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Abstract 
 

This paper discusses using the wavelets modeling 
technique as a mechanism for querying large-scale 
spatio-temporal scientific simulation data. Wavelets have 
been used successfully in time series analysis and in 
answering surprise and trend queries. Our approach 
however is driven by the need for compression, which is 
necessary for viable throughput given the size of the 
targeted data, along with the end user requirements from 
the discovery process. Our users would like to run fast 
queries to check the validity of the simulation algorithms 
used. In some cases users are welling to accept 
approximate results if the answer comes back within a 
reasonable time. In other cases they might want to 
identify a certain phenomena and track it over time. We 
face a unique problem because of the data set sizes. It 
may take months to generate one set of the targeted data; 
because of its shear size, the data cannot be stored on 
disk for long and thus needs to be analyzed immediately 
before it is sent to tape. We integrated wavelets within 
AQSIM, a system that we are developing to support 
exploration and analyses of tera-scale size data sets. We 
will discuss the way we utilized wavelets decomposition in 
our domain to facilitate compression and in answering a 
specific class of queries that is harder to answer with any 
other modeling technique. We will also discuss some of 
the shortcomings of our implementation and how to 
address them. 
 
1. Introduction 
 

Multi-resolution techniques, specifically wavelets, have 
been used for many years as effective modeling tools for 
data derived from signal and image processing 
applications [5]. Multi-resolution based paradigms have  
been shown to be a great promise in knowledge discovery 
and data mining applications for data obtained from 
astronomical observation, specifically clustering objects 
in large scale sky surveys [6]. Another application 
domain and for fast responses to range sum queries, 
researchers in [2] have developed a wavelet based 
approach for approximate query processing. They 
mapped the data to a relational table, which is compressed 
and used to resolve select, project, and join operations. A 
progressive technique, which maps the query, along with 

the data, to the wavelet domain for query resolution, has 
been introduced by Shahabi, Chung and Safar [8]. This 
technique is more like our work but does not a-priori 
compress the data set to an approximation.  

We are using wavelets to model and compress large-
scale spatio-temporal scientific simulation data and 
enabling queries over the resulting compressed model. 
The targeted data is large-scale multivariate field 
quantities gathered from scientific simulations [1]. 
Typical quantities found in these simulations are 
fundamental or derived physical quantities such as 
temperature, pressure, velocity, or entropy. We are 
directly querying the compressed wavelets transform data 
rather than the original data itself. This means that our 
queries are posed with regard to the wavelet transform of 
a temperature field is as opposed to the temperature field 
itself, for instance. Focusing on the latter would 
necessitate either mapping equivalent queries to the 
domain of the wavelet transform or reverse the transform 
in some intelligent fashion to obtain approximations to or 
subsets of the field data itself. Querying the wavelet 
transform data itself has a practical problem associated 
with it, namely understanding how to think in the domain 
of the wavelet transform data rather than the intuitive 
domain of the field data. To address this issue we define 
specific queries (with associated semantics) that will 
allow a particular coupled reconstruction from the 
wavelet transform data. The identified class of queries are  
motivated by the users’ needs to explore some 
irregularities (or outliers) in the data. For example the 
user might want to know for what regions of the mesh the 
temperature changes mostly. It should be noted that we 
are exploring other modeling techniques which lend 
themselves to resolving other types of queries, such as 
range based queries, however for this work we will 
concentrate on this wavelet based modeling and querying 
framework.  
 
2. Data Compression 
 

We use an intuitive yet very effective method of 
compressing data (measured with an  norm), namely 
keep the coefficients with largest absolute value, 
weighted by a factor involving their level. A more 
rigorous development of this idea can be found in [3,4]. 
This insight into the relation to the coefficients and their 
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individual contribution to the global error actually gives 
two methods to store compressed models, see table 1. 
During the model construction time, we can specify either 
the target data size or relative error as the criterion for 
compression. 

for each level Ll ,...,1= and level index lJj ,...,1= . 
We then use a weighted multivariate  norm: 

2

1

2
1 ||||),...,(|| i

m

i
im vwvv ∑

=

=  

 To find a size (or importance) estimate for the 
coefficients and use that as a sort key. The weights are 
positive and  

iw Coefficient Selection Scheme 
1 Choose sorted coefficients until a calculated specified 

total number of coefficients is reached, thereby 
assuring that a prescribed model size is achieved. 

