Check for
Updates

SIGPLAN Notices

103 September 1977

THE HIERARCHICAL LANGUAGE SYSTEM

Ncbuyoshi Terashima

Yokosgka Electrical Communication Laboratory
Nippon Telegraph and Telephone Public
Coxporation

1-2356 Take, Yokosuka-shi 238, Japan
Phone No. (0468) 59-2716

ABSTRACT

‘fhe Hierarchical Language System HLS is presented. HLS consists
of the structured programming language SPL and the extensible program-
wming language EPL which is builtr upon SPL layer and provides statement
and expression extention facilities, and provides to automate top down
programming as much as possible by the following means.

(1) To describe each breakdown process in the programming languages
EPL and S$PIl, in order to eliminate ambiguity of each breakdown
representations which are in general written in natural languages.

(2) To generate the whole system which runs in the actuval programming
environment by this system.

This paper describes HLS concepts and language specifications of

its components.

HLS effectiveness is toc be presented in the near future.

1. INTRODUCTION

Tt is assumed that software systems be classified into the following
fields; operating systems, ccmpilers, utilities and application programs.

In each field, there are many routines, which are characteristic of
the field and occur in the field frequently. When using PL/I, COBOL or
an assembler language to write those routines, they are described as
macros or (function) subrcutines, and invoked by means of macro or
subroutine references wheu necessary for processing.

This invocation method cannot contribute to enhancement nf program-
ming readability amnd descriptive convenience.

Therefore, it is necessary that readability and descriptive
convenience should be enhanced by providing a descriptive means fitted
for the field, because it is expected that readability and descriptive
convenience might contribute to enhancement of programming reliability
and productivity as well as program maintenance.

The following implementations are enumerated to satisfy the above

vequirement:
(1) To develop a new language fitted for a particular field.
(2) To make use of extensible programming language coucepts (21,

The former implementatior requires development of a new compiler

language for each field. Therefore, in setting up and maintenance the

compiler language, a very large cost is involved. Therefore, in this

research, the latrer implementation is taken into consideration.

22, 23}.

Generally speaking, an extensible programming language has a base
language besides extensi @ facilities. Therefore, the hierarchical language
system HLS is proposed, which consists of the structured programming language
SPL as the base language and the extensible programming language EPL, which
is built upon SPL layer. Tt is expected that HLS might contribute
to enhancement of programming reliability and productivity as well as
program maintenance by the following reasons.
(1) Programming reliability and productivity as well as program mainte-
nance can be enhanced by SPL.
Effectivity can be enhanced by EPL. Effectivity might be one of the
major contributing factors for enhancement of programming reliability
and productivity as well as program maintenance.
(2) HLS can provide a means by which representations, which are written
in EPL and suitable to a particular field, are broken down into
representations, which are written in SPL and transparent to the
field, ir a top down manuex.
This paper describes HLS concepts, language specifications
of HLS components.,
Especially, S$PL and EPL language specifications are described in detall,
because they are new programming languages proposed in this paper.

2. LS CONCEFTS

HLS is the two level hierarchical language system, which coasists
of $PL as the base language, and EPL, which is built upon SPL layer
and provides statement and expression extension facilities.

The ressons why EPL does not have extension facilities of language
constructs, other than statements and expressions, are as follows:

(1) References of macros and (function) subroutives cam be easily
represented by new statements or expressions using EPL.

(2) Program structuve, data declarations and data references should be
made well structured in order to enhance programming reliability
and productivity, hence these comstructs should be the same as
those of SPL.

The basic concept of top down programming is that programs consist
of layers, each layer implementing a characteristic level of abstraction
built upon the layers below and supporting the layers above [1, 2, 3, 5,

6, 7, 8, 12, 14, 15, 16, 17, 19}. In HLS system, programs of a field

http://crossmark.crossref.org/dialog/?doi=10.1145%2F954604.954613&domain=pdf&date_stamp=1977-09-01

SIGPI.AN Notices 104

consigt of lavers which should bhe described in the representations
characteristic of the field using EPL and layers which should be described
in the representations transparent to the field using SPL.

In other words, the entire system operation is described in the
representations fitted for a field using EPL. They are then broken
down into the layers below.

This process continues until everything is resolved into procedures
which are written in SFL, described in the representations transparent to
the field and supported in the implementation environment,

This breakdown proccdure is represented in a multi~layer structure,

as follows:
Lenar
e
Layar
L ar1)map

L (n+2)NAP

F(otmnar

where (1) L are layers which should be described in the

{1)AP~(n)AP

representations fitted for a particular field and are writtenm in EPL.

(2) L(n+l)NAP~(n+m)NAP are layers which should be described

in representations transparent to the field and are written in SPL.
The set of procedures in a layer L is written as{P, ,..i. The
3 ver Loy {2y}
set with no procedures should not be allowable. The ertire svstem
operation of a field is describad as{PL(l)}‘ It ds then broken down

into{ } . This process continues until everything is resolved

P
into{PL(n+m)} .

Breakdown of a layer into the next layer below is described using
EPL and SPL. Namely, in EPL, a layer is described as the syntax
description and the next layer below is descrived as the semantic
description.

In SPL, a layer is described as procedures, which contain the
subroutine references, and the next layer below is described as the
subroutines.

