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ABSTRACT
Region-based image retrieval (RBIR) was recently proposed
as an extension of content-based image retrieval (CBIR).
An RBIR system automatically segments images into a vari-
able number of regions, and extracts for each region a set
of features. Then, a dissimilarity function determines the
distance between a database image and a set of reference
regions. Unfortunately, the large evaluation costs of the dis-
similarity function are restricting RBIR to relatively small
databases. In this paper, we apply a multi-step approach to
enable region-based techniques for large image collections.
We provide cheap lower and upper bounding distance func-
tions for a recently proposed dissimilarity measure. As our
experiments show, these bounding functions are so tight,
that we have to evaluate the expensive distance function for
less than 0.5% of the images. For a typical image database
with more than 370,000 images, our multi-step approach
improved retrieval performance by a factor of more than 5
compared to the currently fastest methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess, Information filtering

General Terms
Algorithms, Performance

Keywords
region-based image retrieval, RBIR, CBIR

1. INTRODUCTION
An increasing number of applications require sophisti-

cated image search facilities. The most prominent ones are
medical imagery, remote sensing, internet, news and media.
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Traditionally, these applications mainly deploy keyword-
based search operations. Newer search engines addition-
ally integrate content descriptors derived from the pixel
data of the images into their retrieval algorithms [16]. Of-
ten, one refers to this approach as content-based image re-
trieval (CBIR). Region-based image retrieval (RBIR) [5, 15,
19] is a promising extension of the classical CBIR: rather
than deploying global features over the entire content, RBIR
systems partition an image into a number of homogenous re-
gions and extract local features for each region. Apart of the
classical similarity search, RBIR provides novel query types:
most importantly, the search for images containing similar
parts of a reference image, e.g., ”find pictures of this brown
dog (represented as a region) in an arbitrary environment”.
Searching with a single reference region is a simple exten-
sion of CBIR. But the more interesting case of searching
with multiple reference regions is less obvious to solve, and
much more expensive as we will see.

In this paper, we address the problem of efficiently and
effectively determining relevant images in a database given
a set of reference regions. As a preliminary step, we have to
define the dissimilarity (distance) between two images, i.e.,
between two sets of regions. We have selected the approach
of the Windsurf system [2] since it clearly outperforms other
systems from an effectiveness point of view. The approach
of the Windsurf system is to match each region from the
first set with exactly one region of the second set. Given
such a matching, it determines the overall dissimilarity as
the average distance between matched regions. Among the
set of possible matchings, the Windsurf system chooses the
one leading to a minimal overall distance. This optimization
problem is a variant of the well-known Assignment Problem.
Using the Hungarian Algorithm [11, 13], the complexity of
distance evaluations for two region sets is O(r3) with r being
the number of regions in both sets.

However, the Winsurf system was not able to implement
an efficient search algorithm to identify the most similar
images according to their effective similarity measure. As
the result in [2] illustrate, the proposed search algorithm
does not perform significantly better than a brute-force
search (referred to as SCAN) that computes distances for
all objects in the database. In this situation, it is obvi-
ous that the large costs of the Hungarian Algorithm impair
search efficiency of RBIR queries for already a small num-
ber of reference regions. Even worse, newer approaches ex-
tract hundreds of tiny regions called ”points of interests”
from an image [10]. These points correspond to character-
istic 1-pixel regions of the image. With distance evaluation



costs of O(r3), this promising approach is restricted to small
databases.

The main contribution of this paper is an efficient so-
lution for multi-region searches as proposed by the Wind-
surf system. For that purpose, we applied the multi-step
paradigm [1, 9, 14, 17, 20] to region-based retrieval: in a
first step (filtering), a lower (and upper) bounding distance
function on the dissimilarity measure determines a set of
candidates. Then, a second step (refinement), identifies the
correct result set by computing exact distances only for these
candidates. In the course of this work, we provide cheap
bounding functions for our region-based dissimilarity mea-
sure. We further show with experiments for a typical image
application that these functions are sufficiently tight such
that less than 0.5% of the images remain as candidates after
the first step. The performance comparisons reveal that the
multi-step approach reduces search costs by a factor of 5.

The paper is structured as follows: the next section re-
views related work. Section 3 defines the underlying dis-
similarity function for multi-region queries. Section 4 de-
rives lower and upper bounding functions, and proposes
two multi-step algorithms. Section 5 discusses performance
characteristics of our solution, and Section 6 concludes.

