
SIGPLAN Notices 5 1

Goal Directed Programming

by Richard J. and Martha J. Cichelli
901 Whittier Drive
Allentown, Penn . 18103

July 1977

To many experienced programmers the current commotionover structured programming seems, at best, overdone .Structured programming is frequently presented in the commercialliterature as a set of coding rules . Most of these rules begin
with the word "don't" . The SP messiahs add insult to thecontroversy by deprecating what were thought to be well designed
programs with finger pointing - "GOTO's! Tsk, tsk." If there
is practical validity in the structured programming philosophy,
its rules must be reformulated positively in terms of "do's" .
The resolution of the matter lies in satisfying the request,
"Show me how to do it better."

"Goal directed programming" (GDP) is a positive, consistent,
integrated design philosophy which incorporates both structured
programming and top-down design principles .

	

For the, experienced
programmer it is a guide to proper design ; for those who have
never written a line of code it offers' a way to understand and
participate in program design .

	

This' article is an introduction
to goal directed programming .

The programmer's job is to design and formally specify an
algorithm to accomplish some task . The resultant algorithm
will be composed of primitive operations on data called function
code (e .g . MOVE's in COBOL, assignment statements in FORTRAN
an-control code which determines whether, or how may times,
function code is executed (IF's, PERFORM's, DO-loops, GOTO's etc .)

Structured programming theory tells us that the control code
should be formulated from D-structures (Dijkst'ra's sequence, if-
then-else, and while-do) . Assume that we have a language with
these and a few extensions (case, repeat-until, for, etc .) Are
they sufficient for good programming? If so, how do we get from
the problem specification to a proper program solution?

	

We 'need
a problem solving technique which transforms problem specifications
into program code .'

Let us say we wish to copy a sentence .

	

Defining "sentence"
as a sequence of characters ending with a period, a structured
program inn PL/Esperanto with D-structures to do this simple
task might look like :

REPEAT
CALL READCH(CHAR)
CALL WRITECH(CHAR)

UNTIL (CHAR - PERIOD)

How do we get from the goal "copy a sentence" to the code? Since
we know that a sentence is a sequence of items, we need repetition

http://crossmark.crossref.org/dialog/?doi=10.1145%2F954639.954642&domain=pdf&date_stamp=1977-07-01


SIGPLAN Notices 5 2

to process the items. Ever iteration needs a termination
(otherwise we loop forever :

The design process in outline is .-

Goal

	

Copy a sentence
Assertion When the sentence has been copied, the period

will have been processed
Condition (CHAR = PERIOD)

From the goal we derive an assertion that is affirmed when the
goal is achieved . From the assertion we derive a logical
condition that is true when the assertion becomes true . This
logical condition forms the termination condition of our iteration
code . At this point in the design the program would look like :

REPEAT
copy a character

UNTIL (CHAR = PERIOD)

July 1977

"Copy a character" can then be elaborated in place into the
more primitive

CALL READCH(CHAR)
CALL WRITECH(CHAR) .

How does GDP lead to the top-down design of structured
programs? GDP is simply an application of general problem solving
techniques to programming . In any problem solving situation large
problems are factored into smaller, more manageable ones . At any
level of problem decomposition certain sub-problems may be solved
by the available primitives while others must be further factored
into sub-goals and their corresponding sub-problems . GDP design
is an elaboration of the problem solving process ; it tends to be
top-down because human problem solving tends to be top-down .

Since the top level code is user problem oriented, user
participation during the crucial early stages of system design
is facilitated . Design and coding take place simultaneously .
Traditional flowcharts, at best a poor design tool, can be
eliminated .

Goal directed programs develop with an intuitive and natural
structuring .

	

Each goal is expanded in place .

	

Since no goal is
satisfied by "going" somewhere else, there is no temptation to
create spaghetti-like control code . Control code is separated
both logically and syntactically from function code ; it is
created immediately from the logical conditions derived from the
goals and is coded before the function code implementing the goals .
Of course, the function code may itself contain . control code at alower level . Proper nesting of control structures is insured by
the top-down order of the design-coding process .



SIGPLAN Notices

	

53

	

July 1977

What about the design of data structures? For every goal-
problem we can apply the goal-assertion-condition transformation .
If we start with the overall problem statement as our first
goal, these transformations will lead directly to a top-down
design of the program . The same top-down process should be
applied to designing a problem's data structures .

