
Natural Communities in Large Linked Networks∗

John Hopcroft, Omar Khan, Brian Kulis, and Bart Selman
Department of Computer Science

Cornell University
Ithaca, NY 14850

{jeh,okhan,kulis,selman}@cs.cornell.edu

ABSTRACT
We are interested in finding natural communities in large-
scale linked networks. Our ultimate goal is to track changes
over time in such communities. For such temporal tracking,
we require a clustering algorithm that is relatively stable
under small perturbations of the input data. We have de-
veloped an efficient, scalable agglomerative strategy and ap-
plied it to the citation graph of the NEC CiteSeer database
(250,000 papers; 4.5 million citations). Agglomerative clus-
tering techniques are known to be unstable on data in which
the community structure is not strong. We find that some
communities are essentially random and thus unstable while
others are natural and will appear in most clusterings. These
natural communities will enable us to track the evolution of
communities over time.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
natural communities, large linked networks, hierarchical ag-
glomerative clustering, stability

1. INTRODUCTION
In recent years, we have witnessed a surge of interest in

the analysis of very large linked data sources. Two common
examples of such data sources are the link structure of the
World Wide Web and citation graphs of scientific literature.
It has become apparent that much interesting structural in-
formation is hidden in such networks. It has also been shown
that these linked networks have properties that are very dif-
ferent from those of standard random graph models. For ex-
ample, real-world linked networks often have “small-world”

∗Supported in part by the NSF, AFOSR and the Intelligent
Information Systems Institute at Cornell University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

characteristics, combining properties from highly structured
networks with those of random networks [14]. Also, the node
degree distributions are often characterized by power laws,
as opposed to exponentially distributed as in standard ran-
dom graph models.

Another important aspect of these linked data sources is
their strong temporal component: these networks continue

to evolve over time. So far, much of the analysis of linked
networks has focused on static “snapshots” of the underlying
graphs. Our goal is to study explicitly the temporal compo-
nent of linked networks. For example, how do certain struc-
tures in the network evolve over time? In a citation graph,
can one identify the emergence of a new scientific commu-
nity even before the existence of such a community becomes
readily apparent from standard statistical properties? Can
one predict the final size of an emerging community?

Before we can answer these questions we need to be able
to produce clusterings that are relatively stable as the linked
network evolves. At first glance, hierarchical agglomerative
clustering does not seem to be a candidate for stable cluster-
ing. Agglomerative clustering is highly unstable on sparse,
high dimensional data. This is not surprising since an ag-
glomerative clustering of an n node network produces a tree
of n − 1 clusters most of which have no real significance.
However, the clustering algorithm is not uniformly unsta-
ble. A careful examination of the results of hundreds of
runs shows that most clusters vary widely in each cluster-
ing. However, a small number of clusters, approximately
160, appear in every clustering and it is these clusters that
correspond to recognizable topics. Thus, the instability is an
important tool for finding what we call natural communities
and it is these clusters that we will track over time.

In this paper, we illustrate an effective agglomerative al-
gorithm for clustering and a method for identifying stable
or natural clusters within the linked network. In Section 2
we examine previous research and related work. Section 3
gives the basic facts about the NEC CiteSeer database, the
object of our study. Sections 4 and 5 describe the compo-
nents of the effecient clustering method. Finally, Section 6
and Section 7 look at clustering instabilities and solutions
to that problem via our concept of a natural community.

2. RELATED WORK
Organizing large document collections via the use of refer-

ence information is not a new practice: [13] did the first com-
puterized clustering of the Science Citation Index prior to
1972 using co-citation analysis. They showed it was possible
to extract intellectual communities based solely on reference



information. More recently, the NEC CiteSeer group suc-
ceeded in identifying intellectual communities in the Cite-
Seer database and on the web using new variants of co-
citation analysis [11] and network flow methods [3]. This,
and other research ([4]), has focused on mapping the cur-
rent state of link networks like science citation graphs and
the Web. The methods presented here are motivated by a
desire to understand how these maps change over time. As
such, our clustering methods must be relatively stable: the
clustering must not change much under small perturbations
of the input data.