2. RELATED WORK
Blobworld [5], an early RBIR system, mainly focused on

the segmentation of images into homogeneous regions from
a color and texture perspective. During query evaluation,
Blobworld retrieves for each query blob a number of simi-
lar database blobs using a high-dimensional index structure.
Only images which appear at least once in these result sets
are considered: for each image, the score is given by a fuzzy
combination over the scores between the query blobs and
their most similar blob in that image. Although Blobworld
demonstrated the potential of RBIR systems, their query
model and retrieval algorithm does not satisfy our require-
ments: 1) With Blobworld, it is possible that an image blob
is matched with several query blobs. 2) Query evaluation,
as shown in [2], leads to missing the correct best images.

WALRUS [15] segments images using wavelets. The usage
of wavelets for segmentation resulted in good segmentation
quality. In the querying phase, WALRUS retrieves for each
query region all database regions having a distance smaller
than ε. Then WALRUS sums up the sizes of the retrieved
regions per image and returns only images that exceed a
threshold on the matched region sizes. However, from a
retrieval perspective several open issues remain: 1) vague
definition of the similarity function for multi-region queries,
and 2) the evaluation requires hard-to-guess thresholds.

SIMPLIcity uses IRM [19] to assign similarity scores be-
tween two region sets. IRM is based on the observation that
segmentation algorithms tend to split objects into several
regions. For instance, a dog in a first image is represented
by a single region while a dog in a second image is split into
two regions. Obviously, when comparing these two images,
we have to match the single region in the first image with the
two regions in the second image. To avoid such situations,
we demand for better segmentation algorithms. In fact, the
work of Hermes et al. already demonstrated an astonishing
improvement of segmentation quality [12] compared to ear-
lier solutions. Given an effective segmentation algorithm,
we no longer have to take many-to-many relations between
regions of two sets into account.

The similarity measure of this work is based on the Wind-
surf system [2]. Windsurf describes the matching as an
Assignment Problem and solves this optimization problem
with the Hungarian Algorithm. Further, the authors of [2]
present the AWS

0 -algorithm: for each query region, they
open a stream for the database regions ordered by their
similarities to the query region. The fetching phase ends,
if there exists a complete matching for an image. Then, a
random access phase computes the similarities of the images
for which the fetching phase has seen at least one of their
regions. While the AWS

0 -algorithm provably evaluates the
exact result (in contrast to the algorithm of Blobworld), it
performs only marginally better than a brute-force method.
In some of the experiments, the performance was even worse.

3. MULTI-REGION IMAGE SEARCH
We have selected the dissimilarity function of the Wind-

surf system due to its intuitive character and good search
quality [2]. Furthermore, this measure solves a number of
essential problems simpler approaches suffer from, e.g., the
two tiger problem of Blobworld1. In the following, we de-
scribe our extension of the retrieval model of Windsurf (dis-
tinction of query types with the introduction of penalty
values). Furthermore, we assume that the automatic seg-
mentation algorithm (e.g., [7, 12]) partitions an image into
homogenous regions, i.e., the segmentation quality is satis-
factory accurate.

3.1 Region-Based Dissimilarity
Let RQ = {RQ

1 , . . . , RQ
m} be the set of query regions, and

ROl = {ROl
1 , . . . , R

Ol
nl } the set of regions for the l-th image

in the database O, 1 ≤ l ≤ N . A region R can be described
by any means, e.g., multi-dimensional features. We only
demand for a function δ(R1, R2) that measures the proxim-
ity between two regions R1 and R2. Then, the distances
between regions of two region sets R1 and R2 span a matrix

D =
{
δ(R1

i , R
2
j )

}
i,j

∈ R|R
1|×|R2| (3.1)

Its rows and columns correspond to regions fromR1 andR2,
respectively. Figure 1 (a) shows an example for two region
sets R1 and R2 containing 3 and 4 regions, respectively (ig-
nore the last row for now).