Breakdown is performed as follows:
as well as breakdown

(1), Breakdown of layer L into layer L

(kyAr (kt1)AP
of layer L(n)AP into layer L(n+1)NAP are performed using EPL, where
k=1, 2, vieiuva s, n-1

(2) Breakdown of layer L is performed using SPL, where j = 1, 2,

{n+j)NAP
cey M1,
This is illustrated using the example shown in Section 4.1 (2).
(1) The construct FOR A= B T0 C, DBYETOF, G TO H BY I statement
is a representation of layer L(l)AP’ which is characteristic of
Y of a field and written in EPL, and a construct which is contained
in a procedure of layer L(l)AP'
(2) The statement list DO A = B TO C; <statement> ENDDO;
DO A =D BY E TO F; <statement > ENDDO;
DO A =G TO H BY I; <statement ENDDO;

1s a representation of laver L AP? which is transparent to the

(2)N,

September 1977

field and written in SPL, and a procedure of laver Yeaswar

{3) The construct contained in the procedurc of layer L(l)ﬁ? is

implemented by the procedure of laver L(?)NAP‘ This illustrates

is broken down using

(1)4P into layer L

that layer L (2)NAP”

SPL belongs to a class of languages such as PL/I[25], does not
have a GO TO statement {4, 11, 18}, has salient control structures such
as GCASE statement, in addition to the countrol structures which a
structured programming language has in general [5, 6, 8, 20], and has
inline machine code facilities for use of basic system descriprion
{1, 9, 10},

In SPL, data declarations and references are made well structured
{13].

Data scope includes global data scope and local data scope. GClobal
data may be used in the local blocks contained in a block where the
global data are declared.

On the other hand, local data should be available only in a block
where the local data are declared, but they should not be used in the
local blocks contained in a block where the local data are declared

This shows that data design procedure should be performed from the
ontermost block to the innexmost block and that this concept may
contribute to top down programming strategy.

EPL is the extensible language whose base language is SPL and has
extension capabilities of statements or expressioms (21 v 247].

One of EPL characteristic features is that syntax and semaatic
description may be performed hierarchically, using the structured
descriptive method,

It is expected that this might support the powerful descriptive

means for extension.

3. SPL_LANGUAGE SPECIFICATIONS

3.1 Basic Concepts
(1) SPL is one of the block structured languages and has data types
and structures, such as PL/T [25].
(2) Procedure consists of the declaration segment followed by the
procedure body.
(3) Declaration segment consists of entry declaration section, global
declaration section and local declaration section.
When the declaration of an identifier is made in a block, there
is a certain well-defined region of the program over which this
declaration is applicable.
This region is called the scope of the declaration or the scope
of the name established by the declaration.
Data declarations in the local section are applicable oniy in the
block where they are declared. Parameters and the entry data
shovld be declared in the local section or the glohal sccrion.
Data declarations in the global section ave applicable in the
block as well as the blocks contained in it.
Data declarations in the entry section can be used to communicate
between different external procedures. Only the entry data is

declared in this section.

SIGPLAN Notices 105 September 1977

(4) SPL has GO TO-free control structures as follows: (3) Procedure
(a) Generalized CASE statement There are two types of procedures; external procedures and
(b) IF statement (selection of a statement based on the testing of internal procedures. ‘
a condition). The general form of a procedure is given as follows:

{c) REPEAT, WHILE DO and DO statements {iteration). < procedures >: = <procedure~beginning-part> < data-declaration~

{d) EXIT statement in a loop (exit mechanism from Ioop). segment>> < procedure-body > <procedure-~ending-part .

{e) An internal procedure. General form of < procedure-beginning-part> is given as follows:

(£} BEGIN hleck. < procedure-beginning-part> : = <identifier > : PROC [{- parameter-—

BEGIN block is the same as that of PL/I. list>)] [RETURNS (<attribute>)];

(g) A machine code block where machine instructions can be used. where <identifier™ ia the name of the procedure. Each item
The statements which control structures link together include of <parameter-list> is delimited by a comma, and is an
assignment statements, calls of other procedures, machine instruc— arithmetic data item, a string data item, a locator data item or
tions in the machine code block, the RETURN statement in a an area data item.
procedure, the storage allocation ox freeing statement, and the The data item should be declared in the < local-declaratioun~
input/output statements. section>of the <data-declaration-gsegment >,

(5) In~line machine code facilities The RETURN option should be specified when the procedure is a
This facility permits the user to retain control over machine function procedure.
capabilities which are needed to perform basic system functions. Data varlables, which are used in the < procedure-body > , should

be declared in the <data-declaration-segment >, The < data-

3.2 SPL Characteristic Features .
declaration-segment > consists of < entry-declaration-section ™,

SPL characteristic features related to control structures are |
< global-declaration-section > and/or <local-declaration-section: .

described in this sectiom.
It is delimited by the DATA-SEGMENT statement and the END~SEGMENT

SPL specifications other than the above features are not shown
statement.

in this paper.
" pap An invoked external procedure name is declared in the <entry-

1 t £ nera.
The symbals<and>are used to enclose the name of a general declaration-section> . It is delimited by the ENTRY-SECTION

syntactic entity. Braces ({ }) are used for grouping and specify statement and the END-SECT statement. Data which is accessible

the occurrence of one of the group items. in a block and the blocks contained in it, is declared in the
The vertical stroke indicates that a choice is to be made. < global-declaration~section > .

The square brackets [1 denote options. The global data should be declared in each block where it is
Three dots ... denote the coccurrence of the immediately preceding used. It 1s delimited by the GLOBAL-SECTION statement and the

syntatic entity ome or more times in succession. For example, the END~SECT statement.

following statement is given: The local data should be declared only in the block where
CALL <identifier> [(< parvameter-lisc>)]; it is used. It is delimited by the LOCAL-SECTION statement

This means that this statement consists of the keyword CALL followed and the END-SECT statement.

by an identifier. The identifier may optionally be followed by a When it 1s desired to use an identifier as a different entity in

parameter list, enclosed in parentheses. The CALL statement is the encompassed block, it is necessary to specify the local

terminated by a semicolon. attribute to it in the encompassing block.

(1) Data Types and Organization The identifier declared as a global data should not be specified

Data types include arithmetic (binary/decimal, fixed point/float- for another purpose in all of the procedures which are contained
ing peint) data, string (character/bit) data, locator {pointer/ in an external pracedure.
offset) data and area data [25]. File names, entry names and The < procedure-body> i8 constructed from GO TO-free control

condition names are not consldered to be data. arructures. and/or statements described in Section 3.1 (4), except

Data organization includes scalar data items, aggregates of data the constructs which consist of only the internal procedures.

items (arrays and structures). A data item may be either a The <procedure~ending~part> is the END statement.

constant or the value of a scalar variable. The syotax rule is given by

Constants and scalar variables are called scalar items. All END <identifier> ;

classes of variable data items may be grouped into arrays or where <identifier> 1is the same identifier as the procedure name

structures as PL/T [25]. of the < procedure-beginning-part>- .