In many applications, what matters most is not stabil-
ity but finding an organization of items that, upon human
inspection, is coherent. With respect to the CiteSeer doc-
ument collection, this amounts to identifying key computer
science topics like systems and databases using titles and
abstracts. However, the importance of stability is gaining
recognition. [9] analysed the stability of the two popular
link-based ranking algorithms HITS and PageRank. They
point out that intuitively we would not want the rankings
for a given query to change much if the base data set, for
example the World Wide Web, is altered slightly. They go
on to develop algorithms that stabilize the HITS rankings.

While clustering is even more subjective than ranking,
stability is still useful. In this paper we develop algorithms
that cluster the CiteSeer data using only reference informa-
tion and identify stable intellectual communities.

In [8], we show how these stable intellectual communities
can be used to effectively track the temporal evolution of
the community structure in the CiteSeer graph. In particu-
lar, we show that by comparing the community structure at
different points in time, one can can identify emerging new
communities, growing communities, ones that remain sta-
ble, and, finally, communities that decrease in importance
over time.

3. DATA SET
We used an October 2001 snapshot of the NEC CiteSeer

database [5]. At that time, the CiteSeer database contained
the full text and bibliographies of approximately 250,000
papers, most published since 1990. These are mostly re-
lated to computer science, with a small collection covering
other topics like physics, mathematics, and economics. In
addition, the database contains title and author information
on another 1.6 million earlier papers that are referenced by
the 250,000 set but whose full text is not contained in the
database.

We analyze the citation graph induced by this data set:
vertices correspond to all 1.85 million papers in the database;
there is a directed edge from paper p to paper q if p references
q. We call the set of the 250,000 papers whose full-text and
bibliography are known the core of the citation graph. The
papers in the core have citations to each other and to the
1.6 million non-core papers. We do not have the reference
lists for the papers outside the core. So, their out-degree is
0 while their in-degree is at least 1. The out-degree (num-
ber of references) for a typical node ranges from 5 to up to
25. The median number of references for the core papers
is 14. Interestingly, the majority of core papers are uncited
(in-degree = 0). Note that self-citations are excluded.

The CiteSeer data has a number of inaccuracies, due to
the fact that the information is obtained in a fully automatic
manner using web spiders and scripts to find citation infor-

mation and reference data. There is interesting work trying
to improve the classification of information of CiteSeer-style
systems [1, 10]. In this project we do not explicitly remove
the “noise” in the CiteSeer graph because our goal is to
develop methods and tools that are relatively robust under
reasonable noise models.

4. MEASURING DISTANCE

4.1 Reference-based Measures
Two standard bibliometric measures of similarity between

two papers p and q are bibliographic coupling [7] and co-
citation analysis [12]. The bibliographic coupling of papers
p and q is the number of references they share in common.
The co-citation count of p and q is the number of papers that
reference both p and q together. Co-citation counts more
richly describe paper relationships as time passes and peo-
ple reference (or ignore) a given paper. On the other hand,
bibliographic coupling can immediately measure similarities
since references come with the paper. However, references
cannot change: if a relevant and seminal paper appears in
2004 on this topic then our relationship via bibliographic
coupling will be indirect at best; with co-citation, the re-
lationship could emerge very clearly. In addition, there is
no regulatory apparatus governing who authors’ cite and
so citation practices differ from author to author. However,
collectively we tend to cite the important papers, which then
supports the use of co-citation analysis.

However, given that temporal tracking of emerging com-
munities is the ultimate goal, the slowness of co-citation
buildup is more problematic than the noisiness and static
nature of bibliographic coupling.

Furthermore, bibliographic coupling is by no means bad.
One can identify intellectual communities from it. When
an author writes a paper on a certain topic, they will cite
certain papers that characterize the field. In addition, there
will be other general references and unique references spe-
cific to their contribution. But each topic will have some set
of references that a reasonable author would draw from.