From another perspective, consider the regions of the two
sets as nodes of a bipartite graph and distances as weights on
edges between these nodes (cf. Figure 1 (b)). To determine
an overall distance, we must assign regions from the first
set to regions from the second set. Obviously, this matching
of regions should contain only pairs of similar regions and
should comprise as many region pairs as possible. In our
model and in contrast to IRM [19], each region can match
with at most one region from the other set2. We introduce
the notion of a complete matching : a matching M ⊆ R1×R2

is complete, if it is maximal and does not contain two edges

1The two tiger problem is as follows: a query with two tigers
should not match images in the database depicting just one
tiger. However, Blobworld’s and WALRUS’ definition of
similarity do not take this into account. As a result, these
systems may report images with one tiger at higher ranks
than images with two tigers.
2This is because newer segmentation algorithms seldom di-
vide objects into many regions [12].
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Figure 1: Distance matrix, matching, and optimal matching.

connected to the same region, i.e., each region appears at
most once in M. The dissimilarity measure δ(R1,R2) is
then the average over the elements of the distance matrix D
whose corresponding regions are represented by a tuple in M.
Recall that we demand for a maximal matching, i.e., the
cardinality of M is given by min

(
|R1|, |R2|

)
.

Figure 1 (a) and (b) depict a complete matching with
bold edges in the bipartite graph and circles around the cor-
responding matrix elements (ignore the last row in D and
the special box-node in the bipartite graph). The distance
for this matching is (5 + 6 + 4)/3 = 5. Notice that node
R2

4 is not matched with any node in R1. For some query
types, we want to penalize such non-matches. To this end
and as an extension of the Windsurf model, we introduce
”null regions” which match with any region not contained
by M. Furthermore, the distance to a null region is constant,
i.e., the penalty for a non-match. Let 21 and 22 be the
null regions for region sets R1 and R2, respectively. Then:
∀R2

j : δ(21, R2
j ) = p1 and ∀R1

i : δ(R1
i , 2

2) = p2. Now, we
add so many null regions to the smaller region set until both
sets have equal size (cf. Figure 1 (b)). As a consequence, the
distance matrix D ofR1 andR2 becomes quadratic: the new
rows (insertions of 21) are filled with penalty p1 (cf. Fig-
ure 1 (a), last row), and the new columns (insertions of 22)
contain penalty p2. Due to completeness, the distance func-
tion now selects from each row and each column exactly one
value to determine the overall distance.

So far, we have not discussed how to match regions from
the two sets. Obviously, we want to match the most similar
regions. However, this is generally not feasible due to the
completeness constraint. Instead, we optimize the matching
as a whole:

δ(R1,R2) = min
M ⊆ R1 ×R2

M is complete

ϕ(M, D) (3.2)

with ϕ(M, D) =
1

|M|
∑

(R1
i ,R2

j )∈M

Di,j

Note that Equation (3.1) formulates a variation of the well-
known Assignment Problem [11]. The Hungarian Algo-
rithm [11, 13] finds the optimal solution for a distance matrix
D ∈ Rr×r in O(r3). Applied to the example in Figure 1, we

obtain a distance of (5 + 6 + 4 + p1)/4, i.e., the depicted
matching is optimal.

3.2 Nearest Neighbor Retrieval
In the following, we only consider k nearest neighbor

searches explicitly as they are more natural than range
searches that require users to specify hard-to-guess thresh-
olds to limit the result size. These restrictions are not limit-
ing our approach as adapting the algorithms to also support
range queries is straightforward. A first exact algorithm to
find the k best matches is a brute-force scan:

Algorithm 3.1 (SCAN) For each image stored in the
database, compute the distance matrix for the set of refer-
ence regions and the set of image regions. Determine the
overall distance to the query by solving Equation (3.1) with
the Hungarian Algorithm. Return the k images having the
smallest overall distances.

The main problem of SCAN origins in the large number
of invocations of the costly Hungarian Algorithm. With a
database of N images and r regions per image, the complex-
ity for searching with r reference regions is O(Nr3). Obvi-
ously, this leads to unacceptably large retrieval costs for al-
ready medium size databases. Moreover, newer approaches
extract not only a few regions from an image, but hundreds
of points of interest [10]. A brute-force search would limit
this promising technique to small database sizes.

3.3 Query Types
Apart of the classical similarity search, our dissimilarity

function enables further query types.
I contains: A user searches for images that contain a sim-
ilar region for each reference region. Clearly, the user does
not care if the image has further regions. Hence, we must not
penalize non-matches of image regions, but we have to penal-
ize non-matches of query regions. This leads to the following
penalties: δ(21, RO

j ) = p1 = 0 and δ(RQ
i , 22) = p2 > 0.

