPLAN Notices

ABSTRACT

The Hierarchical Language System HLS is presented. HLS consists

of the structured programming language SPL and the extensible program-

ming language EPL which is built upon SPL layer and provides statement

and expression extention facilities, and provides to automate top down

programming as much as possible by the following means.

103

THE HIERARCHICAL LANGUAGE SYSTEM

Nobuyoshi Terashima

Yokosuka Electrical Communication Laboratory
Nippon Telegraph and Telephone Public

Corporation

fields ; operating systems, compilers, utilities and application programs .

In each field, there are many routines, which are characteristic of

the field and occur in the field frequently . When using PL/I, COBOL or

an assembler language to write those routines, they are described a..

macros or (function) subroutines, and invoked by means of merit, or

subroutine references when necessary for processing .

This invocation method cannot contribute to enhancement If program-

ming readability and descriptive convenience..

Therefore, it is necessary that readability and descriptive

convenience should be enhanced by providing a descriptive means fitted

for the field, because it is expected that readability and descriptive

convenience might contribute to enhancement of programming reliability

and productivity as well as program maintenance.

The following implementations are enumerated to satisfy the above

requirement :

(1) To develop a new language fitted for a particular field.

(2) To make use of extensible programming language concepts (21, 22, 23) "

The former implementatioc requires development of a new compiler

language for each field. Therefore, in setting up and maintenance the

compiler language, a very large cost is involved . Therefore, in this

research, the latter implementation is taken into consideration . .

1-2356 Take, Yokosuka-shi 238, Japan
Phone No . (0468) 59-2716

September 1977

Generally speaking, an extensible programming language has a base.

language besides extensi m facilities .

	

Therefore,

	

the hierarchical language

system HLS is proposed, which consists of the structured programming Language

SPI, as the base language and the extensible programming language EPL, which

is built upon SPI. layer . It is expected that IILS might contribute

to enhancement of programming reliability aid productivity as well as

of HIS components .

Especially, SPI, and EPL language specifications are described in detail,

because they are new programming languages proposed in this paper.

2.. HLS CONCHP'IS

IJI,S is the two level hierarchical language .system, which consists

of SPL as the base language, and EPL, which is built upon SPL layer

and provides statement and expression extension facilities .

The reason ., why EPL does not have extension facilities of language

constructs, other than statements and expressions, are as follows :

(1) References of macros and (function) subroutines can be easily

represented by new statements or expressions using EPI, .

(2) Program structure, data declarations and data references should be

made well structured in order to enhance programming reliability

and productivity, hence these constructs should be the same as

those of SPI. .

The basic concept of top down programming is that programs consist

of layers, each layer implementing a characteristic level of abstraction

built up- the layers below and supporting the layers above (1, 2, 3, 5,

6, 7, 8, 12, 14, 15, 16, 17, 19) . In HLS system, programs of a field

(1) To describe each breakdown process in the programming languages program maintenance by the following reasons .

EPL and SPI " , in order to eliminate ambiguity of each breakdown (1) Programming reliability and productivity as well as program mainte-

representations which are in general written in natural languages . nance can be enhanced by SPL.

(2) To generate the whole system which runs in the actual programming Effectivity can be enhanced by EPL. Effectivity might be one cf the

environment by this system . major contributing factors for enhancement of programming reliability

This paper describes HLS concepts and language specifications of and productivity as well as program maintenance.

(2) US car provide a means by which representations, which are written
its components .

HLS effectiveness is _o be presented in the near future . in EPL and suitable to a particular field, are broken down into

representations, which are written in SPI, and trausparear, to the

field, in a top down manner .
1. INTRODUCTION

St is assumed that software systems be classified into the following This paper describes HLS concepts, language ~pa,iflcations

http://crossmark.crossref.org/dialog/?doi=10.1145%2F954604.954613&domain=pdf&date_stamp=1977-09-01

SIGPLAN Notices

	

104

consist of layers which should be described in the representations

characteristic of the field using EPL and layers which should be described

in the representations transparent to the field using SPL .

In other words, the entire system operation is described in the

representations fitted for a field using EPL. They are then broken

down into the layers below.

This process continues until everything is resolved into procedures

which are written in SPL, described in the representations transparent to

the field and supported in the implementation environment.

'Chi . breakdown procedure is represented in a multi-layer structure,

as follows :

_-(l)AP

L (2)AP

L (n)AP

L n+1)NAP

L(n+2)NAP

L~+m)NAP

where (1) L(I)AP (n)AP are layers which should be described in the

representations fitted for a particular field and are written in EPL.

(2) L(n+1)NAP-(n+m)NAP are layers which should be described

in representations transparent to the field and are written in SPL.

The set of procedures in a layer L(1) is written as {PL(i)1
.

	

The

set with no procedures should not be a11owable. The -lire s-tem

operation of a field is described as (PL(I)) .

	

It is then broken down

into ~PL(2) 1 .

	

This process continues until everything is resolved

in to{YL(n+m) I

	

.

DO A = D BY E TO F; <statement " ENDDO;

DO A = G TO H BY I; < statement,' ENDDO;

is a representation of layer L(2)NAP, which is transparent to the

September 1977

field and <written in SPL, and a procedure of

(3) Tl,e construct contained in the procedure of layer L(1)AP i .>

implemented by the procedure oC layer
1.(2)NAP . 'this i11t,=trates

that layer 1,(1)AP is broken do,,. into layer L(2),_1P , using EfL, .

SPL belongs to a class of languages such ns PL/1t25], does not

have a GO TO statement [4, 11, 18], has ssli .ent control structures such

as GCASE statement, in addition to the control structures ,hi,l, a

structured programming language has in general (5, 0, 8, 20], and has

inline machine code facilities for use of basic system description

[1, 9, 10] .

In SPL, data declarations and references are made well structured

[, (2)NAP

[131 .

Data scope includes global data scope and local data .s , , Global

data may be used in the local blocks contained in a block where the

global data are declared .