Our research focuses on the next logical question: how do
new topics, those with unestabilished references, form? We
conjecture that the reference structure of these new papers
will change to reflect these shifts, and these changes will not
be reflected immediately in co-citaton data. Thus, while co-
citation measures are quite useful for mapping knowleedge
domains, we conjecture that they are too slow for tracking
purposes.

4.2 Distance Measure
For the agglomerative clustering, we define the distance

between two papers p and q as the number of references in
paper p times the number of references in paper q, divided by
the number of papers in the intersection of the two papers’
reference sets. In this case, the distance between two papers
is infinite if the papers do not share a reference in common.1

For clusters with more than one paper, we use a centroid-
based measure to determine distance. It should be stressed
that our clusters are dependent on the reference structure
of our dataset.

1Of course, once clusters of papers start forming, the im-
plicit relationship between papers that share references via
a chain of citations is captured and the distance between
clusters is no longer infinite.



For the k-means algorithm, we use the standard Euclidean
distance (l2 norm) to determine to which of the k clusters
each paper is closest. Each paper is represented as a 0-1
vector whose length is equal to the total number of papers.
For a paper p, the vector for p has a 1 in element q if paper p
references paper q, and 0 otherwise. For clusters, the vector
is the sum of the vectors of the papers in the cluster. Then,
we normalize all the vectors and for every paper we wish to
cluster, we compute the Euclidean distance to each of the k
clusters.

Euclidean distance is the standard function used for the k-
means algorithm. It is a metric, and as a result the k-means
cost function decreases after every iteration. We do not
use the Euclidean distance for the agglomerative clustering:
several experiments have shown that using this function (as
well as other distance functions we have tried) results in a
“skinny” hierarchical clustering tree. In this tree, one cluster
tends to dominate early in the running of the algorithm, and
then proceeds to grab all the smaller clusters. Our distance
function is the only one that we have used that produces
a balanced hierarchical clustering tree, which allows us to
find smaller communities of topics contained within a sin-
gle cluster in the tree. In addition, the clusters obtained
from running the agglomerative clustering algorithm with
our distance function appeared quite coherent – relative to
other distance measures – when analyzed with a word fre-
quency count on the titles of the papers in the clusters. The
measure is also a simple, intuitive notion of distance.

5. CLUSTERING

5.1 Background
We considered two standard clustering techniques: hierar-

chical agglomerative clustering and k-means clustering (see
[6] for a good overview).

Hierarchical agglomerative clustering starts with each pa-
per in a cluster by itself. At each stage the two “closest”
clusters are merged. The process is repeated until all papers
are in a single cluster.

In the k-means algorithm, we begin by randomly placing
the n papers into k clusters. We compute the normalized
center of gravity of these clusters, then place each paper
into its nearest cluster, using the Euclidean distance. We
iterate this process, and at each iteration we compute the
cost function as the sum of distances of every paper to its
cluster’s center of gravity. We continue the process until the
decrease in cost is smaller than a parameter δ.

The agglomerative algorithm has the disadvantage that it
is slow. We discuss our efficient implementation in the next
section. However, the algorithm returns a large number of
clusters and captures the notion of a hierarchy of commu-
nities. Verification techniques based on word frequency and
journal and conference proceeding coverage indicate that the
clusters obtained by the agglomerative method are more rel-
evant than those from the k-means algorithm.

K-means is known to be especially prone to getting stuck
in local minima near the initial conditions, which suggests
that the algorithm would perform poorly at discovering sta-
ble communities. Another difficulty with k-means is that,
given n total nodes in the graph, the algorithm tends to find
k communities, all of size approximately n/k. We also found
that k-means tends to cluster around highly referenced pa-
pers and books. Thus, clusters with important papers and

books tend to grab any paper that reference them. This is
especially problematic for texts on very general topics since
it does not make sense to cluster around them. On the other
hand, the k-means algorithm runs very quickly, and is one
of the most widely used clustering algorithms.

5.2 Efficient Agglomerative clustering
In choosing to use an agglomerative approach over k-

means, the first daunting problem is dealing with slow run
times. A naive implementation of an agglomerative clus-
tering stategy would at each step calculate all n2 pair-wise
distances for an overall running time of n3, where n is the
number of nodes in the dataset. However, the nature of our
data and the distance measure allows us to speed up this
process significantly.

