Check for
Updates

SIGPLAN Notices 67 April 1977

DYNOSOR, a set of subroutines for dynamic memory organization

in FORTRAN programs

M. Huybrechts
Institut Interuniversitaire des Sciences Nucléaires

Brussels

1.- Introduction

1.1 What's missing in FORTRAN ?

FORTRAN is certainly the computer language which is most widely used for
scientific calculations,

It suffers however from serious drawbacks, perhaps the most important of
these being the absence of dynamic memory allocation. Dimensions of arrays have
to be specified at compilation time while the real needs depend often on the
data read and are therefore known only at execution time.

This leaves the FORTRAN user with only a choice between two bad solutions
either to overestimate the dimensions of arrays, which often uses unnecessary
computer memory, or to adjust these dimensions to each particular case, which
wastes computer time for repeated compilations. Furthermore , “both solutions
involve risks of errors which also wastes corputer time as well as user's time.

1.2 DYNOSOR adds dynamic allocation to FORTRAN

The aim of the DYNOSOR system is to allow the FORTRAN user to overcome these
difficulties without the effort of learning another computer language.

The interface between the DYNOSOR system and the user's program consists
of Fortran subroutines used simply by CALL statements without any modification

of the Fortran compiler. ,
To help the user to remember them easily, the names of these subroutines

are obtained by concatenation of two-character codes.

1.3 Specifications can be given at execution time

The information needed by the DYNOSOR system for memory organization can be
given at execution time, which allows adaptation to the particular data read
by each program.

1.4 DYNOSOR corrects wrong specifications

Some of these specifications can, however, still be unknown before the
execution of the program starts. E.g. if one wants to store, among the data
read, only those having a specific property, their number can be unknown before
all the data have been read in.

Therefore, the DYNOSOR system considers the specifications p?ovided by the
user only as rough estimates of the real needs. Wrong specifications don't

produce fatal errors. They only reduce the efficiency of the program.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F954654.954661&domain=pdf&date_stamp=1977-04-01

SIGPL.AN Notices 68 April 1977

1.5 DYNOSOR helps the user to correct his mistakes

When wrong specifications are corrected, the user is informed about it.
This allows the user to give better values for future runs and so to improve the
efficlency of his program.

1.6 DYNOSOR and other dynamic allccation methods

Many Fortran users have already developped thelr own dynamic allocation
method adapted to their specific needs. HYDRA is a well known example in the
field of high energy physics (see Duby 1971).

The DYNOSOR system has been developped, on the contrary, without relation
to a specific problem. It should be able to organize any set of data which are
to be referenced by names or by linkage to a tree structure.

Special care has been taken to make its use easy by
a) the use of mnemonic subroutine names.

b) the acceptance of wrong specifications.
c¢) the information displayed to the user.

An approach similar to DYNOSOR has been developped some years ago by
J.M. SAKODA with his DYSTAL system. It seems however that DYSTAL is less
flexible than DYNOSOR, as only the last created array can be deleted (see
SAKODA 1968).

2.~ Data organization

2.1 Banks

The data are stored by DYNOSOR into the computer central memory. They are
grouped in blocks of consecutive words of a Fortran array (called VDYN) located
in the blank common.

The length of each data block is defined at execution time and can be modified
by the user or by the DYNOSOR system itself. Each data block can be linked to
another one which is considered as its continuation.

A BANK consists of one or more of these data blocks, linked together. It
can therefore be defined as a string of chained data blocks. In the present
description, however, we consider only banks consisting of one single data block.
For the general case, see the DYNOSOR user's guide.

A bank is defined by its NAME, which is transmitted as an argument to all
bank handling subroutines. A special name is used for a special type of bank,
called a VERTEX BANK and which is linked to a tree structure (see 9.).

2.2 Location of banks

As a result of garbage collection, the data blocks can be moved during the
execution of a program. Therefore, the addresses of data blocks must be obtained
again, from the DYNOSOR system, before eachh use. However, indirect addresses
(i.e. addresses of words containing the addresses of data blocks) are not affected
by garbage collection and can thus be used at any time. This allows a much faster
retrieval of data blocks than the use of bank names.

2.3 Bank names

A bank name is a string of alphanumeric characters. The number of characters
is computer dependent as it is related to the word length. The argument 'bkname'
transmitted to the DYNOSOR subroutines is either a Hollerith constant (nH...)
or a variable whose value has been previously defined as a Hollerith constant
(NAME=nH...).

SIGPLAN Notices 69 April 1977

3.- Subroutine names

Most of the subroutines of the DYNOSOR system which can be called directly
by the user have names obtained by concatenation of two-character codes.