On the other hand, local data should be available only in a block

where the local data are declared, but they should not be used in the

local blocks contained rn a block where the local data are declared .

This shows that data design procedure should be performed from the

outermost block to the innermost block and that this concept may

contribute to top down programming strategy .

EPL . is the. extensible language whose base language Is $PL and has

extension capabilities of statements or expressions [21 , 24] .

One of EPL characteristic features is that syntax and semantic

description may be performed hierarchically, using the structured

descriptive method .

It is expected that this might support the powerful, descriptive

means for extension .

PL ItANGIJAGE SPECIFICATIONS

Basic Concepts

SPI, is one of the block structured languages and has data types

and structures, such as PL/I [25] .

Procedure consists of the declaration segment followed by the

procedure body .

Declaration segment consists of entry declaration section, global

declaration section and local, declaration section .

When the declaration of an identifier is made in a block, there.

is a certain well-defined region of the program over which this

declaration is applicable .

This region is called the scope of the declaration or the scope

of the name established by the declaration .

Data declarations in the local section are applicable only in the

block where they are declared . Parameters and the entry data

should be declared in the local section or the ,rlohal Sce.tion.

Data declarations in the global section are applicable in the

block as well as the blocks contained in i .

Data declarations in the entry section can be used to co-nicate

between different external procedures . Only the entry data is

declared in this section.

Breakdown of a layer into the next layer below is described using

EPL and SPL . Namely, in EPL, a layer is described as the syntax 3.

description and the next layer below is described as the semantic 3.1

description . (1)

In SPL, a layer is described as procedures, which contain the

subroutine references, and the next layer below is described as the (2)

subroutines.

Breakdown is performed as follows: (3)

(1) . Breakdown of layer L(k)AP into layer
L(k+l)AP as well as breakdown

of layer L(n)AP into layer 1,(n+1)NAP are performed using EPL, where

k = 1, 2, n-1.

(2) Breakdown of layer L(n+J)NAP is performed using SPL, where j = 1, 2,

., m-1 .

This is illustrated using the example shown in Section 4 .1 (2).

(1) The construct FOR A = B T'0 C, D BY E TO F, G TO H BY I statement

is a representation of layer L(1)AP, which is characteristic of

' of a field and written in EPL, and a construct which is contained

in a procedure of layer 1.(I)AP'

(2) The statement list DO A = B TO C ; <statement> ENDDO;

SIGPLAN Notices

The statements which control structures link together include

assignment statements, calls of other procedures, machine Instruc-

tions in the machine code block, the RETURN statement in a

procedure, the storage allocation or freeing statement, and the

input/output statements .

In-line machine code facilities

This facility permits the user to retain control over machine

capabilities which are needed to perform basic system functions.

3.2 SPL Characteristic Features

SPI, characteristic features related to control structures are

described in this section .

SPL specifications other than the above features are not shown

_n this paper.

The symbols < and-are used to enclose the name of a general

syntactic entity . Braces (i

	

[) are used for grouping and specify

the occurrence of one of the group items.

The vertical stroke indicates that a choice is to be made .

The square brackets (

	

j denote options.

Three dots . . . denote the occurrence of the immediately preceding

syntatic entity one or more times in succession . For example, the

following statement is given:

CALL. < identifier > [(,parameter-list-)1 ;

This means that this statement consists of the keyword CALL followed

by an identifier . The identifier may optionally be followed by a

parameter list, enclosed in parentheses . The CALL statement is

terminated by a semicolon.

(1) Data Types and Organization

Data types include arithmetic (binary/decimal, fixed point/float-

ing point) data, string (character/bit) data, locator (pointer/

offset) data and area data (25] . File names, entry names and

condition names are nor considered to be data .

Data organization includes scalar data items, aggregates of data

items (arrays and structures) . A data item may be either a

constant or the value of a scalar variable .

Constants and scalar variables are called scalar items . All

classes of variable data items may be grouped into arrays or

structures as FL/l [25) .

(2) A program is composed of more than or equal to one external.

procedure.

105 September 1977

of ,parameter-list- is delimited by a comma, and is an

arithmetic data item, a string data its., a locator data item or

an area data item .

The data item should be declared in the < local-declaration-

section>of the < data-declaration-segment % .

The RETURN option should be specified when the procedure is a

function procedure.

Data variables, which are used in the <) procedure-body .- , should

be declared in the

	

,data-declaration-segment > .

	

The <, data-

declaration-segment > consists of ,:entry-declaration-section entry-declaration-section',

,global-declaration-section `, " and/or

	

,local-declaration-section .' .

It is delimited by the DATA-SEGMENT statement and the END-SEGMENT

statement.

An invoked external procedure name is declared in the entry-

declaration-section- . It is delimited by the ENTRY-SECTION

statement and the END-SECT statement. Data which is accessible

in a block and the blocks contained in it, is declared in the

< global-declaration-section> .

The global data should be declared in each block where it is

used . It is delimited by the GLOBAL-SECTION statement and the

END-SECT statement.

The local data should be declared only in the block, where

it is used . It is delimited by the LOCAL-SECTION statement

and the END-SECT statement .

When it is desired to use an identifier as a different entity in

the encompassed block, it is necessary to specify the local

attribute to it in the encompassing block.

The identifier declared as a global data should not be specified

for another purpose in all of the procedures which are contained

in an external procedure.

The < procedure-body- is constructed from GO TO-free control

structures . and/or statements described in Section 3.1 (4), except

the constructs which consist of only the internal procedures .

The <procedure-ending-part- is the END statement .

The syntax rule in given by

END <identifier> ;

where ,identifier > is the same identifier as the procedure name

of the < procedure-beginning-part- .

