
SIUPLAN Notices 55

Structuring Control in Fortran

Arthur Sedgwick
University of Toronto*

Department of Computer Science
Toronto Canada M5S 1A7

November 1977

This note suggests yet another view as to what compound statements should be
introduced into languages such as Fortran. In this proposal, selection and re-
finement are the key constructs and a radically simple approach to repetition due
to Hehner [1976] is presented .

A major goal in defining the control constructs is to keep the semantics as
simple as possible. We would like to encourage the programmer to invent informal
or formal assertions describing the state of the computation at various points in
the program. The assertions reduce the dynamic relationship between variables
and values to invariant expressions . Unfortunately, many existing control con-
st~ructs have sufficiently complicated semantics to discourage the programmer
from thinking this way .

The semantics of the statement S determine for any predicate R the weakest
precondition such that the execution of S will establish R. This weakest pre-
condition might be denoted S : R following the suggestion of Hehner [1976] .
Then the semantics of executing S1 followed by S2 might be denoted

(S1 S2) : R = S1 : (S2 : R) = S1 : S2 : R .

That this composition seems so trivial is a credit to the notation. Of course,
the weakest precondition

X = E : R,

for the assignment X = E to establish R, would be R with all free occurrences
of X in R replaced by the expression E .

	

(Note that the notation

Ri is not very convenient when composition is considered. The unabbreviated

notation X = E . R is more convenient .) Dijkstra [1976] gives many examples
of the "calculus" of preconditions .

With this point of view for semantics we now introduce the'control constructs .
The syntax is informal with lower-case letters for non-terminals, and is just a
suggestion. The only new character is the double-quote symbol which is available
in all modern character sets .

	

(If necessary, it could be replaced,by another
character as in Hull [1976] .) The predicates pi are logical expressions. The

semicolon is used in' some of=the examples as a -statement separator merely to compress
the examples .

*This research was supported by the National Research Council of Canada .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F956641.956646&domain=pdf&date_stamp=1977-11-01

SIGPLAN Notices

	

56

	

November 1977

(selection) : :-

(refinement) : :=

RE)

likely alternatives might appear first
semantics of the IF statement are the
is just one alternative, and otherwise

Control Constructs for Fortran

(CASE p l
statements)

CASE p2 :
statements2

CASE pn :
statements lk

CASE)

(RE "what"
statements

(IF pl :
statements)

IF p2 :
statements2

IF pa :
statements,

IF)

(DO "what"
statements

DO)

(call for refinement)

	

"what"

(counted loop) : :a

	

(DO i a e to e : statements DO)

The key concepts are selection and refinement . There are two forms of selection .
The semantics of the CASE statement are that

pi
J) statementsi : R,

	

lsisn,

and

	

not (p l or

	

. . .

	

or pe) a> R.

i.e. this is the weakest precondition for the CASE statement to establish R. Note
that the order of the alternatives is irrelevant (except, perhaps, that the most

for reasons of efficiency only). The
same as those of the CASE statement if there
are equivalent to

(CASE pl :
statements)

CASE.NOT.pl :
(IF p2 :statements2 """ IF pa :statementsa IF)

CASE)

i.e . the IF statement is equivalent to a nest of CASE statements with the keyword
IF without parenthesis meaning "elseif" . Thus IF is associated with ordered
alternatives and CASE is not .

Of course, we should invent some syntax for "else" . One possibility, which
has been adopted for this paper, is to omit p

	

when it means "none of the above"
(not (pl or . . . or p._l)) .

	

We could also adoptasome special syntax for situations
where the CASE statement reduces to a "computed go to" .

SIGPLAN Notices

	

5 7

Refinement is the key concept of this paper . The character string "what"
describes, perhaps informally, what needs to be done and calls for the state-
ments in the corresponding refinement to be executed . The statements determine
how the goal of the refinement is to be achieved . For example,

"Y a SIGN (X)

might call for the following statements (i .e . be refined as)

(RE "Y - SIGN(X)"
(CASE X.GT .O : Y = 1
CASE X.LT .O : Y = -1
CASE X.EQ .O : Y = 0
CASE)

RE)

Note that the semantics of refinement come "for free" :

"what" : R M statements : R

November 1977

The keyword RE could be pronounced "refine" .

	

It might also be interpreted
as 11regarding" .

	

Hull (1976] uses the word "where" .

where the statements are those in the corresponding refinement . In other words,
the semantics of refinement are those of inserting the corresponding statements
at the point of call .

Through refinement a procedure can be presented in a top-down fashion without

the overhead of subprograms and arguments. Normally, the refinements would appear

just before the END of the program unit ; however, they may appear at the point of

call via refinement "in situ" . The keyword DO calls for refinement and brackets

the corresponding statements . It corresponds to a labelled DO-END group in PL/I

and is intended for situations where it may be inappropriate to place the refine-

ment elsewhere. As we shall see, the keyword DO will usually be associated with

repetition, however, formally it signals refinement in place . The familiar counted

DO loop (whose semantics are too distracting to contemplate here) turns out to be

an important special case.

Since refinements have no arguments, their implementation is straightforward .

The translator could insert the statements at the point of call or arrange for

branching to and from the definition. Something equivalent to the GOSUB of BASIC

would be ideal for situations where a refinement definition is called from several

points .

	

The advantage of leaving it to the translator to insert the refinements,

rather than insert them ourselves as we are forced to do at present, is that the

intermediate structure of the program is not lost .