The first code always represents an operator. It is followed by one or
two codes representing operands.

The list of these codes is given in the table below, as well as the
subroutine names obtained with them and the list of their arguments.

Operator ISt operand 2nd operand
AJ (adijust) BK (bank) - AJBK(bkname)
CP (copy) AR (array) BK CPARBK(nwds ,arname ,bkname)
BK AR CPBKAR(nwds ,bkname,iwd,arname)
BK BK CPBKBK(nwds ,bknamel,iwdl ,bkname?2,
DF (define) BK - DFBK(bkname ,nwds) iwdQ;]
VX (vertex) - DFVX(vxname ,nbranch)
DL (delete) BK -- DLBK(bkname)
WD (word) BK DLWDBK(nwds ,bkname ,ifrstwd)
DS (describe) BK - DSBK(bkname ,nbls ,nwds)
IN (insert) WD BK INWDBK(nwds ,bkname ,ilstwd,lfrstwd)
LC (locate) BK - LCBK(bkname ,1bl ,nwds}
MD (modify) BK -- MDBK(bkname ,nwds)
PR (print) BK - PRBK(bkname,iwdin,iwdfin,ncoln,fmt)
RN (rename) BK - RNBK(bknamel,bkname2)
TR (transfer) AR BK TRARBK(nwds ,arname ,bkname)
BK BK TRBKBK(nwds ,bknamel,iwdl,bkname2)
UN (unify) BK - UNBK(bkname)

Underlined arguments must be replaced by variables.
Nonunderlined arguments can be replaced by variables or by constants.

4,- Definition of a bank

The instruction
CALL DFBK(bkname ,nwds)

defines a new BANK having the name "bkname" and consisting of one single data
block containing "nwds" words. The value of "nwds" can be defined at execution time
and is only an estimate of the bank length really needed.
The bank length can be modified later, either by the user, with calls to
the subroutines AJBK or MDBK (see 7.1 and 7.3), or by the DYNOSOR system itself.

S.- Filling of a bank

To avoid confusion with the definition of a new bank, which only reserves a
set of central memory words for future use, we use the word "filling" for the
definition of the contents of the words of a previously defined bank.

Filling can be done either by a copy or a transfer of data.

By a transfer, we mean the writing of data just after the data previously
written by a copy (CP) or a transfer (TR) instruction. Thus a copy can override
data previously copied or transferred. A transfer cannot.

5,1 Filling a bank from a Fortran array

The instruction .
CALL CPARBK(nwds ,arname,bkname,iwd)

copies "nwds" words from Fortran array "arname" into bank "bkname'.
The first word copied is the first word of the array and it is written into word

SIGPLAN Notices 70 April 1977

"iwd" of the bank. To start the copy at word "i" of the array, argument "arname(i)"
should be used instead of '"arname'.

CALL TRARBK{nwds,arname ,bkname)

copies also "nwds" words from array "arname', but the first word is written just
after the last word previously copied into the bank by a CP... or TR...
subroutine.

Examgle

Definition and filling of a bank, whose length is estimated as 1000 words.
The number of data is a multiple of 8 and an end-of-file is used to indicate the
end of the data.

DIMENSION CARD(8)

CALL DFBK(5HYBANK,1000) (defines bank YBANK)
10 READ (IUNIT,1001) CARD

IF(EOF(IUNIT).NE.O) GO TO 15

CALL TRARBK(8,CARD,SHYBANK)

GO TO 10
15 CALL AJBK(SHYBANK) (AJ=adjust, see 7.1)

1001 FORMAT(8r10.4)

The program also works when the number of data read is larger than the
estimated length of 1000 words, but the efficiency is better when the estimated
length is larger than the real length.

CPARBK can be used instead of TRARBK by substituting the following instructions

IWD=1

10 READ(IUNIT,1001) CARD
IF(EOF(IUNIT).NE.O) GO TO 15
CALL CPARBK(8,CARD,5HYBANK,IWD)
IWD=IWD+8
GO TO 10

When the number of values to be read is not a multiple of 8, the last value
can be recognized by the fact it is followed by a special value as 99999.9999.

To remove the values read in excess, the following instructions can be added
to the instructions of the example above.

DO 1 I=1,8
IF(CARD(I).EQ.99999.9999) GO TO 20
1 CONTINUE
GO TO 25
20 NXCESS=9-1
CALL DSBK(5HYBANK,NBLS ,NWDS) (DS=describe)
NWDS=NWDS-NXCESS
" CALL MDBK(SHYBANK,NWDS) (MD=mod ify)

alternatively, the last three instructions can be replaced by
CALL MDBK(S5HYBANK,-NXCESS)
which reduces the bank length by the value NXCESS (see 7.3).