I similarity: This is the classical search type also known
from CBIR systems. The user selects an image and looks for
images in the database that have a similar number of simi-
lar regions. In this case, we set both penalties to the same
value to ensure a symmetric distance function. Choosing a
large penalty value leads to images having the same number
of regions as the reference image.



I part-of: In analogy to the contains query, we set p1 > 0
and p2 = 0. Hence, we are looking for images whose regions
have a similar counterpart in the reference image (part of
the reference image).

For the similarity case, there already exists a large number
of approaches that support this query type. This is not the
case for containment and part-of queries. Further note that
for containment and part-of queries, the distance function
is not symmetric and the triangle inequality does not hold.
This makes indexing of images for containment and part-of
queries very difficult.

4. MULTI-STEP RBIR SEARCH
Although a lot of multi-dimensional index structures ex-

ists, they are not directly applicable to our RBIR query
types as they are not capable of dealing with image descrip-
tions that contain sets of feature vectors. In Blobworld [5]
and WALRUS [15], each region is treated as a distinct ob-
ject and all region features are stored in a multi-dimensional
indexing structure like the X-Tree [3], or the VA-File [20].
For each reference region, the index is searched and among
all the objects corresponding to a returned region, the over-
all best image is selected. However, this is not acceptable
as the result is not correct in the general case (see [2] for a
proof). The Windsurf system overcomes this problem with
the AWS

0 -algorithm [2]. However, the reported performance
is only marginally better than the one of SCAN .

A further candidate structure among many others is the
M-Tree [6] that maintains objects based only on distances.
The M-Tree requires a distance function that fulfills the
properties of a metric. However, with our similarity defi-
nition, the distance function is not always a metric (con-
tainment and part-of queries). Furthermore, the triangle
inequality does not hold for all query types. Consequently,
we can only deploy these methods for similarity searches,
but not for the entire range of RBIR queries.

In our approach, we have applied the multi-step search
paradigm to reduce response times for RBIR queries. In
the following, we describe how to derive cheap but tight
bounding functions for Equation (3.1). Furthermore, we
have extended the generic multi-step algorithm of [17] to
optimize CPU and IO costs.

4.1 Preliminaries on Multi-Step Algorithms
Earlier work reports on the successful application of multi-

step algorithms for distance-based search problems like, for
instance, medical imagery [14], subsequence matching [9],
or color histogram similarity search [1]. But also signature
files [8] and the VA-File [20] follow the same principle: in a
first step, an approximate function eliminates objects from
the search. The remaining objects are called the candidates.
Only for these candidates, the more expensive query test
is evaluated. For distance-based search problems, we intro-
duce a lower bounding distance function δlb for a distance
function δ such that: ∀Q, O ∈ Ω : δlb(Q, O) ≤ δ(Q, O). As-
sume we search for the k best matches for a query Q. Fur-
ther, let δk(Q) denote the k-th smallest distance between Q
and the objects in O. Then, a lower bounding function δlb

defines a set of candidates Clb(Q) as follows:

Clb(Q) =
{

O |O ∈ O ∧ δlb(Q, O) ≤ δk(Q)
}

(4.1)

Note that if δlb(Q, O) > δk(Q), object O cannot be among

the k nearest neighbors. This leads to the multi-step
paradigm: in a first step, we compute a set of candidates C
by only considering lower bounds. In a second step, we
identify the result set by determining exact distances for
objects O ∈ C. Correctness of this approach holds if the
set of candidates C contains at least all lower bound candi-
dates, i.e., C ⊇ Clb(Q) [17]. In this context, δlb-optimality is
given if the set of candidates comprises all and only the ob-
jects in Clb(Q). But how to compute Clb(Q) without know-
ing δk(Q) in advance? Seidl et al. [17] solved this problem by
accessing candidates from a multi-dimensional index struc-
ture in increasing order of their lower bounding distances.
In our scenario, however, this is not feasible.