(2) A program is composed of more than or equal to one external (4) Expressions

procedure.

SIGPLAN Notices

(a}

{b)
(1)

(i)

General Forms

Expression are scalar expressions. A scalar expression
consists of a constant, a scalar variable, a scalar expression
enclosed in parentheses. two scalar expressions connected by
an Infix operatoxr, or a function reference that returns a
scalar value.

Syntax rule of a scalar expression is shown in Fig. 1.

The priority of operations is shown, from highest to lowest,

as follows:

@ **,
@y *,/

&+, -

@ <=, <1< 0=, 5,05, 9>
5y &

6y !

Operations within an expression are performed in the order of
decreasing priority.
If an expression is enclosed in parentheses, it is treated as a
single operand and evaluated first
Within nested parentheses, evaluation proceeds from the least
inclusive set to the most inclusive set.
When operations with the same priority occur in an expression,
evaluation is performed from left to right.
I of <expression i > corresponds to the priority of the opera-
tion where <expression i > appears.
The smaller the value of i, the higher the prlority of the
operation.
In this paper, a scalar expression, which counsists of a single
operand without an operator and is not a function reference nor
a built~in function, is called a scalar variable.
The attributes of all operands of a scalar expression should
be the same.
Operators

Operands of bit string operations such as ' 7(not)', '& fand)’'

and '! (or)' operations, are bir string expressions.

Operands of comparison operatioms, such as '<=',

">, "™»=', and ' y=' operations, are arithmetic expressions,

bit string expressions or character string expressions.

Operands of operations, such as '=' and ' N
1

= are locator
expressions.

1. Bit string comparison, which involves the left-to right
comparison of binary digits. If the strings are different
lengths, the shorter is extended on the right wirh zeros.
Comparison of bit string operations is performed on a bit-by-
bit basis. When the values of the corresponding bit positions
of the operands ave different, then it is assumed '1'B is
greater than '0'B, and the comparison result is obtained.

The {equal to)' operation stands when all of the values of
the corresponding bit positions of the two operands are the

same. The result of a comparison is a bit string of length

106

September 1977

one. The value is '"1'B if the relationship is true or

'0'B 1f it is false.
2 Character cemparison, which involves leflt-ro-right, pair-

by-pair comparisons of characters, according to the implemen-

tation-defind collating sequence.

If the operands are of different lengths, the shorter is extended

to the right with blanks.

(iii) Operands of the arithmetic operations, such as '+', '-7, '®'
'/', and "%*' operations, are arithmetic expressions.
{5) Control Structures

(a)

)

Control structures are described in this Section. The syntactic
unit < statement list > is constructed from the control structures
and/or statements described in Section 3.1 (4), except for
constructs which consist of only the internal procedures.
IF Statement
The IF statement specifies evaluation of an expression and a
consequent flow of control dependent upon the value of the bit
string.
The syntax of the IF statement is given by IF <scalar~
THEN <statement-list>

expression> [ELSE < statement-list>,]
2

1
ENDIF;

where the scalar expression is an expression whose result is
bit string of length one.
If the value is '1'B, the <statement—list>>1 is executed and

control is -transferred to the statement following ENDIF.

If the value is '0'B, the <scatemeut—1ist>2 is executed

when it is specified, and control is transfered to the stafe-
ment following ERDIF.

Generalized CASE (GCASE) Statement

Three control constructs; SELECT CASE OF, SELECT FIRST ACTION
and SELECT EVERY ACTION have been proposed to reduce complexity
of nested 1F constructs [26].

In actual situations, these control structures and extended
confrol structures of them are used in 2 program context
concurrently rather than independently.

Therefore, 2 control construct, which contains all of these
three control structures and extended control structures of

thew, is required to reduce complexity of programs.

The generalized CASE construct is propesed to satisfy this require-

ment .

The syntax is given by
GCASE;

(aexpressionl‘): <statement 1ist:>1 [NEXT]

ELSE <statemeat list > le

(<express:‘oni

<statement list/‘"i {NEXT]

ELSE <statement list >ie

(< expressionn »): <statement list>- N [NEXT]

ELSE < statement list> ne
[COMMON < statement list> c}

ENDCASE;

SIGPLAN Notices 107 September 1977

where each <exprcssi<mii is a scalar expression whosé result ELSE S?(f)
is a bit string of length one. 183 ey THEN 53
If the value of < cxpressl.onlr\ is true, theu < statement list‘:“1 S
c
is executed and one of the following actions is taken: ELSE 53(0
(i) When the NEXT option is omitted from the specification
ENDIF;
and the COMMON part appears, the COMMON part {<{statement ENDIF
1ist>c‘/ is executed and rhe other statement lists are ENDIF;

not executed. N)
Hovever, rhis control structure may be concisely described by

i11) When the NEXT option is specified, th i reads
(P P e e execurion proceads the following GCASE Tonstruct.

with the next construct i H 2Nt
nstruct (<express on2>) < statement GCASE;
ist> ELS! < .
115t/2 LSE <statement list>2€ (el): 8,
(iii) When both the NEXT option and the COMMON part are omitted o
ELSE Sl(f)
from the specification, the execution proceeds with the (e): S
207 2
t fol i .
statemen ollowing ENDCASE ELSE Sz(f)
1f the value of <expression1> is false, the ELSE part { <
(ey): 8
statement list>le) is executed, and then the execution proceeds 3 3
ELSE S3(f)
with the next construct (<expression2>): < statement 1isr>2
COMMON Sc
ELSE <statement list>, .
ENDCASE;

Then the similar actions are taken in case of the construct
This example shows one of the favorable capabilities of GCASE

(<expression2>): < statement list>, ELSE <statement list>, .
statement. The GCASE statement contributes to enhancement of

Thus, when there is no construct to be executed, the execution
understandability of a program where this type of control

proceeds with the statement following ENDCASE.
structure is used.