It is evident that proceeding from the most general
statement of the problem leads directly to treating the most
general or inclusive data structures first . To process large
compound data structures we decompose them into smaller components
and then process the components . Processing a mailing list file,
for example, requires the decomposition of the file into records
and the records into name and address lines, etc .

There is a direct correspondence between D-structures and
data structures . Records are made up of sequences of elementary
data items and of structures . These structures may contain
iterated parts or alternative component parts . Data structures
are most appropriately processed by their corresponding D-structure .
Code sequences or blocks process aggregates of items of different
types, WHILE and REPEAT loops process sequences of items of the
same type, and CASE and IF selectors process alternative parts .

Goal directed programming is most easily illustrated by
an example . Edsgar Dijkstra posed the following programming
problem:

You are given two subroutines - READCH which reads a single
character and WRITECH which writes a character . Given an input
sentence, write a copy of it such that 1) extra blanks are
eliminated and 2) every other word is written backwards . The
input sentence

this

would be written

a silly

	

program

this si a yllis program .

Because of this example sentence, the program became known as
, The Silly Program" . See "Notes on Structured Programming" in
Structured Programming by Dahl, Dijkstra, and Hoare -Academic
Press) .

To simplify the program, sentences are defined as being one
or more words, each word' separated by one or more blanks .
Sentences end with a period, and the maximum word length is
twenty characters.

The solution to this problem will be presented in SCOBOL
(an extended form of COBOL developed by Lars Mossberg of VOLvo
Flygmotor and implemented with a precompiler) .



SIGPLAN Notices

	

54

	

July 1977

Earlier in this paper we wrote a program to copy

REPEAT
CALL 'READCH' USING CHAR.
CALL 'WRITECH' USING CHAR.

UNTIL (CHAR = PERIOD)

The next refinement of the program will copy the sentence and
eliminate extraneous blanks . The final version will reverse
alternate words .

In the second version of our program our new goal is to
eliminate extra blanks . To do this we must first ignore any
blanks which precede the first word . Extra blanks between
words must also be discarded . Note that we cannot write a
blank immediately after copying a word ; we must first find the
next non-blank character because we do not want to write a
blank before the ending period .

NOTE - GOAL = SKIP LEADING BLANKS .
REPEAT

CALL 'READCH' USING CHAR.
UNTIL (CHAR NOT = SPACE)

NOTE - GOAL = COPY REST OF SENTENCE .
REPEAT

copy rest of sentence
UNTIL (CHAR = PERIOD)

The goal "copy rest. of sentence" can be decomposed into
the three sub-goals "copy a word", "get the next non-blank
character", and "write either a period or a blank after the
word" . This portion of the program is expanded :

NOTE - GOAL = COPY REST OF SENTENCE.
REPEAT

NOTE - GOAL = COPY A WORD.
REPEAT

CALL 'WRITECH' USING CHAR.
CALL 'READCH' USING CHAR.

UNTIL ((CHAR = SPACE) OR (CHAR = PERIOD))

NOTE - GOAL = GET NEXT NON-BLANK CHARACTER.
WHILE (CHAR = SPACE) DO

CALL 'READCH' USING CHAR.
ENDDO

NOTE - GOAL = WRITE PERIOD OR BLANK.
IF (CHAR = PERIOD) THEN

CALL 'WRITECH' USING PERIOD.

CALL 'WRITECH' USING SPACE-CHAR .
ENDIF

UNTIL (CHAR = PERIOD)

sentence .



SIGPLAN Notices

	

55

REPEAT and UNTIL are SCOBOL keywords which implement one
of the D-structures for conditional repetition . Since the
termination test is at the end of the sequence, the block of
code will execute one or more times .

	

The WHILE-DO-ENDDO SCOBOL
construct implements a repetition with a test at the start of
the code sequence ; the code will be executed zero or more times .

e IF-THEN-OR-ENDIF Implements a completely nestable if-then-
else ; the keyword OR replaces ELSE to permit standard COBOL
if-then-else's as well .

The last refinement of our sample program will be to write
alternate words backwards . If words are to be written backwards,
they must be saved as they are read . Forward words will be read
and written ; backward words will be read, saved, and then written .

The words which are to be written backwards will be saved
in a 20 element table of characters . A variable WORD-LENGTH
will be used to indicate the growing number of characters in the
table, and a logical variable or "switch" FORWARD will indicate
whether the word is to be written forward' or backwards .

The "copy a word" routine is now replaced by :

NOTE - GOAL = COPY A - WORD.