SIGPLAN Notices 71 April 1977

5.2 Filling a bank from another bank

CALL CPBKBK (nwds,bknamel,iwdl,bkname?2,iwd?2)

copies '"nwds™ words, the first word copied being word "iwdl" from bank "bknamel",
which is copied into word "iwd2" of bank "bkname2".

CALL TRBXBK (nwds,bknamel,iwdl,bkname?)

performs the same operation as above, but the first word is copied just after the
last word previously written into the bank by a CP.... or a TR.... subroutine.

Copy with a_step

By inserting a CALL STEPDYN (istep) before a call to a CP.... or TR....
subroutine, the copy is performed with a step equal to "istep". The argument
"nwds'" represents the number of words effectively copied and not the number of
words among which the copied words are chosen.

The value of the step is reset to 1 after each call to a CP.... or TR....
subroutine.

6.- Use of a bank

A bank can be used in different ways :

6.1 It can be copied into another bank by CPBKBK or TRBKBK. 7
This can be used to merge several banks into one single bank or to extract
data from a bank, when the copy is done with a step.

6.2 It can be copied into a Fortran array (Don't forget to define it by a
DIMENSION statement!).
This is done by a

CALL CPBKAR(nwds ,bkname,iwd,arname)

which copies 'mwds" words, starting at word 'iwd" from bank "bkname" into Fortran
array "arname'.

Caution, no error message is printed by DYNOSOR if the number of words copied is
larger than the dimension of the array.

The copy into a Fortran array can sometimes reduce computer time. E.g. a
two-dimensional array can be used for matrix manipulations, the results being
stored back later into a bank.

6.3 Data blocks can be localized by a

CALL LCBK(bkname,lbl nwds)

This instruction returns the value of "1bl", which is the address of the first
word of the data block of bank "bkname". This word however contains only
information used by DYNOSOR and the data are stored in words 1bl + 1 to 1bl + nwds
of . array VDYN. To have access to the data, it is necessary to insert the
instruction

COMMON//IERRDYN,VDYN(1)

in each subroutine which calls LCBK. , :
The use of LCBK allows also the filling of a bank without use of CP.... or
TR. ... subroutines.

SIGPLAN Notices 12 April 1977

7.- Some other operations on banks

7.1 Adjustement of bank length

When a bank has been filled by CP..BK or TR..BK subroutines,its length can be
adjusted to the number of words copied by these subroutines by a

CALL AJBK(bkname)
7.2 Deletion of a bank

A bank can be deleted by a
CALL DLBK(bkname)

The name "'bkname'" can be reused later for another bank.

To avoid unnecessary garbage collection, a call to DLBK does not lead to the
immediate deletion of the bank, but only to a marking for future deletion, when
garbage collection occurs.

7.3 Modification of bank length

The bank length can be modified by the user with the instruction
CALL MDBK(bkname ,newnwds)

"newnwds" being the new length of the bank. Even when "newnwds'" is larger than
"nwds" the bank will still consists of only one data block. Increase of bank length
can use a lot of computer time, when a bank is inserted between other banks. In
this case, data have to be copied from one place to -another in central memory.
Therefore, it is generally better to overestimate the bank length than to
underestimate it. A call with a negative value for 'newnwds" subtractslnewnwds‘

to the bank length,

7.4 Renaming a bank can be done with a
CALL RNBK(bkname ,newbknm)

which gives the new name "newbknm to the bank previously defined by the name
"bkname". The old name can be used again for the definition of a new bank.

7.5 Insertion of words into a bank can be done by a
CALL INWDBK(nwds,bkname,ilstwd,ifrstwd)

which inserts "nwds" words after word "ilstwd" of bank "bkname'". The location of the
first inserted word is returned via "1frstwd". The contents of the inserted words
are not defined by INWDBK. This can be done by Fortran instructions (instruction
COMMON/ /IERRDYN,VDYN(1) must then be present) or by CP..BX or TR..BK subroutines.

Insertion of words splits a bank into at least three data blocks. A bank
having only one data block can be obtained by

CALL UNBK(bkname)
When several insertions are done, computer time can be saved by calling UNBK
only at the very end of the process.
7.6 Deletion of words of a bank can be done by a
CALL DLWDBK(nwds ,bkname ,ifrstwd)

which deletes "nwds" words, starting at word "ifrstwd" of bank '"bkname".
The bank length is adjusted.

SIGPLAN Notices 73 April 1977

7.7 Use of "nwds" = O

Subroutines CPRK.. and TRBK.. can be called with an argument "nwds" equal
to zero. In that case the whole bank is considered. In the same way, a call
to PRBK with "iwdfin" = O prints the contents of the bank, starting with word
"iwdin", until the last word.