The GCASE statement function is clearly illustrated by the
SELECY CASE OF, SELECT FIRST ACTION and SELECT EVERY ACTION [26]

following example.
can be described, using GCASE statement, as follows.
(i) SELECT CASE OF Construct
A SELECT CASE OF construct example is given:
SELECT CASE OF TRANSACTION-CODE =
WHEN ('A") 8,
WHEN ('D' OR 'X') S,
WHEN ('c") 53
WHEN NONE ARE SELECTED S 4
WHEN ONE 18 SELECTED Sc
ENDSELECT
where SL’ 52, 83, Sl. and SC are statement lists.
This example is described, using GCASE statement, as
follows.

GCASE;

(TRANSACTION~CODE = 'A'): S,

ELSE;

where e;s ey and ey are scalar expressions, and 51’ SZ’ S3, sl(f)’ (TRANSACTION-CODE = 'D'! TRANSACTION-CODE = 'S'): 57
Sz(f)' S3(f) and Sc are statement lirrs. EI;SE;
When Sl(f) and Sz(f) consist of statements other than null (TRANSACTION-CODE = 'C'): 53
statements, this control structure can not be described by fLSE 54
SELECT CASE OF comstruct. COMMON Sc
Therefore it should be described, using nested IF constructs, ENDCASE;
as follows.

¥ el THEN Sl SC (ii) SELECT FIRST ACTION Construct

ELSE S1(5) A SELECT FIRST ACTION construct example is given:
IF e, THEN S, SELECT FIRST ACTION

s
<

SIGPI.AN Notices

(<)

WHEN RANK IS LESS THAN .10

WHEN RANK IS LESS THAN .50

WHEN RANK 1S LESS THAN 1.00

WHEN NONE ARE SELECTED

ENDSELECT

where Sl, SZ’ 53 and Sz‘ are statement lists.

This example is described, using GCASE atatement, as

follows.
GCASE;

{(RANK < 0.10): Sl
ELSE;

(RANK < 0.50): S,
ELSE;

(RANK < 1.00): S3
ELSE SA

ENDCASE;
(1ii) SELECT EVERY ACTION Comstruct
A SELECT EVERY ACTION construct example is gilven:
SELECT EVERY ACTICN
WHEN ACE~IN-SUIT

51

WHEN KING-IN-SUIT

)

WHEN QUEEN-IN-SULIT

$3

WHEN JACK-IN-SUIT

54

ENDSELECT

t t lists.
where Sl, 52, 53 and SA are statemen

This example is described, using GCASE statement, as

follows.
GCASE

(ACE-IN-SUIT): S1 REXT
ELSE;

(KINGC- IN-SUIT) : S2 WEXT
ELSE;

(QUEER~TN-SUTIT) : 33 NEXT
ELSE;

(JACK-IN-SUIT): SA
ELSE;

ENDCASE;
Iteration Functions

The following statements are allowed in SPL. <loop>: =

{[<exit-designator>:] <recpeat-statement> < statement-list>

[<exit-block.»] ENDREP;
{{ <exit-designator >:] <~do-statement1> <statement-list
Flexit-block > 1 ENLDO;

tl <exit-designator >:} <do—statement2> < statement-list>

108

September 1977

{~ exit-block »] ENDDO; }

« repeat-statement ™ : = REPEAT

{ WHILE (< scalac-

expression >) | FOREVER |} ;

< do-statement, >

= WHILE (<scalar-expression.”) DU;

< do-statement, > t = DO <scalar-arithmetlc-expression ©=

2

< arithmetic—expressien1> {10 <arithmetic—expression? ke

BY < arlthmetic~expression, ™) | BY <arithmetic-expresion
P 3 i

3

{To0 <'arichmeLic~expression2 1t

« exit-block ™ : = EXITBLOCK; « exit-group > [<exit-group =)

< exit-group > : = (<exit-identifier>

(1)

11

(iii)

<statement~lisc?‘p
repeat-statement > specifies that <statement—lisct >,
immediately following, is executed once, and then the
following action is taken:

(OIF the FOREVER option is specified, the <statement-
list>, immediately following, are executed endlessly.
Therefore, this loop should be terminated by an EXIT
statement,

@ whea the WHILE option is specified, the action is as
follows:

1f the value of <scalar-expression> is true (’'1'B), then
<statement-list> is executed. Otherwise, <statement-
1ist > is skipped and execution proceeds with the
statement following ENDREP., However, if <statement-
list> is executed, then execution proceeds with the
REPEAT statement again.

snus, if <scalar-expression> is true, then <statement-
list> is executed until <scalar-expression become
false ('0'B).

When the <do—stacementl> is specified, the action is
equivalent to the preceding (i) @

The effect of the <do-statement,> would be the same

2
as the DO statement (option 3) of PL/I.

EXIT Statement

The synatx is given by

EXIT [<lexit-designator>] [(<exit-identifier >)}];

The EXIT statement may be specified in the <loop>.

(1)

(i1)

Tf <exit-identifier> 1is specified, then the statement
list of the <exit-group> designated by it is executed
and one of the following actions is taken:

1. When the <exit-designator> appears, the loop is
terminated according to the < exit-designator ™

2. Whep the <exit-designator> is omitted from the
specification, the loop where the EXIT statement is
immediately contained is terminated.