(4) Expressions

(4) SPI, has GO 'CO-free control structures as follows: (3) Procedure

(a) Generalized CASE statement There are two types of procedures ; external procedures and
(b) IF statement (selection of a statement based on the testing of internal procedures .

a condition) . The general form of a procedure is given as follows:
(e) REPEAT, WHILE Do and Do statements (iterati on) . < procedures > : = ,procedure-beginning-part:" <d .Ca-declarntion-
(d) EXIT statement in,, a loop (exit mechanism from loop) . segment><,procedure-body-,procedure-ending-part % .
(e) An internal procedure . General form of ,procedure-beginning-part'" is given as follows:
(.f) GEG:CN block. ,procedure-beginning-part- : = ,identifier- . PROC parameter-

I3FGI'N block is the. same as that of PL/I . list] (RETURNS (<attribute>

(g) A machine code block where machine instructions can be used . where :identifier- is the name of the procedure. Each item

SIGPLAN Notices

General Forms

Expression are scc.in, expressions. A scalar expression

consists of a constant, a scalar variable, a scalar expression

enclosed in parentheses,

	

two scalar expressions connected bv

an infix operator, or a function reference that returns a

scalar value .

Syntax rule of a scalar expression is shown in Fig . 1 .

The priority of operations is shown, from highest to lowest,

as follows :

(1)

	

**, l
(2) *, /

(3) +, -

(4)

	

<=, <, l <, l=, =, >_ . >, I

(5) 6

(6) '.

Operations within an expression are performed in the order of

decreasing priority .

If an expression is enclosed in parentheses, it is treated as a

single operand and evaluated first.

Within nested parentheses, evaluation proceeds from the least

inclusive set to the most inclusive set .

When operations with the same priority occur in an expression,

evaluation is performed from left to right .

I of <expression i > corresponds to the priority of the opera-

tion where <expression i.> appears .

The smaller the value of i, the higher the priority of the

operation .

In this paper, a scalar expression, which consists of a single
operand without an operator and is not a function reference nor

a built-in function, is called a scalar variable .

The attributes of all operands of a scalar expression should

be the same .

(b) Operators

(i) Operands of bit string operations such as ' i(not)', 'S (and)'

and '! (or)' operations, are bit string expressions .

(ii)

	

Operands of comparison operations, such as '< =',

	

,

	

,

	

'=',

'>',

	

, and ' I =' operations, are arithmetic expressions,

bit string expressions or character string expressions .

Operands of operations, such as '= and ' I

	

are locator

expressions .

1 . Bit string comparison, which involves the left-to right

comparison of binary digits . If the strings are different

lengths, the shorter is extended on the right with zeros .

Comparison of bit string operations is performed on a bit-by-

bit basis. When the values of the corresponding bit positions

of the operands are different, then it is assumed '1'B is

greater than '0'B, and the comparison result is obtained .

The '=(equal to)' operation stands when all of the values of
the corresponding bit positions of the two operands are the

same . The result of a comparison is a bit string of length

lob

one . The value is '1'B if the relatioc .hip is true or

'O'B if it is false .

2 . Character comparison, which involves left-ro-right, pair-

by-pair comparisons of characters, according to the .mplemen-

tation-defind collating sequence .

It the operands are of different lsrgths, the shorter is extended

to the right with blanks .

(iii) Operands of the arithmetic operations, such as

'/', and '**' operations, are arithmetic expressions .

(5) Control Structures

Control structures are described in this Section . The syntactic

unit < statement list .> is constructed from the control structures

and/or statements described in Section 3.1 (4), except for

constructs which consist of only the internal procedures .

(a) IF Statement

The IF statement specifies evaluation of an expression and a

consequent flow of control dependent upon the value of the bit

string .

The syntax of the IF statement is given by IF <scalar-

expression,

	

THEN <statemeot-li.s t> I

	

[ELSE < statement-list>2]

ENDIF;

where the scalar expression is an expression whose result is a

bit string of length one.

If the value is '1'B, the <statement-list> I

	

is executed and

control is transferred to the statement following ENDIF.
If the value is '0 'B, the <statement-list>o is executed
when it is specified, and control is transfered to the state-

ment following ENDIF .

(b) Generalized CASE (CCASE) Statement

Three control constructs ; SELECT CASE OF, SELECT FIRST ACTION
and SELECT EVERY ACTION have been proposed to reduce complexity

of nested 1F constructs [26] ..

In actual . situations, these control structures and extended
control structures of them are used in a program context

concurrently rather than independently..

Therefore., a control construct, which contains all of these

three control structures and extended control structures of
them, is required to reduce complexity of,programs .

The generalized CASE construct is proposed to satisfy this require-
ment .

The -syntax is given by

GCASE;

(cexpressionl :-) : <statement list~ I [NEXT]

ELSE <statement list > Is

-(<expressionl~) :

	

<statement list, i [NEXT]

ELSE < statement list >,,

(< expressionn >) :

	

<statement list ; n [NEXT]

ELSE < statement list>

[COMMON <statement list ;

	

]c
ENDCASE;

September 1977

SIGPLAN Notices

where each ,expression,;.is a scalar expression whose result

is a bit string of length one .

If the value of

	

expres.s~.onl	is true, then -statement list

is executed and one of the following actions is taken:

when the NEXT option is omitted from the specification

and the COMMON part appears, the COMMON part !<statemart

list%c) is execut ei and the other statement lists are-

not executed .

(ii) When the NEXT option is specified, the execution proceeds

with the next construct (<expression 2>) : < statement

list>2 ELSE <statement list>2e .

(iii) when both the NEXT option and the COMMON part are omitted

from the specification, the execution proceeds with the

statement following ENDCASE.

If the value of

	

<expression1>

	

is false, the ELSE part (<

statement list>,o) is executed, and then the execution proceeds

with the next construct (<expression2 >) :

	

<statement list>2

ELSE <statement "at> 2e'

Then the similar actions are taken in case of the construct

(< expression 2 >) : <statement list>2	ELSE<statement 11st>2e '

Thus, when there is no construct to be executed, the execution

proceeds with the statement following ENDCASE.

The GCASE statement function is clearly illustrated by the

following example.

where el, e2 and e3 are scalar expressions, and Sl, S2, S3, Sl(f),

S2(f), S3(f) and St are statement lir.°s .