NOTE - FORWARD CASE FIRST .
IF (FORWARD = TRUE) THEN

REPEAT
CALL 'WRITECH' USING CHAR .
CALL! ' READCH' USING CHAR.

UNTIL ((CHAR = SPACE) OR (CHAR = ERIOD))

NOTE - AND NOW THE BACKWARD CASE .
NOTE - GOAL = SAVE CHARACTERS IN WORD.
MOVE ZERO TO WORD-LENGTH .
REPEAT :

ADD 1 TO WORD-LENGTH .
MOVE CHAR TO WORD (WORD_ LENGTH) .
CALL 'READCH' USING CHAR.

UNTIL ((CHAR - SPACE) OR (CHAR = PERIOD)),

ENDIF

NOTE - GOAL = WRITE IT BACKWARDS .
REPEAT

CALL 'WRITECH' USING WORD (WORD-LENGTH) .
SUBTRACT 1 FROM WORD-LENGTH .

UNTIL (WORD-LENGTH = ZERO)

July 1977

The entire SCOBOL program is listed below .

	

It includes
code to initialize FORWARD and to switch it after each word .



SIGPLAN Notices

	

56

	

July 1977

IDENTIFICATION DIVISION.
PROGRAM-ID. 'SILLY' .
ENVIRONMENT DIVISION .
DATA DIVISION .
WORKING-STORAGE SECTION .
77 CHAR

	

PIC X.
77 PERIOD

	

VALUE ' .' PIC X.
77 SPACE-CHAR VALUE ' '

	

PIC X.
77 TRUE

	

VALUE '1' PIC X .
77 FALSE

	

VALUE '0' PIC X .
77 FORWARD

	

PIC X .
77 WORD-LENGTH COMP

	

PIC S99 .
01 SAVED-WORD.

02 WORD OCCURS 20

	

PIC X.
PROCEDURE DIVISION .

MOVE TRUE TO FORWARD.
REPEAT

CALL IREADCH' USING CHAR.
UNTIL (CHAR NOT = SPACE)
REPEAT

IF (FORWARD = TRUE) THEN
REPEAT

CALL 'WRITECH' USING CHAR .
CALL 'READCH' USING CHAR .

UNTIL ((CHAR = SPACE) OR (CHAR = PERIOD))
OR

MOVE ZERO TO WORD-LENGTH :
REPEAT

ADD 1 TO WORD-LENGTH .
MOVE CHAR TO WORD (WORD-LENGTH) .
CALL 'READCH' USING CHAR.

UNTIL ((CHAR = SPACE) OR (CHAR = PERIOD))
REPEAT

CALL 'WRITECH' USING WORD (WORD-LENGTH) .
SUBTRACT 1 FROM WORD-LENGTH .

UNTIL (WORD-LENGTH = ZERO)
ENDIF
WHILE (CHAR = SPACE) DO

CALL 'READCH' USING CHAR.
ENDDO
IF (CHAR = PERIOD) THEN

CALL 'WRITECH' USING PERIOD.

CALL 'WRITECH' USING SPACE-CHAR.
ENDIF
IF (FORWARD = TRUE) THEN

MOVE FALSE TO FORWARD.

MOVE TRUE TO FORWARD.
ENDIF

UNTIL (CHAR = PERIOD)
emnP RUN.



SIGPLAN Notices

	

57

	

July 1977

Goal directed programming, as it has been described inthis paper, is a technique of problem decomposition that leads
naturally to top-down, structured program design and coding .
At each step in the process a goal is identified, an assertion
is made that will be satisfied when the goal is met, and a
logical condition is derived that can be tested in the program's
control code .

How does GDP affect the testing and debugging process?
Debugging can be the most time consuming part of program
development .

	

Since goal directed programs. are structured, they
share all the error reducing benefits of structured code .
Additionally, in debugging a goal directed program the programmer
systematically looks for unmet goals, unsatisfied assertions,
and untested conditions

	

Goal directed reasoning helps in
testing and localizing errors .

Documentation for goal directedd-systems -is more meaningful
and less tedious to produce than for the typical system in the
past .

	

It takes the form of a narrative of the design process
and presents an idealized version of the solution process (i .e .
without describing the backtracking which occurs in the actual
process) . It is important to remember that the only real
documentation of a system is its code . Even in-line comments
should be suspect (after all, they aren't executed!) Everything
must be done to make the code readable . System documentation
should be a designer's guide to the readable code .