4.2 Lower and Upper Bounds for RBIR
Recall, that an optimal matching M~ for Equation (3.1)

selects exactly one element from each row and from each
column of the distance matrix D. The distance δ(R1,R2)
is then the average over the selected values. We can lower
bound this distance by averaging over the minimal value of
each row in D:

δlb(R1,R2) = ϕ(Mlb, D) with (4.2)

Mlb =

{
(R1

i , R
2
j ) |R1

i ∈ R1 ∧R2
j = arg min

R2
j′∈R

2
Di,j′

}
In Figure 1 (c), circles mark the selected elements for the
lower bound of the illustrated example. The lower bound is
given as (5 + 4 + 4 + p1)/4 which is smaller than the exact
distance given by (5 + 6 + 4 + p1)/4. However, we observe
that the matching is not complete, i.e., R2

2 is matched with
regions R1

1 and R1
2.

The algorithm of [17] only requires a lower bounding func-
tion. For our extension, however, we further need an upper
bounding function. δub is an upper bounding distance func-
tion for δ if: ∀Q, O ∈ Ω : δ(Q, O) ≤ δub(Q, O). To deter-
mine an upper bound for δ(R1,R2), we can simply take an
arbitrary complete matching. However, we want to have a
tight upper bounding function. Therefore, we select from
each row the minimal value and discard the corresponding
column for the remaining rows:

δub(R1,R2) = ϕ(Mub, D) (4.3)

with Mub =

(R1
i , R2

j ) |R1
i ∈ R1 R2

j = argmin
R2

j′
Di,j′


and R2

j′ ∈
{
R2

j∗ |R
2
j∗ ∈ R

2∧ 6 ∃i∗ < i : (R1
i∗ , R2

j∗ ) ∈ Mub

}
The shaded cells in Figure 1 (c) contain the selected ele-

ments for the upper bound. It is given as (5 + 6 + 4 + p1)/4
which is equal to the correct distance (of course, this does
not generally hold).

With D ∈ Rr×r, i.e., r regions per set, the complexity to
determine bounds is only O(r2) instead of O(r3) when using
the Hungarian Algorithm. Hence, the bounds are signifi-
cantly cheaper from a complexity perspective. Note that, in
any case, we first have to compute the distance matrix; the
complexity of this operation is given by O(r2). Figure 2(a)
shows CPU costs for the Hungarian Algorithm, bound com-
putations and distance matrix evaluations as a function of
the number of regions (both region sets have equal size). A
distance between two regions was computed as the Man-
hattan distance between two 9-dimensional vectors. For
each measurement, we performed 100,000 evaluations. From



the graphs, we derive that bounds are up to a factor of 40
cheaper than exact distances. However, we have to add the
costs for the computation of the distance matrix. Hence,
for 50 regions, we obtain CPU costs of 80 seconds for ex-
act distances, and 16 seconds for the bounds. Hence, bound
evaluations suffer from the high costs of distance computa-
tions. But still, bounds are by a factor of 5 cheaper then
exact distances.

4.3 Using Only Lower Bounds
The algorithm of [17] accesses objects from an index

structure sorted by their lower bounds. But for our lower
bounds, there exists no appropriate index structure. Thus,
we must adapt their algorithm slightly by introducing a pri-
ority queue (implemented as a heap) for objects according
to their lower bounds:

Algorithm 4.1 (Only Lower Bound (LOWBND))

// First Step
// Let heap be increasingly ordered
iterate over O ∈ O

determine δlb(Q, O)
heap.push(δlb(Q, O), oid(O))

// Second Step
// Let result be a list increasingly ordered on distances
δk = ∞
repeat

(l, i) = heap.pop()
exit if l ≥ δk

read O from database for oid i and determine δ(Q, O)
result.insert(δ(Q, O), oid(O))
if result.getNumber()>k then δk = result.getDist(k)

until heap.isEmpty()

Note that multi-dimensional indexes as used in [17] also
maintain a heap for the objects encountered during the
search. There is even evidence that, with high-dimensional
features, LOWBND performs comparable to the algorithm
of [17] due to the inherent difficulties of searching such
spaces [4, 20].

LOWBND experiences two problems: 1) the size of the
heap is equal to the number of objects in the database. The
complexity for maintaining this heap is O(NlogN). 2) Can-
didate objects are re-visited during the second step. These
visits impose random accesses on the hard disk to retrieve
the object data. Apart of disk costs, the second step has to
recompute the distance matrix for each candidate object.