There are two points at which the algorithm can be sped
up. First, one can determine the nearest neighbor for each
paper without examining all other papers; second, one does
not need to recalculate the nearest neighbor for all papers
after a merge, but only those whose nearest neighbor may
have been affected by the merge.

For each paper, p, the nearest neighbor is computed as
follows. Let dout and din be the number of references and
number of citations for an average paper, respectively. The
set of references Rp is computed. Using a graph with all
edges reversed, the set of papers S that reference one or more
papers in Rp is determined. Typically the set S associated
with a cluster consisting of a single paper is of size doutdin

(a few hundred). All papers outside S have infinite distance
to paper p and are ignored in finding the nearest neighbor of
p. The initial distance calculation is approximately of order
doutdinn, where n is the number nodes in the core. Since
the average degrees are very small, this is significantly better
than computing all n2 distances. Once the nearest neighbor
for each vertex is determined, the pair of closest clusters are
merged into a single cluster.

Once a merge occurs, the nearest neighbor information
needs to be updated. Suppose communities A and B merged
and consider a third community C. For C, only three dis-
tances change: dist(A∪B,C) must be computed; dist(A, C)
and dist(B, C) are invalid. Using the same process outlined
above, we first compute the closest neighbor to the merged
community A∪B. Call the distance from A∪B to its closest
neighbor dm. The nearest neighbor of C changes only if that
neighbor was A or B or the new neighbor is A∪B. Thus, the
distance to the nearest neighbor of C is recomputed if the
previous nearest neighbor was A or B or the distance to the
previous nearest neighbor of C was greater than dm. Note
that if the distance of C to its nearest neighbor is already
less than or equal to dm, it will keep its current nearest
neighbor. The above observations lead to an efficient ag-
glomerative clustering algorithm. In our implementation,
we are able to obtain a full agglomerative clustering of the
CiteSeer data in under 3 hours.

6. INSTABILITIES
Agglomerative clustering methods are known to be sensi-

tive to changes in the input data. In this section, we show
that the level of instability of agglomerative clustering of our
network data is in fact quite dramatic. Later we will exploit
such instabilities to identify so-called natural communities,
which are clusters that remain relatively stable under per-
turbations of the input.



Size Range # clust. # full match std.
2-2 9858 9858 100.0 0.0
3-3 10025 10025 100.0 0.0
4-4 9936 9935 100.0 0.5
5-5 10042 10041 100.0 0.2

6-12 38459 38453 100.0 0.5
13-24 14701 14685 99.9 1.1
25-48 7573 7560 99.9 1.2
49-99 4015 3993 99.8 2.7

100-200 1930 1892 99.3 5.9
201-400 995 956 99.0 5.7
401-800 466 423 97.5 9.2

801-1600 260 222 96.5 11.2
1601-3200 142 94 92.2 14.8
3201-6400 76 34 89.4 15.9

6401-12800 40 8 78.5 16.0
12801-25600 16 0 74.0 13.5
25601-51200 9 0 74.0 18.4

51201-102400 5 0 59.8 14.7
102401-204800 1 0 61.8 0.0

Table 1: Instabilities due to randomly removing a
single paper out of 250,000. Note that the effect
of the perturbation of the data becomes more pro-
nounced for higher-level clusters, i.e., the pertur-
bation is amplified when moving up the clustering
tree.