2 Choose sorted coefficients until a user specified 
relative error is achieved, thereby assuring that a 
prescribed model relative error is achieved. 
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each component, is the most natural choice and currently 
the one we use. However it is not illogical or difficult to 
use some statistical measures of the coefficients 
themselves to derive a more appropriate non-linear 
weighting scheme. Once the coefficients are chosen the 
resulting coefficients along with their significance 
ordering obtained from the sorting are saved to disk. This 
compressed model represents a starting point upon which 
ad-hoc queries are performed.  

Table 1: Methods for Compressing a Wavelet 
Transform 

It should be noted that the sorting procedure used in 
the two methods above has complexity O(N lg(N)) in the 
number of coefficients N . This is larger than the O(N) 
time complexity of the wavelet transform itself but an 
acceptable cost for construction of the wavelet model in 
our pre-processing stage. From talking to our users, we 
concluded that they want to be able to analyze the data 
reasonably fast but not necessarily very accurate. Hence,  
we identified two important parameters that they can 
experiment with (at query time) in order to be able to do 
that, namely, error and time. Error in reconstruction and 
time of reconstruction are inversely proportional. In order 
to enable the users to do the analysis effectively we 
utilized the idea that reconstructing the data using large 
value coefficients will reduce the error in a nonlinear 
fashion, hence, we can achieve a reasonable accuracy 
with a small subset of the total coefficients. This also 
means that the reconstruction time will be quick, as a 
result sorting coefficients and allow queries that can be 
mapped directly to which subset of the sorted coefficients 
to use, will address our users’ needs.The l error is easily 
computable as the weighted size of the coefficients left 
out of the selection set.  
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3. Queries on the Compressed Data  
 

The reconstruction of an approximate representation 
of the original data in the query resolution phase in 
AQSIM [1] is performed under more interactive time 
constraints. As mentioned we store the wavelet 
coefficients in the model with their sorting order and 
utilize this information to provide some additional query 
processing for the end user. This information can also be 
incorporated into a progressive reconstruction which is 
controlled by the user and provides a more visual metric 
to conclude when a reconstructed approximate is “good 
enough". The queries that we provide are ultimately 
queries about the quality, quantity, or possibly spatial 
location of the stored wavelet coefficients themselves. 
This approach makes the data compression a discovery 
process, where the compression hopefully removes 
unwanted noise or homogenizes redundant information so 
that discovery of useful facts can be achieved. This 
connection between compression and knowledge 
discovery has been noted by Ramakrishnan and Grama 
[7].  

For multivariate functions, with which we are 
concerned, there is a dearth of research on the general 
subject of multivariate or vector multi-resolution analysis. 
Our solution approach is to incorporate the multivariate 
analysis solely into the sorting and selection procedure 
rather than research and develop new multivariate 
wavelet transforms. To do this we first perform a standard 
single variable transform on each variable of the data as 
with regular wavelets. Then if we label the individual 
transform coefficients with their multivariate component 
c = 1 …. m as : {{  L

l
l
j

l
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The collection of wavelet queries that we are currently 
working on is shown in table 2. The figure describes in 
words the semantics of the queries we are interested in. 
The first query will use the complete model of the data to 
build the best approximate to the original data. The 
second query in uses the pre-sorted coefficients to 
reconstruct an approximate to the original data with a user 

and form an equivalent to the real multivariate transform 
coefficient as :  ),....,( ;;1