4.4 Using Lower and Upper Bounds
Let δk

ub(Q) be the k-th smallest upper bound of the ob-
jects in the database. Then, an object O with: δlb(Q, O) >
δk

ub(Q) cannot be among the k nearest neighbors due to
δk(Q) ≤ δk

ub(Q) < δlb(Q, O) ≤ δ(Q, O). In other words,
we obtain a second (larger) set of upper bound candidates:

Cub(Q) =
{

O|O ∈ O ∧ δlb(Q, O) ≤ δk
ub(Q)

}
⊇ Clb(Q)

(4.4)

To minimize heap maintenance costs in algo-
rithm LOWBND, we insert objects into the heap only
if they are upper bound candidates. If Cub(Q) is markedly
smaller than O, we can save maintenance costs as the
complexity is now reduced to O(|Cub(Q)| · log(|Cub(Q)|)).
Furthermore, if |Cub(Q)| is small, we can cache candidate
objects read in the first step in main memory and access

this cache when revisiting the candidates in the second step.
For region-based search, we cache the distance matrix and
thereby even avoid its recomputation in the second step.
These considerations lead to a novel multi-step approach:

Algorithm 4.2 (With Upper Bound (UPPBND))

// First Step
// Let heap be increasingly ordered on lower bounds
// Let ub be a list increasingly ordered on upper bounds
δk
ub = ∞
iterate over O ∈ O

determine δlb(Q, O)
if δlb(Q, O) ≤ δk

ub then

heap.push(δlb(Q, O), O)
determine δub(Q, O)
ub.insert(δub(Q, O))
if ub.getNumber()>k then δk

ub = ub.getDist(k)

// Second Step
// Let result be a list increasingly ordered
δk = ∞
repeat

(l, O) = heap.pop()
exit if l ≥ δk

determine δ(Q, O)
result.insert(δ(Q, O), oid(O))
if result.getNumber()>k then

δk = result.getDist(k)
until heap.isEmpty()

5. EXPERIMENTS
In the following, we present efficiency experiments of the

proposed multi-step algorithms and show the tightness of
the bounds. Note that these experiments do not contain
any effectiveness results of the proposed retrieval model as
its superiority over other models already was described in [2].

Data Set. Over the past years, we have established a
large image retrieval system with around 370,000 images
that is capable to answer CBIR and RBIR queries3. Out of
this database, we used two feature sets: Color5x5 (300MB)
and ColorJSEG (6MB). For the former one, we applied a
static partitioning layout of 5x5 overlapping regions on all
370,000 images. For the latter data set, we applied the JSEG
segmentation algorithm [7] on around 19,000 images result-
ing in 9 regions on average. In both data sets, each region
was described by a color moment feature [18] with 9 dimen-
sions. The distance between two regions was determined by
a weighted Manhattan distance.

Platform. All measurements have been performed on
an Intel Pentium 4 with 1.8 GHz, 256 MB main memory,
and a hard disk with a throughput of 25 MB/s. The plat-
form was running Microsoft Windows 2000 Server. For the
experiments, we used our C++ implementation. In all set-
tings, we always read data from the hard disk bypassing any
caching in the operating system.

Queries. All experiments run ”contains” queries with
penalties p1 = 0 and p2 = ∞. The number of query regions
varied between the experiments. Measurements with other
query types revealed similar results. For ColorJSEG and

3The demo is available at
http://www-dbs.ethz.ch/imagedb. Due to attacks,
we had to close the new RBIR part.
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Figure 2: (a) Costs for distance computations; (b) Lower and upper bound candidates.

Color5x5, we averaged the measurements over 100 queries
of the same type. If not stated differently, we were searching
for the 20 nearest neighbors.

5.1 Number of Candidates
The first experiment investigates the numbers of candi-

dates for the proposed multi-step algorithms. Figure 2(b)
illustrates typical results for the data set ColorJSEG. It de-
picts the number of lower and upper bound candidates as a
function of the number of query regions. Obviously, lower
bounds are very tight since less than 0.5% (95 out of 19,000)
of the objects qualify as a candidate with LOWBND and
UPPBND. The size of the upper bound candidate set of
UPPBND is by a factor of around 6 larger than the one of
the lower bound candidate set. In the worst case, this set
contains about 3% of the database objects. Consequently,
UPPBND is able to hold the distance matrices of candidates
between the two steps since this cache requires only a small
amount of main memory.