When. Sl(f) and
S2(f)

consist of statements other than null

statements, this control structure can not be described by

SELECT CASE OF construct.

Therefore it should be described, using nested IF constructs,

as follows.

IF . el THEN Sl Sc

ELSE SI(f)

IF e2 THEN S2

10 7

ELSE S2(f)

IF e3 THEN S3

Sc

ELSE S3(f)

ENDIF;

ENDIF ;

ENDIF;

However, this control structure may be concisely described by

the following GCASE construct .

GCASE;

(e l) : S I

ELSE S1(£)

(e2) :

	

SZ

ELSE
S2(f)

(e 3) : S3

ELSE S3(f)

COMMON Sc

ENDCASE;

This example shows one of the favorable capabilities of GCASE.

statement . The GCASE statement contributes to enhancement of

understandability of a program where this type of control

structure is used .

SELECT CASE OF, SELECT FIRST ACTION and SELECT EVERY ACTION [?6]

can be described, using GCASE statement, as follows.

(i) SELECT CASE OF Construct

A SELECT CASE OF construct example is given:

SELECT CASE OF TRANSACTION-CODE

WHEN ('A') SI

WHEN ('D' OR 'X') S2

WHEN (W) S3

WHEN NONE ARE SELECTED S4

WHEN ONE IS SELECTED S

ENDSELECT

where Sl, S2, S3, S4 and Sc are statement lists .

'Chi . example is described, using GCASE statement, as

ELSE S4

COMMON Sc

ENDCASE;

September 1977

(ii) SELECT FIRST ACTION Construct

A SELECT FIRST ACTION construct example is given:

SELECT FIRST ACTION

S2

ELSE ;

follows .

GCASE ;

(TRANSACTION-CODE = 'A') : S,

ELSE ;

(TRANSACTION-CODE - 'D' : TRANSACTION-[.ODE _ 'S') :

(TRANSACTION-CODE = 'C') : S3

SIGPLAN Notices

WHEN RANK IS LESS TITAN

	

.10

WHEN RANK IS LESS THAN

	

.50

S2

WHEN RANK IS LESS THAN 1.00

WHEN NONE ARE SELECTED

ENDSRTECT

where SI, S2, S3 and S4 are statement lists .

This example is described, using GCASE statement, as

follows .

GCASE;

(RANK < 0 .10) :

	

S1

ELSE ;

(RANK <0 .50) :

ELSE ;

(RANK < 1.00) :

	

S3

ELSE S4

ENDCASE;

(iii) SELECT EVERY ACTION Construct

A SELECT EVERY ACTION construct example is given:

SELECT EVERY ACTION

WHEN ACE-IN-SUIT

S
2

where Si, S2, S3 and S4 are statement- lists.

This example is described, using GCASE statement, as

follows .

GCASE

(ACE-IN-SUIT) :

	

Sl NEXT

ELSE ;

(KING-IN-SUIT) :

	

S2 NEXT

ELSE ;

(QUEEN-IN-SUIT) : S
3
NEXT

ELSE ;

(JACK-IN-SUIT) : S4

ELSE ;

ENDCASE;

Iteration Functions

The following statements are allowed in SPL. <Loop>:

f[<exit-designator>:]

	

<rcpeeat-statement > !statcment-list>

[<exit-block ;] ENDREP ;

I[< exit-designator > :] < do-statement I> <statement-list :

[:exit-block i ;

	

ENT)DO ;

i [<exit-designator > :I

	

<do-statement2> ",statement-list>

10 8 September 1977

exit-block >[ENDDO ;]

repeat-statement > : = REPEAT

	

(WHILE (

	

scalar-

expression ')

	

FOREVER) ;

< do-statementl> : = WHILE

	

(<scalar-expression >) DO ;

:do-tat--t2 > . = DO scalar-arithmeticeaprr.ss,.on =

arithmetic-expressionl>

	

(TO

	

<arithmetic-express ion2

(BY I.. arithmetic.-expression 3 >]

	

BY

	

".arithmetic-expresi.o::3 '

[TO <arithmetic-expression 2 >]) ,

,exit-block'- EXTTBLOCK; " .exit-group > [<exit-group ,] . . .

<exit-group% : _ (<exit-identifier>) :

	

<statement-list-'-

(i)

	

<repeat-statement > specifies that

	

<statement-lists= ,

immediately following, is executed once, and then the

following action is taken:

G.`IF the FOREVER option is specified, the < statement-

list>, immediately following, are executed endlessly .

Therefore, this loop should be terminated by an EXIT

statement .

02 when the WHILE option is specified, the action is as

follows :

If the value of

	

<scalar- expression >

	

is true

	

('1'B),

	

then

<statement-list>

	

is executed .

	

Otherwise,

	

<statement-

list > is skipped and execution proceeds with the

statement following ENDREP .

	

However, if <statement-

list> is executed, then execution proceeds with the

(d) EXIT Statement

The synatx is given by

EXIT [<exit-designator>] [(<exit-identifier>)] ;

The EXIT statement may be specified in the <loop>.

(f)

	

If

	

<exit-identifier>

	

is specified, then the statement

list of the

	

<exit-group >

	

designated by it is executed

and one of the following actions is taken:

1. When the <exit-designator> appears, the loop is

terminated according to the < exit-designator-.

2 . When the

	

<exit-designator > is omitted from the

specification, the loop where the EXIT statement is

immediately contained is terminated .

(ii)

	

If

	

:exit-identifier >

	

is not specified, one of the

following actions is taken:

1. When the

	

<exit-designator > appears, the loop is

terminated according to the <exit-designator>.

2. When the <exit-designator> is omitted from the

specification, the loop where the EXIT statement Is

Si

WHEN KING-IN-SUIT

S2

REPEAT statement again.

-s, if <scalar-expression > is true, then < statement-

list> is executed until <scalar-expression%' become

WHEN QUEEN-IN-SUIT false ('O'B) .

(ii) When the <do-statement > is specified, the action isl

WHEN JACK-IN-SUIT equivalent to the preceding (i) n
(iii) 'rhe effect of the <do-statement2> would be the same

ENDSELECT as the DO statement (option 3) of PL/I .