We first considered the effect on our agglomerative clus-
tering by removing a single, randomly selected paper. We
selected [2]; the paper has 33 references and is cited by 2
papers. In order to minimize the impact on the graph, we
only removed the out-going edges of this node (i.e. the ref-
erences in the paper). We kept the two incoming references
from the papers that cite this paper. So, in effect, we moved
the paper from the core set of 250,000 papers to the set of 1.6
million papers outside the core. This is as if the paper had
not been found on-line by the CiteSeer crawler. After re-
moving the paper, we ran another agglomerative clustering
and found for each cluster in the new tree the best match-
ing cluster in the original tree. The match value associated
with 2 clusters C and C ′ is determined using the overlap of
papers between C and C ′. The best match fraction for a
community C in tree T to tree T ′ is defined as

bestmatch(C,T ′) = max
C′∈T ′

�
min � |C ∩ C′|

|C|
,
|C ∩ C′|

|C′| ���
In finding the best match of community C in tree T we

compare C to every community C ′ in T . Some communities
in T , say the root community, entirely contain C. However,
these are not necessarily the best match for C since C con-
tains only a small fraction of their papers. Thus we look for
a community C′ that contains a large fraction of C but also
one in which C contains a large fraction of C ′. Thus the
best match of C will usually be roughly the same size as C.
This is accomplished by the min condition in the equation.

Table 1 gives our results. The column labelled “# clust”
gives the number of clusters; “# full” gives the number of
clusters such that bestmatch(C,T ′) = 1; “match” gives the
average bestmatch value as a percentage; “std” is the stan-

dard deviation of the average value.
As one might expect, the smaller clusters (up to size

around 100) are hardly affected by this change in data. This
is because only the distances between papers that share ref-
erences with the removed paper are affected. In fact, none
of the size 2 or size 3 clusters are changed at the bottom of
our tree (compare # clust. with # full). Similarly, only a
very small fraction of clusters up to size 100 are changed.
However, we see that the effect is amplified moving up the
tree. Clusters of size 6,000 and up are changed 20% or more.
We also calculated the change in the vector representing the
centroid of these clusters and found an average change of
around 30 degrees. Figure 1 illustrates our clustering tree
and indicates how the centroid of the higher level clusters
tilt due to the removal of one paper at the bottom.

250,000 papers

level 7

cluster size ~ 15,000 

cluster size ~100

level 14

level 18

Figure 1: Instability due to removal a single paper
from core set.

Apparently, the removal of the references from a single
paper out of 250,000 leads to significant change (≥ 20% in
the larger clusters). It is surprising to find such a large effect.
Note that the change at the bottom of the tree is less than
0.001%. Perhaps beyond a certain size all communities are
close together and merges become arbitrary.

In the next section, we show how such instabilities actually
help us find true structure in the underlying network.

7. NATURAL COMMUNITIES
The instability data suggests a method for discovering sta-

ble or natural communities in the CiteSeer citation graph.
Based on the previous section, we know that there are com-
munities that remain unchanged under small perturbations.
Since we ultimately want to track the evolution of the Cite-
Seer graph G, we can view timewise changes to G as per-
turbations of the dataset. Thus, before moving to changes
related to time, we randomly perturb G many times to dis-
cover stable communities across the multiple clusterings.

7.1 Definition
We fix a perturbation value of 5%. Then we produce a

set of subgraphs

{G1, G2, . . . , Gn}

of G where each Gi is the subgraph of G induced by a ran-
dom subset of 95% of the core vertices of G (What if the



Root

Finite ElementsSocial
Science

Speech,
Language,
Etc.

Control,
Filtering,
Images, etc.

7135 14780 173556 1709

77848 70579

12019 29359

8750 3269

1000 738

Physics

CS

CS1 CS2

NLP
Speech

Speech Audio

Music

Figure 2: Tree of natural communities. Numbers inside ovals indicate natural community size.

CiteSeer crawler missed 5% of the papers?). Our clustering
algorithm then produces a set of trees

�
= {T1, T2, . . . , Tn}

We choose a root tree T ∗ ∈
�

and compare T ∗ to all trees
in

�
− {T ∗}. Let N ⊆ T ∗ be the desired set of natural

communities. We call C ∈ N natural if in a fraction f of
the trees the best match of C has a value greater than some
threshold p. Notice that there are two parameters to be set:
f , the ratio of trees out of n, and p, the threshold for the
best match. More formally, C ∈ N is natural if