l
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specified percentage of the available data. The third query 
uses the pre-sorted coefficients to reconstruct an 
approximate to the original data with a specified relative 
error (as measure against the original data). The second 
and third queries can be implemented in a progressive 
fashion; namely, the coarse scale smooth data can be 
displayed to the user and as the sorted coefficients are 
added back to the approximate data, the display of the 
data can be updated to reflect this gained accuracy. This 
process can also be interruptible. The progressive display 
or interruptibility is another of our long-range research 
goals for the ad-hoc query system. The fourth query uses 
the coefficients from the most important levels to 
reconstruct an approximate to the original data. By 
computing the combined total of the weighted 
coefficients on the different levels of the compressed 
model a relative merit for adding each levels coefficients 
can be compared and used. The fifth query in represents a 
point wise reconstruction, again using the representation 
formula 
 
 Description of the Wavelet Model Queries 
1 Reconstruct using all the coefficients from the stored 

wavelet decomposition. 
2 Reconstruct by further choosing the most significant 

wavelet coefficients based on a user-supplied 
percentage. 

3 Reconstruct by choosing the wavelet coefficients that 
produce an approximate with a user supplied relative 
error. 

4 Reconstruct using only the most significant levels of 
the wavelet decomposition in the model file. 

5 Reconstruct using coefficients that effect a given 
spatial location. 
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Table 2: Queries Relevant to the Wavelet Model  

4. Examples  
 

Our first example is a simple univariate time series. 
Recall that our target data is multivariate but the same 
ideas and algorithms hold in the univariate case. Figure 1 
shows the values of the Standard & Poors 500 for the 
year 2001 with respect to the stock market trading day. 
We first perform a wavelet transform using a simple Haar 
orthonormal wavelet. We next create the compressed data 
file; a 50 percent compression ratio is established by 
choosing to store only half of the wavelet coefficients. 
This results in a compressed approximation with 0:337% 
global relative ( l  error), figure 2 shows what that 
compressed time series looks like by simply 
uncompressing it. Figure 3 is using about 33% of the 
original coefficients (about 66% of the compressed 
coefficients) and the resulting reconstruction has a global 
relative error of .590%. All of these simple univariate 

time series examples show that it is not difficult to 
achieve good compression with the approximation and 
still retain much of the important characteristics of the 
data, with respect to variation and change.  
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In order to test this procedure on actual data we used 
simulation data of a can being crushed. We again show 
results using the familiar Haar orthonormal wavelet 
system. This data is time dependent and has about 13 
independent variables per grid point. We show only a 
pressure field from the procedure due to space constraints 
although other fields show similar behavior. Figures 4 
shows the original uncompressed can at the 1st time-step 
of the simulation. Figure 5 shows the compressed can at 
the same time-step using 33% compression. Figure 6 
shows the compressed can at the same time-step using 
66% compression. The results show that while simulation 
data does not have the same simple reconstruction 
behavior of the univariate example above, it is still 
possible to reconstruct data values and keep the kind of 
variational character in the results. 
 

 
Figure 1: Original Data set 

 

 
Figure 2: Compressed approximation using 50% of 
the coefficients. 

 
Figure 3: Reconstruction Using 33% of the 
coefficients. 



4. Comments And Conclusions  

 

Our research adapts and extends ideas of wavelet 
theory to multivariate data, and formulates methodologies 
and algorithms for compressing the wavelet coefficients 
resulting from that work. We also devise ways in which 
users can effectively query the resulting compressed data 
in an intuitive fashion without understanding too many of 
the wavelet specific details. In our initial experimentation 
we have found that using wavelets to decompose, 
compress, and reconstruct data yields results that are 
helpful in analyzing the dynamic portions of simulation 
data. The wavelets are attuned, in various degrees, to 
smoothness in data. Compressing by keeping only the 
largest coefficients implies that the reconstruction will be 
accurate around areas where the data is not smooth, i.e. 
highly dynamic. Currently we are working on the 
scalability of our system to speed some of the described 
algorithms in order to work with tera-scale data. 

Figure 4: Original mesh from the can data 
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