SIGPLAN Notices

immediately contained is terminated .

When the <:ezit-desigaator> is specified, control is

transfered to the statement fc11owing t-he ENDREP or

ENDDO of the loop designated by it .

(1v) The function i s illustrated by the following example .

When the EXIT statement (1-1) is executed, the execution

proceeds with the statement following ENDREP (1) .

However, when the EXIT statement (1-2) is executed, the

execution proceeds with the statement following ENDREP (2)

Interrupt Handling

In PL/I (25], interrupt handling is manipulated, independently of

sequential control flow . When an area condition or end-of-file

condition occurs, the currently active ON statement is executed .

That is, control is transfered non-sequentially . 'This sort of non-

sequential . control transference disrupts the well-structuredness of

program control flow .

In order to make program control flow well-structured, the on-

unit should be specified in the statement where an interrupt may

For example, in case of the ALLOCATE statement,<The on-unit>is

specified, as follows :

ALLOCATE < based-variable>

	

SET (< locator-variable >) IN (<area-

variable>) <on-clause ;

< on-clause', : = ON ((condition-name) (statement-list ', where

the

	

< condition-name > is AREA .

	

The <on-clause > is used to

specify the action. when an area condition may occur . Similarly, the

< on-clause > is also specified in the input/output statements, .

In-11- Machine Code Facility

SPL allows machine instructions to be inserted into SPL programs,

where they are contained in the code blocks . However, certain

instructions will never be supported affecting control flow, such

as a branch instruction which is equivalent to a GO TO statement .

SPL variables may be used as operands of machine instructions .

Compiler checks that the machine instruction is one of the allowable

ones, and that operands are suitable for the instruction .

3 .3 SPL Program Example

An example [8] is shown in Fig . 2 .

4 . _EPL _LANGUAGE SPECIFICATI ONS

SPL and EPL are based on the concept of levels of abstraction [3] .

EPL is the outer layer of SPL and provides the facilities to add new

statements or expressions to the base language SPL .

109

(.1) Statement Extension Method

The syntax is given by

< statement-syntax-rule-description

. = 1 <identifier > 1	SYNTAX-OF-STATEMENT

{, 2 (minor-structure>is . [, 3 (minor-structurs:,>7ss (,

	

. . .
(, n+l (minor-structure>nss] "'] "'] "' (""
(minor-structure >

lss-nss'
_ { (character-string-constant>1

IITERATION (< parameter2) I DISORDER I OPTIONAL (< parameter'.3)

< character-string-constant > 2

	

DEI. I ONE-OF-THEM I <identifier

~~I'''""" vARIAELE

,'parameter > 1

	

EXPRESSION

STATEMENT

September 1977

Concretely 1peaking, using the [SPL extension facilities, e new

statement and expression can be added as constructs of the < procedure-

body .' and

	

..scalar expressions >

	

of SP1_

	

respecciveIv .

'ihe new stateiaent or expression, which has been defined by statement

or expression syntax rule description, is interpreted, using the

I (i _-. 1, 2

where a preceding number of < inor-structure ;> specifies a level

number . A minor structure at level u contains all following

items declared with level numbers greater than a ul) to but not

including the next item with a level number less than or equal to

Elements of a minor structure at level n are defined as minor

structures with level number n+l, which is contained in the minor

structure at level a .

The (character-string-constant% specifies a keyword or delimiter

of a statement to be extended .

The <identifier>1 specifies the name which identifies the

statement to be extended .

ITERATION (. . .) specifies that the contained elements be iterated

o times, where n. is the value of "parameter's .

DISORDER specifies that the occurrence order of the contained

elements be disorderly .

OPTIONAL (. . .) specifies whether the contained elements exist or

not, depending on the existence of <,parameter'3 '

The (,character-string-constant',, DEL may be one of the elements

of a minor structure ITERATION (. . .), and show that

	

< character-

string-constant.,2 is . generated on every iteration except the

last one .

It is illustrated by the, following example :

LOOP l : REPEAT . . , corresponding statement or expression semantic description . SPL source

LOOP 2 : REPEAT . . , program are generated accordingly .

LOOP 3 : REPEA"; . . ,
4 .1 Statement Extension

EXIT ; (1-1)
Statement syntax to be extended is illustrated by

EXIT 1,00' 2 ; (1-2)
<,statement> : =(:syntactic-unit>! . . .

ENDREP ; (1)
< syntactic-unit % . = 1,< parameter ,character-string-constant ;

ENDREP ; . . . (2)
where :,character-string-constant > specifies a statement keyword or a

ENDREP ; (3)
delimiter .

In this case, when the value of $1 is 3, the string 'ABC, ABC,

ABC' is generated.

ONE-OF-THEM specifies that one of the contained elements is

selected .

	

The < identifier>2 specifies the name which identifies

a minor structure .

VARIABLE specifies that <parameter>I has the syntax type of a

variable which is allowable in SPL specifications .

EXPRESSION i (i = 1, 2, . . .) and STATEMENT specify that < parametei>I's

have the syntax types of expression r (i = 1, 2, . . .) and statement,

respectively, which are allowable in SPL specifications or extended

syntax .

(2) Statement Semantic Description

Two types of statement semantic description are provided in

EPL .

Type 1

The syntax is given by

<Statement-semantic-description >

. - I< identifier > SEMANTICS-OF-STATEMENT (<identifier>,)

2 < minor-structure> lam [, 3 <minor-structure>2am [. .[, nfl

minor-structure> nsm]"'

	

. . .] "-} _ ;
'- minor-structure> lsm-nsm

	

<character-string- - constant > i.

< parameter>1 I ITERATION (<parameter>2) I OPTIONAL ({< parameter>3

< parameter>3])] , where the

	

<character-string-constant >

specifies a keyword or delimiter o£ a SPI, statement, or of a new

statement extended by EPL .

The < identifier>

	

is the name of the statement semantics .