∃A ⊆
�

such that ∀ Ti ∈ A :
(a) bestmatch(C,Ti) ≥ p, 0 ≤ p ≤ 1
(b) |A| ≥ fn, 0 ≤ f ≤ 1

7.2 Results
The choices of parameters p and f are somewhat arbi-

trary because the notion of “naturalness” of a community
depends on your application. If you want to find very strong
communities, you would set both parameters near 1. To se-
lect reasonable values for these parameters, we consider the
average best match for an arbitrary community as a lower
bound. Based on Table 2 we see that average matches are in
the high 40% to low 50% range. However, we note that com-
munities of size larger than 1000 do not really get beyond
60% for a best match. So we choose p = 70% as our cutoff
for natural communities of size less than 1000 and p = 60%
for larger communities. Furthermore, a natural community
should appear in more than half of all the trees and so we set
f = 0.6. When we filter out just the natural communities
from n = 100 runs, we get the data in Table 3.

The column “nat” gives the number of natural commu-
nities; “match” gives the average best match across all 100
trees; “unnat” gives the number of other clusters. For most

Size Range # clust. match std.
100-200 1848 45.9 17.2
201-400 917 48.4 14.7
401-800 482 49.1 13.1

801-1600 255 49.0 12.5
1601-3200 119 49.0 12.8
3201-6400 82 56.0 12.1

6401-12800 29 52.0 12.7
12801-25600 21 49.4 10.5
25601-51200 10 49.7 8.4

51201-102400 5 56.8 14.8
102401-204800 1 75.7 0.0

Table 2: Matching of two perturbed trees, with 5%
of core nodes of G removed.

Size Range nat match std. unnat match std.
100-200 55 75.4 9 1835 44.2 17
201-400 32 74.7 7 898 47.8 14
401-800 11 73.2 6 467 47.9 13

801-1600 17 63.8 6 217 46.8 13
1601-3200 14 65.1 6 105 47.0 11
3201-6400 13 69.4 7 55 48.6 11

6401-12800 9 67.8 6 27 49.9 11
12801-25600 2 68.3 7 19 51.6 11
25601-51200 1 67.5 0 6 48.0 8

51201-102400 1 66.5 0 3 55.6 6
102401-204800 1 68.6 0 0 0 0

Table 3: Average community matchings over 100
trees for natural and unnatural communities.



natural communities, the best match is in the range of 70%
to 75% compared to 45% to 50% for the best match of other
communities.

When the number of trees n grows large and f is held
fixed, we observe that the number of natural communities
stabilizes to around 160 out of approximately 3000 clusters
containing 100 or more papers. These natural communities
form a tree structure that is partially illustrated in Figure 2.
The root node has 16 children most of which have only 100
to 200 papers. These small communities are very sharply
defined. The small communities that are children of the root
tend to be collections of papers that are not on computer
science. For example, there are communities of papers on
quantum physics, macroeconomics and finance, and even
the Greenland ice sheet. Large communities in the tree are
hard to define since they are collections of small, well defined
areas. This may explain why the larger communities tend
to be slightly less stable than the smaller ones.

This process does not capture all the natural communities
embedded in G. Our choice of the base tree T ∗ was arbi-
trary, and yet it fixed our vantage point. If a community is
natural but happens to not appear in T ∗, we will not find
it. However, repeating the above process many times with
different base trees, and unioning each of the sets of natu-
ral communities, would give us a sharper view of the strong
structures in the citation graph.

As a further experiment, the k-means algorithm was run
on the whole graph to determine if any natural commu-
nities would emerge. We chose a value of k = 70, which
produced communities of between 2000 and 3000 papers.
There were several natural communities in this range found
by the agglomerative clustering algorithm, using the param-
eters as discussed above. Unfortunately, comparing 2 runs
of k-means revealed that only 3 of the 70 communities had
an overlap over 50%, with only 1 of these communities above
60% overlap. It was immediately clear that the vanilla k-
means algorithm would not find natural communities.