If - exit-identifier> 1s not specified, one of the
following actions is taken:

1. When the <exit-designator> appears, the loop is
terminated according to the <exlt-designator>.

2. When the <exit-designator> 1s omitted from the

specification, the loop where the EXIT statement is

SIGPLAN Notices 109 September 1977

immediately contai is t i i
& ely contained is terminated. Concretely speaking, using the EPL extension facilities, o new

111) When the <exit-desi - LFied . : . 5
(ii1) When the exit~designator> is specified, control is statement and expression can be added as construects of the - procedure=-
transfered to the statement following the ENDREP or body ~ and . scalar expressions > of SPl., respeccively.

r . N
ENDDO of the loop designated by it. The new statement or expression, which has been defined by statement

(iv) The function is {illustrated by the following example. or expression syntax rule description, is interpreted, using the
P 1. 2 s N
1007 1: REI?EAT e corresponding statement or expression semantic description. SPL source
1.00f 2: REPEAT ...; program are generated accordingly.

LOOP 3: REPEAT ...3
. 4.1 Statement Extension

EXIT; e (1D

: Statement syntax to be extended is illustrated by
EXIT LOOP 25 ... (1-2)

: < statement »: = {< syntactic~unit >}
ENDREP ; L (D

: <syntactic-unit »: = {{parameter ; < character-string-constant >}
ENDREP ; (@)

H where < character-string-coustart> specifies a statement keyword or a
ENDREP ; S (3

delimiter.
When the EXIT statement (1-1) is executed, the execution
(1) Statement Extension Method
proceeds with the statement following ENDREP (1).
The syntax is given by
However, when the EXIT statement (1~2) is executed, the
< statement-syntax-rule~description >
execution proceeds with the statement following ENDREF (2)
: = 1 {ddentifier >1 SYNTAX-OF~STATEMENT
(6) Interrvpt Handling
{, 2<minor—structure>lss [, 3 <minor-structure

In PL/T (25}, interrupt handling is manlpulated, independently of

[, ntl <minor-structure> _J ...1 ...] ..o }.ous
sequential control flow. When an area condition or end-of-file nss

<minor-structure > H { < character—scring—constant;\l
condition occurs, the currently active ON statement is executed. lss-nss

| ITERATION (< parameter>2) | DISORDER | OPTIONAL (< parﬂmeter>3)

That 1is, control is transfered non-sequentially. This sort of non~ ’
[IRS character-string-constant >, DEL | ONE-OF-THEM | <identifler?,

sequential control transference disrupts the well-structuredness of -
VARIABLE

program control flow.

[parameter)l EXPRESSION 1 {i=1, 2,
In order to make program control flow well-structured, the on-
STATEMENT -
unit should be specified in the statement where an interrupt may
where a preceding number of < minor-structure > gpecifies a level
occur.
For example, in case of the ALLOCATE statement,<the on-unit>ls number. A winor structure at level n contains all {ollowing
or ex , . £ L ,<the op-unit>
ified foll items declared with level numbers greater than g up to but not
specifiled, as oliows:
ALLOCATE < based-variable> SET (< locator-variable >) IN (<area including the next item with a level number less than ot equal to
<. based-va e < lo¢ " & S L~
n.
variable) <on-clause>; -~
1. ON (dai >) <stat it-iist > where Elements of a minor structure at level n are defined as minor
< on-clause>: = < condition~name _statement- > =
he < a1 N AREA. The < tause> is used to structures with level number ntl, which is contained in the minor
the < condition-name > is B e <on-claus i
: structure at level n.
specify the action when an area condition may occur. Similarly, the =
< 1. > g 1 ified in the input/output statements The < character-string-constant > specifies a keyword or delimiter
< on=~ciause - is also spec =1 n -
of a statement to be extended.
(7) In-line Machine Code Facility
The <identifier> speclfies the name which identifies the
SPL allows machine instructions to be imserted into SPL programs, 1
statement to be extended.
where they are contained in the code blocks. However, certain
TTERATIOR (...) specifies that the contained elements be iterated
instructions will never be supported affecting control flow, such
n times, where n is the value of <parameter .
as a branch instruction which is equivalent to a GO TO statement. - ’ - 7
DISORDER specifies that the occurrence order of the contained
SPL variables may be used as operands of machine instructions.
1e elements ve disorderly.
Compiler checks that the machine instruction 1s one of the allowable
OPTIONAL (...) specifies whether the contained elements exigt or
ones, and that operands are suitable for the instruction. }
not, depending on the existence of <_paramcter>3.

3.3 SPL Program Example The <‘character—scring~constanc)2 DEL may be one of the elements
An example [8] is shown in Fig. 2. of a minotr siructure ITERATION (...), and show that -character-

string—constanti\z is generated on every iteration except the

4. EPL LANGUAGE SPECIFICATIONS last one,

SPL and EPL are based on the concept of levels of abstraction (3]. It is illustrated by the following example:

EPL 1s the outer layer of SPL and provides the facilities to add new

statements or expressions to the base language SPL.

SIGPLAN Notices 110

2 ITERATION (51)
2 'ABCY,
3 ', DEL,
In this case, when the value of $1 is 3, the string 'ABC, ABC,
ABC' is generated.
ONE-OF~-THEM specifies that one of the contained elements is
selected. The <identifier>z specifies the name which identifies
a minor structure.
VARTABLE specifies that <parametex:>l has the syntax type of a
variable which is allowable in SPL specifications.
EXPRESSION i (i = 1, 2, ...) and STATEMENT specify that < parameter>l's
have the syntax types of expression i (i = ...) and statement,

1, 2,

respectively, which are allowable in SPL specifications or extended

syntax.
{2) Statement Semantic Description
Two types of statement semantic description are provided in
EPL.
(a) Type 1

The syntax is given by
< statement-semantic-description >
1 = 1<identrifier > SEMANTICS-OF-STATEMENT (<identifier;1)

[, ntl

{, 2<minor-structure> [, 3 <minor-structure, [..
lsm 2sm
]

Lem-nsm :={ <character-string-constant > |

I

< minor-structure> nsm I...
< minor-structure>
<1parameter;1 { ITERATION (<parameter>2) | OPTIONAL ((<ﬁparameter>3
I <parameter>3))) , where the <character-string-constant >
specifies a keyword or delimiter of a SPL statement, or of a new
statement extended by EPL.