The <identifier>1 is used to identify the corresponding

< statement-syntax-rule-description > .

	

When the semantics,

which have already been defined, are used, only the element with

level one should be specified .

The < parameter,,,

	

<parameter>2 and <parameter 3 are information

passed from the <statement-syntax-rule-description > and have

the same attributes or forms as those of therule-description.

Parameter passing rule between syntax definition and semantic.

definition is described in Section 4 .3 .

ITERATION (. . .) is the same as described in the preceding section.

OPTIONAL (-,parameter>3) specifies that contained elements exist,

if <parameter>3 exists .

OPTIONAL (,.< parameter .- 3) specifies that contained elements

exist, unless

	

-,parameter > 3 exists .

The statement syntax extension example is shown in Flg .3 .

In Fig. 3, when a source statement written in EPL is given as

follow-

FOR A=BTOC, D BY ETOF, GTOHBYI

SIGPLAN Notices

	

11 0

2 ITERATION ($1)

3 'ABC',

3

	

','

	

DEL,

September 1977

",statement ,

the following SPl, statements are generated :

DO A- B TO C;

. ;statement >

ENDDO ;

DO A = D BY E TO F ;

statement "̀

ENDDO ;

DO A '= C TO H BY I ;

statement ;

ENDDO ;

This example shows that SPL statements can be described compactly

and conveniently using EPL.

(b) Type 2

In this type, semantics are described by a procedure .

This is explained in the next Section 4 .2 (2) .

4.2 Expression Extension

Expression form to be extended is defined as follows:

<expression> :

	

<expression> 1 <operator> <expressiou> I

[<operator >

	

<expression %' I]

	

. . .

where

	

<expression >I	is one of the SPL scalar expressions or one of

the extended expressions .

Each <operator> is an i-th element 0, of an n-tuple operator (O 1, O2,

. . Oi , . . . 0.), which represents a single ooer r -. Each <operator

is described by a

	

<character-string-constant .

Expression extension method

The syntax is given by

expressioa-syntax-rule-description> : = I

	

identifier> I

SYNTAX-OF-EXPRESSION j(j = 2, 3, . . .)

	

2 <parameter>

EXPRESSION i(i = 1, 2, . . .)

2 character-string-constant

2

	

=.parameter >

	

EXPRESSION

	

i

	

(1 = 1,

	

2,

	

. . .)

[, 2

	

Icliaracter-string-constant >

2

	

<parameter > EXPRESSION i

	

(i = 1, 2,

where the

	

,idtutifier > 1 is the name of the expression syntax .

J of SYNTAX-OF-EXPRESSION j (j = 2, 3, . . .) specifies the priority

of the new operation.

EXPRESSION i is the same as that of <statement-syntax-rule-

description', . Each <character-string-constant,' " specifies an

i-th operator constituent 01 of an n-tuple operator (O1, 02' . . .

0r.,

	

. . .

	

0n)

	

of an expression to be extended .

A new operation can be defined by using < expression I > .

	

By

this definition, the priority of the new operation is also given

uniquely .

When it is desired to change an operation priority which has

already been defined, operation definition set should be changed .

This is illustrated by the following examples .

(a)

	

When a new operator ADD is defined by

	

<expression 4, ,

	

: -

expression 3 > ADD <expression 3 :°, the old expression

Therefore, it is assumed that the priority of ADD is the same

as those of operators + and - .

When a new operator COMP is defined, as follows,

,expression 8 > : = ,expression 7 > COMP <expression 7 > ,

then the priority of COMP is lower than that of operators shown

in Fig. 1.

(c) When a new operator MULT is desired. whose priority is between

* and **, it is necessary that the operation set shown In Fig. 1

should be modified, as follows.

(2)

. = 1 <identifier> SEMANTICS-OF-
tTATEMENT

	

f <identifier>)(~XPRESSION

	

1

2

	

[GL0,3AL-SECTION ! LOCAL-SECTION [

3 ,character-string-eonstanC> ENTRY (niT1BtNS (<character-

string-constant > 0)

3 ,minor-structure>let [, 3,minor-structure%leti "'

- PROCEDURE

3 PARAMETER

4

	

<inet-structure > lem [

	

, 4 ,minor-structure \ lem)

	

. ""

3

	

,minor-structure ?lap [, 3

2 CALL-OF-PROCEDURE

3

	

,minor-structure,, . Iec [

	

, 3

	

,minor-structure `lec)

	

. . .

SIGPLAN Notices

definition

	

:sxpressico 4 ~ : = , expression 3 >

	

[! + I - }

,expression 3 ;

ADD < expression 3 ; are merged into the following definition

pression 3 '] . . . and the new definition !expression 4 >:

ADD ,expression 3 ?
expression 4

	

on 3 >>
({ + 1

	

<expressi.on 3 >V ;

,minor-structure>lap)

to the specifications on the statement semantic description by

a procedure and the expression semantic description, respectively .

The ,identifier, is the name which identifies the semantic

description of a statement or expression .

The 'identifier > 1
is used to identify the corresponding statement

or expression syntax rule . When the semantics, which have already

been defined, are used, only the element with level one should be

specified.

September 1977

The � paramecer :1 1 is information passed from the

	

"'parameter'l
of ".statement-syntax-rule-description'I or ,parameter - of

expression-syntax-rule-description` " and has the same

attributes or forms as those of the ,statement-syntax-nile

description, .

	

or <--Pression-syntax-rule-descriptioo .` .

The parameter passing rule, applicable between syntax definition

and semantic definition, is described in Section 4 .3 .

In this paper, a procedure and function procedure are briefly

described only as procedures, in case that it is not necessary to

distinguish between them .

The declarations of the procedure and function procedure, which

constitute the semantics of statement and expression, respectively,

are given in the (GLOBAL-SECTION I LOCAL-SECTION) as follows ;

The ,character-string-constant> specifies a procedure name .

The

	

:character-string-coostant>
C specifies the attribute of

string-constant> ENTRY (., .) n11
RETURNS (. . .)