In goal directed programming applicable to large system
design? In a large project communication among design team -
members and between the team and the user client-is'facilitated
by the explicit factoring of the project into functionally
oriented goals . At the team level the project can be properly
analyzed in terms of goals instead of being mapped into a,
possibly inappropriate, personnel organization . (Many systems
look more like the organization that designed them than like
the problems they solve.)

When users receive a statement of functionally specified
goals and interact with the design team to refine these goals,
incremental implementation, availability, and use of the system
are possible .

	

In this way users get some of the benefits of
the new system even before it is completed, and the designers°
get the feedback of user experience while the design process
is still underway .

	

A ;goal directed presentation of the system
design can be understood by even the naive user and can make
a synergistic relationship between designers-programmers and
end users possible .

What tools make goal directed programming easier? The
basic tool of a programmer is his programming. language; it has
a tremendous influence not only on his coding style but on the
way he thinks about problems . It should be small enough to be



SIGPLAN Notices

	

58

intellectually manageable, should compile efficiently for
variety of current hardware, and should be expressive enough
for the concise representation of algorithms . Ideally it
should have the modern data and control structuring facilities
that make it possible to proceed directly from the goal-
assertion-condition transformation into program code .

Goal directed programming depends on the facility to
group statements into functions or blocks each of which can
be treated, at any arbitrary level of nesting, as a single
statement . It is this statement bracketing facility that
makes it possible to replace any block (e .g . a single statement)
with any other block (e .g . "if condition then statementl else
stAtement2") without disturbing the surrounding code . When
this is lacking in a programming language, top-down development
by "stepwise refinement" and goal directed programming become
more difficult and time consuming .

Languages like PASCAL, C, and BLISS are well suited for
goal directed programming (there is probably no language that
offers as much data structuring capability as PASCAL) . But
the great majority of commercial programmers code in FORTRAN
or COBOL. Is goal directed programming possible in these
languages?

Neither COBOL nore FORTRAN is a block structured language .
FORTRAN is particularly deficient in control. structures . COBOL
gives the appearance of having the rec .asary structures (it has
an if-then-else and the perform-until seems a reasonable
variation of the while-do) but they are lacking in several
important respects . COBOL's implementation of the if-then-
else (with no statement bracketing) does not permit the
arbitrary substitution of an if-then-else block for another
block. For example, if

the execution of STATEMENT2 has been affected when it should
not have been .

	

With a statement bracketing facility

IF A THEN

	

IF " A THEN
STATEMENTI . becomes

	

IF B THEN
STATEMENT2 :

	

STATEMENTIA.
ENDIF

	

ELSE
STATEMENTIB.

ENDIF
STATEMENT2 .

ENDIF

July 1977

IF A THEN IF A THEN
STATEMENTI becomes IF B THEN
STATEMENT2 . STATEMENTIA

ELSE
STATEMENTIB

STATEMENT2 .



SIGPLAN Notices

	

59 July 1977

and STATEMEENT2 has suffered no side effects from the modification
to STATEMENT1 .

COBOL's perform-until (where the performed code must be
named and must be out-of-line as opposed to the in-line code
bracketed by a while-do and enddo) leads to a proliferation
of paragraph names and scattered pieces of code . This may
interfere with readability rather than enhance it and may
create system inefficiencies due to non-locality in a virtual
storage environment .

The programming manager then is faced with a dilemma -
his programmers need a better language and yet, for reasons of
compatability, portability, etc. he may be reluctant to abandon
COBOL or FORTRAN. Extensions to these languages have been
discussed (and probably will be discussed for some time to come
committees work slowly!) An interim solution - one that can be
implemented immediately - involves the use of a precompiler to
translate programs written in a language more directly suited
to the GDP technique into the target language (i .e . COBOL or
FORTRAN .

	

The program' presented as a solution to the "silly
program' problem was written in SCOBOL . This language and'
its precompiler were developed at VOLVO Flygmotor in Sweden .
(A companion package for FORTRAN also exists .)

	

SCOBOL permits
the goal directed programming principles to be put into
practice to speed the design and implementation of superior
COBOL programs .

Goad directed programming is not a panacea or an instant
solution to all programming problems. It is a language
independent problem solving technique which, when carefully
applied, can lead to quality programs . As such it deserves
our study and experimentation .

For more information about goal directed programming,` the
SCOBOL and SFORTRAN precompilers, or a suggested reading list
contact Martha Cichelli of Software Consulting Services,
901 Whittier Drive, Allentown, Pa . 18103 (215) 797-9690 .