The <identifier> is the name of the statement semantics.

The <identifier>1 is used to identify the corresponding

< statement-syntax-rule-description>. When the semantics,

which have already been defined, are used, only the element with
level one should be specified.

,y are information

The Q‘paramecer:i, «parameter>é and <parameter
passed from the <statement~-syntax~rule-description> and have
the same attributes or forms as those of the -Istatement—syntax-
rule-description’.

Parameter passing rule between syntax definition and semantic
definition is described in Seetion 4.3.

ITERATION (...) is the same as described in the preceding section.
OPTIONAL { <parameter>;) specifies that contaiaed elements exist,

if exists.

3
OPTIONAL (- < parameter ™ 3) specifies that contained elements

<parameter>

exist, unless <paramecer;;»3 exists.

The statement syntax extension example is shown in Fig.3.

In Fig. 3, when a source statement written in EPL is given as
follows.

FOR A=BTOC, DBY ETOF, G TOHBYI

September 1977

_statement " ,
the following $PL statements are generated:
Do A = B F0 C;

statement >

ENDDO;

DO A= DBY ETOT;
. statement »
ENDDO;

DO A = C TOH BY I;

atement >

<
FENDDO;
This example shows that SPL statements can be described compactly

and conveniently using EPL.

{b) Type Z
In this type, semantics are described by a procedure.
This is explained in the next Section 4.2 {2).
4.2 Expression Extension

Expression form to be extended is defined as follows:

<expression> : = <expression> 1 < operator > < expression > 1
[<operator > < expression: 1]
where <expression:>l is one of the SPL scalar expressions or one of

the exteunded expressions.
Each <operator> is an i-th element Oi of an n~tuple operator (01’ 02,
Each <operator >

.0 . On)’ which represents a single overarinsn,

i
is described by a <character-string-constant’™ .
(1) Expression extension method

The syntax is given by

< expression-syntax-rule-description>: = 1 <identifier>‘l

SYNTAX-OF-EXPRESSION 3(j = 2, 3, ...)

2 <parameter >
EXPRESSTON i(i = 1, 2, ...}
. 2 Zcharacter-string-constant >

, 2 “parameter > EXPRESSION 1 (4 =1, 2, ...)
[, 2 <character-string-constant >

, 2 <parameter > EXPRESSION i (i =1, 2, 21

where the -lidentifier>_ is the name of the expression syntax.

1

J of SYNTAX-OF-EXPRESSION j (§ = 2, 3, ...) specifies the priority
of the new operation.

EXPRESSION i is the same as that of <statemeut-syntax-rule-
description ™. Each <character-string-constant> specifies an
i-th operator constituent 01 of an n-tuple operator (01, 02’

(SN

N .. On) of an expression to be extended.

A new operation can be defined by using < expression i>. By

this definition, the priority of the new operation is alsa given
uniquely.
When it is desired to change an operation priority which has
already been defined, operation definition set should be changed.
This is illustrated by the following examples.

(a)

When a new operator ADD is defined by <expression 4. @ =

< expression 3> ADD <expression 3>, the old expression

(b)

()

(@

(2>

SIGPLAN Notices 111

dafinition Jexpressicn 4 > 1 = <expression 37 [{+1-}

< expression 3 | . and the new definition < expression 4 >:
= < expression 3 >
ADD < expression 3 » are merged into the following definition

ADD <expression 3 >

expression 4 > : = < expression 3>

{{+ 1 <expression 3]}

Therefore, it 1s assumed that the prioxrity of ADD is the same
as those of operators + and -,
When a new operator COMP ig defined, as follows,
< expression 8 > : = < expression 7> COMP < expression 7> ,
then the priority of COMP is lower than that of operators Shown
in Fig. 1.
When a new operator MULT is desired, whose priority is between
* and **, it is necessary that the operatlon set shown in Fig.l
should be modified, as follows.

< expression 3> : = <expression 21 > [{ % |/} < expression 21>]...
<expression 21 > : = Lexpression 11> MULT < expression 11 >
<expression 11> : = Jexpression 1> [{ **| ;} <expressionl>]...
An n-tuple operator is illustrated, using the following example.
< expression 1 > : = < expression j> SUB < expression j>

DIV < expression j >

Two~ruple operator (SUB, D1V) represents a single operation and

is used in the above form.
Statement and Expression Semantic Description
The syntax is given by

< statement-semantic~description~by-a-procedure > g

< expression-semantic-descriprion >

STATEMENT
XPRESSTON

{ GLOBAL-SECTION | LOCAL-SECTION }

: = 1 <identifier’> SEMANTICS~OF-] ((identifiet>1)

s 2

it .

, 3 <character-string-constant™ ENTRY [;}IZTURNS (< character~
string-constant > 0)]

, 3 <minox-structure> let (s 3 <minor~-structure >1et] .

» 2 PROCEDURE

y 3 PARAMETER
» & Iminor-structure>, . [., 4 <minor-structure \hm]
, 3 <«minor-structure > 1ep [5 3 <minor-structure ‘>1ep‘ .
, 2 CALL-OF-PROCEDURE
, 3 <minor-structure > lec { 4 3 <minor-structure > lec] Y
llet N
< minor-structure>ilem | = < character-string-constant ., -
lep
< minor~struature > tee 17 < parameter>1

a -
where the square bracket { g } specifiés that « and f correspond

to the specifications on the statement semantic description by

a procedure and the expression semantic descriptionm, respectively.
The <identifier> is the name which identifies the semantic

description of a statement or expression.

The < idel’\tifier')1 is uysed to ldentify the corresponding statement

ot expression syntax rule. When the semantics, which have already

been defined, are used, ouly the element with level one should be

specified.