	

'

is generated in the local section of the procedure, where the

statement or expression is described.

The description of the procedure is generated by the PROCEDURE

phrase . The minor structure PARAMETER specifies the parameter

list of the procedure . The list of":-minor-structure.'Lop

specifies the procedure body .

The procedure name and the attributes of return value of the

procedure are given by the (GLOBAL-SECTION i LOCAL-SECTION 1

phrase .

For the PROCEDURE phrase, the external procedure, beginning from

: . PROCEDURE (,:parameter-

is generated, where the < parameter-list> is generated from the

minor structure PARAMETER.

The procedure reference is generated by the CALL-OF-PROCEDURE

phrase .

	

Each ,minor-structure %, lei, specifies a single argument

of the procedure argument list .

The procedure name is given by the i GLOBAL-SECTION i LOCAL-

". SECTION { phrase .

For the CALL-OF-PROCEDURE phrase, the function reference

. ,character-string-constgAt> (<argument-list>) is generated on

,expression 3> : _ ,expression 21 > expression 21 >] . . .

<expression 21 > : _ < expression 11 > MULT <, expression 11 >

<expression 11 > : = , expression 1 > [{ ** I I { < expressionL >1, . .

return value of the function procedure .

Each ,minor-structure > let describes the attributes of a single

parameter of the procedure.

An n-tuple operator is illustrated, using the following example. (a) When the GLOBAL-SECTION phrase is specified, the < charActer-

;expression i > : -- < expression j > SUB ,expression j> string-constant> ENTRY (< parameter-attribute-list :-)
nil

DIV < expression j > RETURNS (,character-string-constant> O) } ;

Two-tuple operator (SUB, DIV) represents a single operation and is generated in the global section of the procedure, where the

is used in the above form . statement or expression is described, and in the global

Statement and Expression Semantic Description section of the external procedure which contains it . The

The syntax is given by < parameter-attribute-list> is generated from the list of

< statement-semantic-description-by-a-procedures ,,minor-structure >
let'

c expression-semantic-descriprion > (b) When the LOCAL.SECTION phrase is specified, the ~ ; character

}let `
_< minor-structure>S,lem : :,character-string-constant >1

tlep

the ,.character-string-constant

nil. list :) RETURNS

,minor-structure >lec . =<parameter>I
s

where the square bracket specifies that x and (7 correspond
(,character-string-constant> 0))

SIGPLAN Notices

the context where the expression is used .

The statement CALL -_character-string-constant > (< argument

list >) ; s generated on the context where tile statement Is

used .

The generated semantic$, such as the declarations of a procedure

name, the procedure and the reference of the procedure described

above, should be allowable in SPL specifications or extended

syntax .

(3) Example of an Expression Extension

This example is given in Fig. 4 .

When the expression

	

A ADD B

	

occurs in the source program, it

is assumed that $1 = A and $2 = B .

In the GLOBAL-SECTION of. the procedure, where the expression is

described, and of the external procedure, which contains it,

the declaration ADDF ENTRY (BIN FIXED, BIN FIXED) RETURNS (BIN

FIXED) ; is generated.

The function procedure shown in Fig. 5 is generated as an external

procedure . This shows one of the favorable capabilities of EPL.

The expression

	

A ADD B

	

is replaced by the function reference

ADDF (A, B)

This example illustrates that the expression (A*B)/(A+B) is expressed

compactly and conveniently by the expression A ADD B .

4.3 Parameter Passing between Syntax Definition and Semantic Definition

Parameter used in the syntax definition is passed to the correspond-

ing parameter of semantic definition .

parameter is denoted as numetir character(s) prefixed by

a $ sign . The parameter $n of syntax definition corresponds to the

parameter $n of semantic definition .

Parameter relationship between syntax definition and semantic

definition is illustrated, using Fig . 3 .

In Fig. 3, the parameter $1 of syntax definition FOR-ST is

passed to the corresponding $1 of semantic definition SEM+OF-FOR .

In the same way, $2, $3, $4, $5, $6, $7 and $8 of FOR-ST are

passed to $2, $3, $4, $5, $6, $7 and $8 of SEM-OF-FOR, respectively .

5 . CONCLUSION

In this paper, the hierarchical language system HIS has been discussed

with respect to HIS concepts, and language specifications of HLS compo-

components . We are planning to use HLS as a tool of software development .

In this development, HLS effectiveness should be verified quantitatively .

REFERENCES

(1) Barbara H. Liskov, SPIL : A Language for Construction of Reliable

System Software, SIGPLAN notices 8, 9 (September 1973) 100-103.

(2) B.H . Liskov, A Design Methodology for Reliable Software System,

AFIPS 1972 FJCC, 41, Part 1, Spartan Books, New York, 191-199 .

(3) E.W . Dijkstra, The Structure of the "THE" Multiprogramming System,

CACM 11, 5 (1968) 341-346 .

(4) F.SJ . Di.Jtatra, Go in Statement Co".,sidered harmful CALM 1.1, 1 (1968)

147-148.

(5) W.A . Waif, et al. ., BLISS: A Language for Systems Programming,

CACP1 14, 12 (1971) 780-790 .

(6) N. Wirth, The Programming Language PASCAL, Act . 'informat:ica, 1

(1971) 35-63.

(7) Report of Session on Structured Programming, SIGPLAN notices 8, 9

(September 1973) 5-10 .

(8) Victor R. Ba .si .li. & Albert J. Turner, SIMPL-f A Structured

Programming Language, Computer Science Center, Univ . of Maryland

(1974) .

(9) J .E . Sammet, A Brief Survey of Language Used in, System Implementa-

tion, SIGPLAN notices 6, 9 (1971) 1-19 .

(24)

September 1977

(7 .0) R. Daniel Bergson, Language for System Development, SIGPLAN notice

6, 9 (1971) 50-72.

(11) B.M . Leavenworth, Programming with(out) the Go To, SIGPLAN notices

7, 11 (1972) 54-58.