8.~ Initialization

The statement CALL INITDYN must be executed before any other call to a
subroutine of the DYNOSOR system.

This instruction initializes the parameters of the DYNOSOR system by using
default values which are convenient for most usual cases. However, other values
can be assigned to these parameters {see DYNOSOR user's guide).

9.~ VERTEX BANKS and tree structure

A Vertex bank is not referenced by a name, but is linked to a vertex of a
tree structure.

A simple example of the use of a tree structure is the storage of
multi-dimensional arrays, with any number of indices. To each of these indices
corresponds a vertex bank, and as the bank lengths can be different, space can
be saved (e.g. the storage of a very big symmetric matrix).

A tree structure has to be defined before any vertex bank can be. It must
be described step by step, starting from the root of the tree (vertex of zero level).
The definition can be done horizontally, all the vertices of a given level being
defined before the next level is considered, or vertically, each defined branch
being then continued until its end before another branch is defined, or by a
combination of the two methods.

A vertex is defined by the statement

CALL DFVX(2H** nbranch)

"nbranch' being the number of branches which can be attached to the newly defined
vertex and the identificator of the new vertex being transmitted via the Fortran
array IVXDYN, located in common bloc VXDYN.

The statement
COMMON/VXDYN/IVXDYN(n)

must therefore be present in the calling subroutine.

n is an integer constant related to the maximum number of levels of the tree,

which is equal ton - 1.
Let us assume that it is required to define a new vertex of level L having

the identifier (Il’IQ""IL-l’IL) and linked to the vertex (Il’IQ""IL—l)

previously defined with a number of branches at least equal to IL.
The following statements are needed therefor

IVXDYN(1)=Il
vanYN(2)=I2

s e e s s

IVXDYN(L)=IL

IVXDYN(L+1)=Qx
CALL DFVX(2H"",nbranch)

IVXDYN(L+1) has to be set equal to zero. This defines the level L of the new
vertex.

SIGPLAN Notices 74 April 1977

10.- Garbage collection

Garbage collection is completely under the control of the DYNOSOR system
and is performed when needed, without any intervention of the user. However,
the user can specify the criteria which force the system to perform garbage
collection, by defining properly the appropriate parameters at the initialization
stage.

In the DYNOSOR system, garbage collection is performed in a specially simple
way. This is due to the fact that the dynamic store is divided into two
distinct areas.

The first one, the A-area, is located in the lower part of array VDYN and
contains only information about memory organization.

The second one, the D-area, is located in the upper part of array VDYN and
contains the data, grouped into data blocks. Only the first word of each of these
data blocks contains information about memory organization(mainly a backward
pointer to the A-area).

No garbage collection occurs into the A-area. Therefore, updating of pointers
is very easy. VWhen a block is moved in the D-area, only the contents of its
indirect address has to be changed, the indirect address itself remaining
unchanged.

Nevertheless, the length of the A-area can be increased (and also decreased).
This does not need a shifting of the whole D-area. Only the blocks located near
the A-area jump over other blocks to be copied,either into free holes or at the
very end of the D-area.

11.- Portability

The DYNOSOR system exists in two versions

1) CDC Version, series 6000,
This version has been tested on a CDC 6500 at the Université Libre de Bruxelles
and should work without any modification on the CDC series 7000 and CYBER 70.
In this version, it is made use of the 60 bit length of the words and whenever
possible, 3 integers are stored into one word.
To improve the speed, some subroutines are written in COMPASS.

2) Portable version
In this version, only one value is stored into each word. All the subroutines
are written in Fortran, but some instructions are perhaps not compatible with
ANSI Fortran and some variables have 7-character names, which is not accepted
by most computers.

12.- Complete description of DYNOSOR

This paper gives only the basic features of the DYNOSOR system. A more
sophlstlcated use allows the user, once he is familiarized with the system,to
1mprove greatly the speed of programs using it. The complete description can be
found in the DYNOSOR user's guide which can be obtained by writing to the author
at following address : Dr Marcel HUYBRECHTS

Université Libre de Bruxelles
Campus de la Plaine CP 228
Boulevard du Triomphe

B-1050 Bruxelles (Belgium)

References

Duby 1971 Proceedings of the 1970 CERN computing and processing School. CERN
Yellow report 71-6 pp393-398,

Sakoda 1968 DYSTAL : Dynamic Storage Allocatlon Language in FORTRAN, in Symbol
manipulation languages and technlques BOBROW J.G. Ed., North Holland 1968.