(a}

(b)

September 1977

The

. Farameter :>1 is information passed from the

"I pArameter.™ 1
of <. Statement-syntax-rule~description™ or < parameter - of

< expression-syntax-rule-~description> and has the same
artyibutes or forms as those of the < statement-syntax-rule-
description.: or <expression—syntax—rule~—description >

The patameter passing rule, applicable between syntax defipition
and semantic definition, is described in Section 4.3.

In this paper, a procedure and function procedure are briefly
described only as procedures, in case that it is not necessary to
distinguish betweeu them.

The declarations of the procedure and function procedure, which
constitute the gemantics of statement and expression, vespectively,
are given in the {GLOBAL~SECTION | LOCAL-SECTION } as follows:
The < character-string-constant> specifies a procedure name.
The -<_'character—string—conscant>O specifies the attribute of
return value of the function procedure,

Each \’\mj.nm'—sx:ructure>let describes the attributes of a single
parameter of the procedure,

When the GLOBAL-SECTION phrase iz specified, the < charactar~

string-constant > ENTRY (< parameter-attribute-list ™)

nil
[RETURNS (<:charactet«stringwonstanc>0)] 3

ig generated in the global section of the procedure, where the

statement or expression is described, and in the glebal

section of the external procedure which contains it. The
< parameter~attribute~list> is generated from the list of
< minox-srructure >1e|: .

When the LOCAL~SECTION phrase is specified, the < character

]

is generated in the local section of the procedure, where the

string-constant> ENTRY (...) {nkl
RETURNS {...)

statement or expression is described.
The description of the procedure is generated by the PROCEDURE
phrase. The minor structure PARAMETER specifies the parameter

1ist of the procedure. The list of <. minor-structure’ 1ep
gpecifies the procedure body.

The procedure name and the attributes of return value of the
procedure ave given by the { GLOBAL-SECTION | LOCAL-SECTION }

phrase.
For the PROCEDURE phrase, the external procedure, begimming from
the <. character-string~constant > : PROCEDURE (< paramerer~

Use >) k'x?l;'ll‘ms

{ < character-string~constant >0)] ;

is generated, where the < parameter-list > ls generated from the
minor structure PARAMETER,

The procedure reference is generated by the CALL-OF~-PROCEDURE
phrase. Each <minor-structure >19f gpecifies a single argument

of the procedure argument list.

The procedure name is given by the ! GLOBAL-SECTION i LOCAL-
SECTTON | phrase.

Fot the CALL~OF-PROCEDURE phrase, the function reference

. <character-string-constant > (<argument-list>) 1s generated on

3

4.3

SIGPLAN Notices

the context where the expression is used.

The statement CALL < character-string-constant > (< argument
ldst >); is generated on the context where the statement 1s
used.

The generated semantics, such as the declaratioas of a procedure
name, the procedure and the reference of the procedure described

above, should be allowable in SPL specifications or extended

syntax.
Example of an Expression Extension
This example is given in Fig. 4.
When the expression A ADD B occurs in the source program, it
is assumed that $1 = A and $2 = B.
In the GLOBAL-SECTION of the procedure, where the expression is
described, and of the external procedure, which contaimns it,
the declaration ADDF ENTRY (BIN FIXED, BIN FIXED) RETURNS (BIN
FIXED}; is generated.
The function procedure shown in Fig. 5 is generated as an external
procedure. This shows one of the favorable capabilities of EPL.
The expression A ADD B is replaced by the function reference
ADDF (A, B)
This example illustrates that the expression {(A*B)/(A+B) is expressed
compactly and couveniently by the expression A ADD B.
Parameter Passing between Syntax Definition and Semantic Definition

Parameter used in the syntax definition is passed to the correspord-
ing parameter of semantic definition.

parameter is denoted as numetir character(s) prefixed by
a § sign. The parameter $n of syntax definition corresponds to the
parameter $n of semantic definition.

Parameter relationship between syntax definition and semantic
definition is illustrated, using Fig. 3.

In Fig. 3, the parameter $1 of syntax definition FOR-ST is
passed to the corresponding $1 of semantic definition SEM~OF-FOR,

In the same way, $2, $3, $4, §5, $6, $7 and $8 of FOR-ST are

passed to $2, $3, $4, $5, $6, $7 and $8 of SEM-OF-FOR, respectively.

5. CONCLUSION

In this paper, the hierarchical language system HLS has been discussed

with respect to HLS concepts, and language specifications of HLS compo-

components.

In this development, HLS effectiveness should be verified quantitatively.

REFERENCES

(1) Barbara H. Liskov, SPIL:

A Language for Construction of Reliable

System Software, SIGPLAN notices 8, 9 (September 1973) 100-103.

{2) B.H. Liskov, A Design Methodology for Reliable Software System,
AFIPS 1972 FJCC, 41, Part 1, Spartan Books, Wew York, 191-19%.
(3) E.W. Dijkstra, The Structure of the "THE" Multiprogramming System,

CACM 11, 5 (1968) 341-346.

We are planning to use HLS as a tool of software deveiopment.

(&)

(&)

(6)

(8)

(&)

(10)

(1)

(12)

(13)

(14)

(15}

{16)

17)

(18)

19

(20)

(21)

(22)

{23)

(24)

(25)

(26)

September 1977

E.W. Dijkstra, Go To Statement Cousidered Harmful CACM 11, 3 (1964
147-148.
W.A. Walf, et al., BLISS: A Language for Systems Programming,

CACM 14, 12 (1971) 780-790.

H. Wirth, The Programming Language PASCAL, Acta Informatieca, 1
(1971) 35-63.

Report of Session on Structured Programming, STGPLAN notices 8, 9
(September 1973) 5-10.

Victor R. Basili & Albert J. Turner, SIMPL-T A Structured

Programming Language, Computer Science Ceater, Univ. of Maryland
(19743 .

J.E. Sammet, A Brief Survey of Language Used irn System Implementa-~
tion, SIGPLAN notices 6, 9 (1971) 1-19.

R. Daniel Bergeon, Language for System Development, SIGPLAN notice

6, 9 (1971) 50-72.