Finally, we generated a number of random graphs with the
same degree structure as G and attempted to find natural
communities. To do this, we simply listed the graph edges
in two columns (head and tail) and randomly permuted the
tail column. While this does not maintain certain real-world
properties like temporal referencing constraints, it is never-
theless an insightful random structure. We wished to verify,
at a very crude level, that the natural communities process
required some latent structure beyond power-law degree dis-
tributions to find stability. The results support this: there
were no natural communities, and few reasonable matches.

8. CONCLUSIONS
Our analysis of the CiteSeer citation graph establishes

that there is sufficient information hidden in the citation
data to extract meaningful higher level structure. Our no-
tion of natural communities allows us to extract a meaning-
ful, stable core set of clusters from a collection of agglom-
erative clusterings. The agglomerative clustering trees of
the CiteSeer data have around 3000 nodes reprenting clus-
ters with more than 100 papers. The vast majority of these
clusters are quite unstable and do not provide useful higher-
level information. However, around 160 nodes correspond
to coherent natural communities. In [8], we track the evo-
lution of these communities over time and show how we can
identify the emergence of new sub-fields.

There are many avenues for future work. With respect
to discovering natural communities, basic k-means is cer-
tainly unsuccessful. However, more sophisticated k-means
methods that integrate local search should be explored.

One standard question that should be asked of any clus-
tering algorithm is why we should trust one set of clusters
over another. Further validation beyond word frequency-
based approaches are needed to validate the clusters; base-
lines for algorithmic results are needed on synthetic data
like simple temporal network models to verify the clustering
procedures.

More generally, most citation-based methods treat all ci-
tations equally, and this yields the problem of equally weight-
ing very general references to textbooks and references to
key papers in the field (among other problems). Integrating
context into the citation graph, perhaps via edge weights,
could improve clustering results.

9. REFERENCES
[1] W. W. Cohen, H. Kautz, and D. McAllester.

Hardening soft information sources. In Proc. Intl.

Conf. Knowledge Discovery and Data Mining, pages
255–259, 2000.

[2] P. Dybjer. Inductive families. Formal Aspects of

Computing, 6(4):440–465, 1994.

[3] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient
identification of web communities. In Proc. Intl. Conf.

Knowledge Discovery and Data Mining, pages
150–160, 2000.

[4] D. Gibson, J. M. Kleinberg, and P. Raghavan.
Inferring web communities from link topology. In Proc.

Conf.Hypertext and Hypermedia, pages 225–234, 1998.

[5] C. L. Giles, K. D. Bollacker, and S. Lawrence.
Citeseer: An automatic citation indexing system. In
Proc. Intl. Conf. Digital Libraries, pages 89–98, 1998.

[6] A. K. Jain and R. C. Dubes. Algorithms for clustering

data. Prentice Hall, 1988.

[7] M. M. Kessler. Bibliographic coupling between
scientific papers. Amer. Document, 14:10–25, 1963.

[8] O. Khan, B. Kulis, J. Hopcroft, and B. Selman.
Tracking evolving communities in large linked
networks. In Sackler Colloquium on Mapping

Knowledge Domains, May 2003.

[9] A. Y. Ng, A. Zheng, and M. Jordan. Link analysis,
eigenvectors and stability. In Proc. Intl. Conf.

Artificial Intelligence, pages 903–910, 2001.

[10] H. Pasula, B. Marthi, B. Milch, S. Russell, and
I. Shpitser. Identity uncertainty and citation
matching. In Proc. Advances in Neural Information

Processing. MIT Press, 2003.

[11] A. Popescul, G. Flake, S. Lawrence, L. Ungar, and
C. L. Giles. Clustering and identifying temporal
trends in document databases. In Proc. Advances in

Digital Libraries, pages 173–182, 2000.

[12] H. Small. Co-citation in the scientific literature: A
new measure of the relationship between two
documents. J. Amer. Soc. Info. Sci., 24:265–269, 1973.

[13] H. Small and B. C. Griffith. The structure of the
scientific literatures i. identifying and graphing
specialties. Science Studies, 4:17–40, 1974.

[14] D. J. Watts and S. H. Strogatz. Collective dynamics of
small-world networks. Nature, 393:440–442, 1998.