SIGPLAN Notices

	

58

	

November 1977

Indefinite Repetition Expressed Recursively

The principal point of this paper is that selection and refinement are
sufficient .

	

Looping constructs such as DO WHILE() and its variants and "exit"
are neither necessary nor desirable . The alternative is to express iteration
recursively while stilt implementing it as at present . For example

(DO"SET B - GCD(A,B)"
R - MOD(A, B)
(IF R.NE .0 :

A-B
B=R
"SET B = GCD(A,B)"

	

IF)

	

DO)

Here the recursive call "SET B = GCD(A,B)" forces repetition until R=O . Note
that a translator would have no difficulty in recognizing that the recursive call
was the "last action" of the refinement and therefore should be implemented merely
by a branch back to the start. (Unfortunately, most systems do not look for this
optimization which depends on there being no arguments to the refinement .)

As another example, consider Dijkstra°s do-od guarded command construct which
repeats until all the guards (predicates) are false.

(RE "LOOP-DIJKSTRA DO-OD"
(CASE p, : statements, ; "LOOP . . ."

CASE pa : statements. ; "LOOP . .
CASE)

RE)

t9

In this implementation the recursive calls have been abbreviated to "LOOP. . .".
This form of abbreviation (Hull and Bedet [1976])is especially convenient when
the character strings "what" are long sentences.

As in the previous example (and in all other repetitive situations) the
recursive calls are all "last action" and should be implemented merely as branches
without any stacking activity.

There are many advantages to expressing (without implementation overhead)
repetition recursively : advantages in terms of power, proof techniques and pro-
grammer psychology . The technique is more powerful than the popular WHILE loop
and its variants . An exit from any alternative is achieved merely by failing to
recurse. This eliminates many flags and extra tests that would be necessary
using DO WHILE or do-od .

The proof techniques are simpler in that no special loop cutting techniques
(Hantler and King [1976] p . 342) are required . If the programmer is conditioned
to verifying the precondition of a refinement at the point of call this suffices
for the recursive calls as well . Termination is assured by the standard approach
of requiring that some positive integer-valued function be reduced at each call .

SIGPLAN Notices

	

59

	

November 1977

The psychological advantages accrue from encouraging the programmer to thinkin terms of arriving at the same state of the computation instead of in terms ofthe flow of control and branching backward . It is possible that a keyword such
as REPEAT could be used to signal last-action recursive repetition ; however, this
would detract from the psychological advantages .

The following is an example which students found to be awkward using a WHILE
loop . The problem is to find KEY in a linked list of records with DATA and LINK
fields . The list begins with a dummy HEADER record and ends with a 0 link.

PREY = HEADER
(DO"DELETE KEY FROM LIST OR PRINT MESSAGE"

DO)

Note the implicit exit from the loop when P=O or DATA(P)=KEY .

	

Since the ordering
of the alternatives is significant this solution avoids the problem of DATA(P)
being undefined when P=O .

Once a programmer has begun expressing his loops recursively he may wish to
use non-repetitive recursion . For example,

(RE "FIND MATCHING RIGHT PARENTHESIS"
"GET NEXT SYMBOL"
(IF SYMBOL .NE .')' :

(IF SYMBOL .EQ.'(' : "FIND MATCHING RIGHT PARENTHESIS" IF)
"FIND . . ."

IF)
RE)

The second recursive call is last-action and may be implemented merely as a branch.
Aside from this, the refinement is called once internally (non last-action recursion)
and at least once externally. If a GOSUB type of implementation is used for multiple
calls to a refinement then there need be no distinction between internal and ex-
ternal calls . Of course a single internal call (without arguments) may always be
implemented using an integer to count the number of unsatisfied internal calls (or
in this case, unmatched left parentheses) and a programmer could write the refine-
ment this way in the first place .

It may seem incongruous to be using recursion in Fortran and non last-action
recursion could be banned; however, the extra effort to implement it would be
small and worthwhile even for non-recursive calls.

One other point in connection with recursion should be made.

	

Suppose refine-
ment A calls B, and B directly or indirectly calls A. This indirect recursion,
whether last-action or not, is dangerous . A may be obviously correct, assuming
that B is, and similarly for B . However, the combination may fail .

	

For an
example see Sale [1975] . The solution is to require either A or B to appear
inside the other using refinement "in situ" .

	

In this way issues such as
termination of a loop will always be associated with some refinement rather than
be a global property of the program.

P - LINK(PREV)
(IF P.EQ .O : "PRINT MESSAGE"
IF KEY.EQ .DATA(P) : LINK(PREV) = LINK(P) ; CALL FREE(P)
IF : PREY - P ; "DELETE . . ." IF)

SIGPLAN Notices

	

60

	

November 1977

In conclusion , the main point is that selection and refinement are sufficient
for structuring control, and last-action recursion is a more powerful and natural
way to express repetition than alternatives such as WHILE loops and exit constructs .

References

Dijkstra, E.W . [1976] A Diseiptine of Prograrurring, Prentice-Hall, New Jersey.

Hantler, S .L . and King, J.C . [1976] An introduction to proving the correctness
of programs, ACM Computing Surveys S(3), September 1976 .

Hehner, E.C .R . [1976] _do considered _od :

	

A Contribution to the Programming
Calculus, CSRG-75, University of Toronto, November 1976 .

Hull, T.E . and Bedet, R . [1976] Fortran-S User's Guide, Department of Computer
Science, University of Toronto .

Sale, A.H .J . [1975] Basic principles of well-structured code, Department of
Information Science No . R75-1, University of Tasmania, April 1975 .