B.M. Leaveuworth, Programming with{out) the Go To, SIGPLAN notices

7, 11 {1972) 54-58.

E.W. Dijkstra, Notes on Structured Programming, Structured Program-
ming, Academic Press, London and New York (1972) 1-72.

J.D. Gannon & J.J. Horning, Language Design for Programming
Reliability, IEEE Transactions on Software Engineering SE-1, 2 (1975)
179-191.

William F. Ross, Structured Programming, Computer 8, 6 (1975)

20-22.

John Naughton, «. ai., dtructured Programming: Concepts and
Definitions, Computer 8, 6 (1975) 23-37.

N. Wirth, On the Composition of Well Structured Programs, ACM
Computing Surveys 6, 4 (1974) 248-259.

¥. Wirth, Program Development by Stepwise Refinement, CACM 14, &
(April 1971) 221-227,

W.A. Wulf, Programming without the Go To, Proc. IFIP Congress,

Vol. 1, North Holland Publ. Co., Amsterdam, The Netherlands, 1972,
408-413.

Jeseph E. Sullivan, Extending PL/I for Structured Programming,
Computer Languages 1 (1975) 29-43.

S.L. Stewart, STAPLE, An Experimental Structured Programming
Language, Computer Languages, 1 (1975) 61-71

Froceedings of the International Symposium on Extensible Languages,
SIGPLAN notices 6, 12 (December, 1971).

N. Solntseff & A. Yezerski, A Survey of Extensible Programming
Languages, Annual Review in Automatic Programming 7 (1974) 267-307.
Bernard A. Galler, Extensible Languages, Information Processing 74,
Software (1974) 313-316.

R.H. Leavenworth, Syntax Macros and Extended Translation, CACM 9
(November 1966) 790-793.

TBM System/360 Operating System: PL/I Language Specifications,
C28-6571~4, 1IBM Corp. (1966).

G.M. Weinberg, et al., IF-THEN-ELSE Considered Harmful, SIGPLAN

Notices 16, 8 (August 1975) 34-44,

SIGPLAN Notices

113

< expression 7 > @ = < expression 6> [!(or) < expression & |

< expression 6 > = < expression 5> ({&(and) “{ expression 5>] ..

<expression 5 > 1 = Cexpression 42 [{ <= <l ==l w2}
< expression 4 >]

< expression 4 > = <expression 3> [{ + | - } < expression 3>]

<expression 3 » : = <lexpression 2> [{ * | / } < expression 2>] .,.

< expression 2 > 1 = <expression 1> [{#* | 1} < expression 1>] ...

<expression 1 > : = <scalar variable > | <constant>! {<expression 7.)

| <function reference>

Fig., 1

1. FOR-ST SYNTAX-OF-STATEMENT,
2 'FOR',
$1 VARTABLE,

ot

s

2 ITERATION ($2),
3 $3 EXPRESSION 7,
3 DISORDER,
4 OPTIONAL ($4),
5 '10°,
5 $5 EXPRESSION 7,
4 OPTIONAL ($6),
5 'sY',
5 $7 EXPRESSION 7,
2 $8 STATEMENT;

1. SEM-OF-FOR SEMANTICS~OF-STATEMENT (FOR-ST),

2 ITERATION ($2),
3 'po',

3 41,

3 t=t,

3 %4,

3 OPTIONAL ($4),
4 '10',

4 85,

3 OPTIONAL ($6),
4 'BY',

4 87,

30,

348,

3 'ENDDO;'

Fig. 3 Syntax and semantic description example

Scalar expression syntax

1 EXP SYNTAX-OF-EXPRESSION 4,
2 $1 EXPRESSION 3,
2 'app',
2 $2 EXPRESSION 3}

1 S-OF-EXP SEMANTICS-OF-EXPRESSION (EXP),

2 GLOBAL-SECTION,
3 'ADDF' ENTRY RETURNS ('BIN FIXED'),
3 'BIN FIXED',
3 'BIN PIXED',
2 PROCEDURE,
3 PARAMETER,
4 'p',
4'Q",
3 "DATA SEGMENT;
LOCAL SECTION;
(P, Q, IX) BIN FIXED;
END-SECT;
END-SEGMENT;
IX =

(P*Q) /(P+Q); RETURN (IX); END ADDF;',

2 CALL-OF-PROCEDURE,
3§81,
3 $2;

Fig. 4 Expression definition

September 1977

REMOVE COMMENTS: PROCEDURE;
/* THIS PROGRAM REPLACES ALL SUBSTRINGS BETWEEN '/#' AND
*x/' BY BLANKS */
DATA-SEGMENT;
LOCAL-SECTION;
INPUT CHAR(80); INFILE FILE INPUT; OUTFILE FILE OUTPUT;
(PTR1, PTR2) BIN FIXED;
END-SECT;
END-SEGMENT;
REPEAT FOREVER;
READ FILE (INFILE) INTC (INPUT) ON (EOF) EXIT;
PTRL = 1;
WHILE PTRL; = O
DO /* REMOVE SUBSTRING */;
PTR1 = INDEX (INPUT, '/*');
IF PTR1; = O
THEN /* FOUND BEGINNING */
PTRZ = INDEX (INPUT, "*/');
IF PTR? > PTR1
THEN /* FOUND END (AFTER BEGINNING) */
SUBSTR (INPUT, PTR1, PTR2-PTRI+2) = ' '3
ENDIF;
ENDIF;
WRITE FILE (OFILE) FROM (INPUT);
ENDDO;
ENDREP;
END REMOVE COMMENTS;

Fig. 2 $PL Program Example

PROCEDURE (P, Q) RETURNS (BIN FIXED);

ADDF

DATA-SEGMENT;

LOCAL-SECTION;
(P, Q, IX) BIN FIXED;
END-SECT;
END-SEGMENT ;

example

IX = (P*Q) / (PHQ);

RETURN (IX);

END ADDF;

Fig. 5

Function procedure generated