(12.) E .W . Dijkstra, Notes on Structured Programming, Structured Program-

ming, Academic Press, London and New York (1972) 1-72 .

(13) J .D . Gannon & J .J . Horning, Language Design for Programming

Reliability, IEEE Transactions on Software Engineering SE-1, 2 (1975)

179-191 .

(14) William F. Ross, Structured Programming, Computer 8, 6 (1975)

20-22 .

(15) John Naughton, s, a , otructured Programming: Concepts and

Definitions, Computer 8, 6 (1975) 23-37.

(16) N. Wirth, On the Composition of Well Structured Programs, ACM

Computing Surveys 6, 4 (1974) 248-259 .

(17) N. Wirth, Program Development by Stepwise Refinement, CALM 14, 4

(April 1971) 221-227.

(18) W.A . Wulf, Programming without the Go To, Proc . IFIP Congress,

Vol. 1, North Holland Publ . Co ., Amsterdam, The Netherlands, 1972,

408-413 .

(19) Jeseph E . Sullivan, Extending PL/I for Structured Programming,

Computer Languages 1 (1975) 29-43 .

(20) S .L . Stewart, STAPLE, An Experimental Structured Programming

Language, Computer Languages, 1 (1975) 61-71.

(21) Proceedings of the International Symposium on Extensible Languages,

SIGPLAN notices 6, 12 (December, 1971) .

(22) N. Solntseff & A . Yezerski, A Survey of Extensible Programming

Languages, Annual Review in Automatic Programming 7 (1974) 267-307.

(23) Bernard A. Caller, Extensible Languages, Information Processing 74,

Software (1974) 313-316 .

R.H . Leavenworth, Syntax Macros and Extended Translation, CALM 9

(November 1966) 790-793 .

(25) IBM System/360 Operating System : PL/I Language Specifications,

C28-6571-4, IBM Corp . (1966) .

(26) G.M . Weinberg, st al ., IF-THEN-ELSE Considered Harmful, SIGPLAN

Notices 10, 8 (August 1975) 34-44.

SIGPLAN Notices

I <function reference >

4 $5,
2 PROCEDURE,

3 OPTIONAL ($6),
3 PARAMETER,

4 'BY',
4 'P',

4 $7,

	

4 'Q',

3 'DATA SEGMENT;
3 $8,

3 'E NDDO ;'

	

LOCAL SECTION;

(P, Q, IX) BIN FIXED ;

END-SECT ;

Fig . 3

	

Syntax and semantic description example

	

END-SEGMENT;

IX =

(P*Q)/(P+Q) ; RETURN (IX) ; END ADDF ;',

2 CALL-OF-PROCEDURE,

3 $1,

3 $2 ;

113

	

September 1977

Fig. 4 Expression definition example

REMOVE COMMENTS : PROCEDURE ;

/* THIS PROGRAM REPLACES ALL SUBSTRINGS BETWEEN '/*' AND

'*/' BY BLANKS */
DATA-SEGMENT ;

LOCAL-SECTION ;

INPUT CHAR(80) ; INFILE FILE INPUT ; OUTFILE FILE OUTPUT ;

(PTRI, PTR2) BIN FIXED;

END-SECT ;

END-SEGMENT ;

REPEAT FOREVER;

READ FILE (INFILE) INTO (INPUT) ON (ROE) EXIT ;

PTR1 = 1;

WHILE PTRl , = 0*

DO /* REMOVE SUBSTRING

PTR1 - INDEX (INPU ,

ADDF PROCEDURE (P, Q) RETURNS (BIN FIXED) ;

DATA-SEGMENT ;

LOCAL-SECTION ;

(p, Q, IX) BIN FIXED;

END-SECT ;

END-SEGMENT;

IN _-. (P*Q / (P+Q ;

RETURN (IX) ;

END ADDF ;

Fig . 5

	

Function procedure generated

< expression 7

< expression 6 .

expression 6 > ['.(or) < expression 6 >] . . .

_ < expression 5 > [&(and) <expression 5 > I . . .

expression 5 > : - , expression 4 > [{ <

<expression 4>] . . .

< expression 4 > : <expression 3 > [{ + I - I < expression 3 >] . . .

< expression 3 > : - <expression 2 > [{ * / I < expression 2 >] ., .

< expression 2 > : _ < expression 1> [{** II) < expression 1 >] . . .

<expressiou 1 > : _ < scalar variable > I <constant> ; (< expression 7>)

Fig. 1 Scalar expression syntax
IF PTR1 = 0

THEN /* FOUND BEGINNING */

PTR2 = INDEX (INPUT,

IF PTR2 >PTR1
1 . FOR-ST SYNTAX-OF-STATEMENT, THEN /* FOUND END (AFTER BEGINNING) */

2 'FOR', SUBSTR (INPUT, PTR1, PTR2-PTR1+2) _

2 $1 VARTABLE, ENDIF;

ENDIF;
2 ITERATION ($2), WRITE FILL: (OFILE) FROM (INPUT) ;

3 $3 EXPRESSION 7, ENDDO;
3 DISORDER, ENDREP ;
4 OPTIONAL ($4), END REMOVE COMMENTS ;
5 'TO',

5 $5 EXPRESSION 7, Fig. 2 SP(. Progrmn Example
4 OPTIONAL ($6),

5 'BY',

5 $7 EXPRESSION 7,

2 $8 STATEMENT;
1 EXP SYNTAX-OF-EXPRESSION 4,

1. SEM-OF-FOR SEMANTICS=OF-STATEMENT (FOR-ST), 2 $1 EXPRESSION 3,

2 ITERATION ($2), 2 'ADD',

3 'DO', 2 $2 EXPRESSION 3;

3 $1,
1 S-OF-EXP SEMANTICS-OF-EXPRESSION (EXP),

2 GLOBAL-SECTION,
3 $4,

3 'ADDF' ENTRY RETURNS ('BIN FIXED'),
3 OPTIONAL ($4),

3 'BIN FIXED',
4 'TO',

3 'BIN FIXED',