5.2 Retrieval Performance
Next, we evaluate the multi-step algorithms with queries

over the larger data set Color5x5. Figure 3 compares the
CPU costs (left hand side) and elapsed times (right hand
side) of the algorithms by varying the number of query re-
gions (each object in the database contained 25 regions).
In Figure 3 (a), we observe that the CPU costs for SCAN
are growing at a much faster rate than the ones of the
multi-step algorithms: with 25 query regions, CPU costs are
5 times larger. Surprisingly, the multi-step algorithms have
similar CPU costs. In other words, the heap maintenance
costs (CPU) in LOWBND are negligible.

Figure 3 (b) depicts elapsed times for region-based
searches. Due to large CPU costs, the performance of SCAN
degenerates when we increase the number of query regions.
Elapsed times for the multi-step algorithms are very similar
if the number of query regions is smaller than 10. After this
point, the performance of LOWBND becomes worse com-
pared to the other multi-step approaches: with 25 query

regions, LOWBND needs two times longer to find the best
matches. This difference accrues from revisiting candidates
in the second step. Thereby, objects are accessed in random
order from the hard disk. With access costs of 10 ms and
2000 candidates, the second step suffers from additional IO
costs in the order of 20 seconds. UPPBND, on the other
hand, is able to cache candidate objects between the two
steps and, hence, no additional IO costs accumulate. We
also note that region-based retrieval becomes a CPU-bound
retrieval problem, if the number of query regions exceeds
around 15 regions in our setting. With less than 15 regions,
the IO costs to read 300 MB from hard disks hinders faster
response times.

Finally, we conducted experiments by varying the num-
ber k of results to return. Figure 4(a) depicts these results
for 25 region queries over the data set Color5x5 (results with
the smaller data set look similar). Over the entire range of k,
the search costs for both the brute force search SCAN and
the multi-step method UPPBND remain constant. Hence,
retrieval costs with multi-step methods are stable over a
large range of values for the number k of objects to retrieve.

5.3 Comparisons With Approximate Methods
Next, we compare the accurate algorithms UPPBND and

SCAN with the approximate methods of Blobworld and
WALRUS. Recall that these systems issue a search for each
query region in isolation, and combine the retrieved results
to obtain an overall result. Furthermore, note that the re-
trieval models of Blobworld and WALRUS have a worse ef-
fectiveness compared to the model deployed in this paper
and the Windsurf system [2]. We have implemented the
RBIR model of Blobworld and WALRUS based on an ex-
tension of the VA-File [20] which can evaluate a batch of
queries in parallel. To obtain a result of reasonable quality,
we issued a 100 nearest neighbor search for each query re-
gion. Then, we combined the results according to the rules
of Blobworld and WALRUS, and identified the 20 best im-
ages.

Figure 4(b) illustrates the elapsed times of the algorithms
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Figure 3: Comparison of execution costs: (a) CPU times, and (b) elapsed times.

for the cases: data set ColorJSEG with 2 and 10 query
regions, and data set Color5x5 with 2 and 25 query re-
gions (note the two different y-scales). Surprisingly, we ob-
serve that the retrieval with Blobworld and WALRUS out-
performs multi-step retrieval only in a few cases. Especially,
if the number of query regions is large, Blobworld/WALRUS
searches run twice as long as multi-step searches. This is
because batch evaluation in multi-dimensional indexes with
only a few query regions is concentrated to a small data par-
tition in the index. If the batch contains more query regions,
larger parts of the index must be considered. Thereby, more
data is fetched randomly from the disk. Hence, while IO
costs for multi-step retrieval remain constant when increas-
ing the number of query regions, the ones for approximate
retrieval grow linearly. We conclude that the more effec-
tive retrieval model of the Windsurf system does not lead to
larger retrieval costs than the evaluation of the less effective
models of Blowbworld and WALRUS.

6. CONCLUSIONS
Region-based image retrieval (RBIR) is an extension of

the classical content-based image retrieval (CBIR). RBIR
systems provide new query types, most importantly, to
search for objects embedded in an arbitrary environment.
For multi-region queries, we deployed an extension of the
dissimilarity function of Windsurf [2] which is more intuitive
and effective compared to alternative models. Windsurf for-
mulates an Assignment Problem to find a matching between
the reference regions and the image regions. The main prob-
lem of this approach is the expensive evaluation of distances
between two region sets. Using a brute-force search, RBIR
retrieval is limited to small size databases. In this work,
we have described efficient multi-step algorithms to search
for the k best matches for RBIR queries. Our bounding
distance functions are so tight that less than 0.5% of the
database remain after the first (filtering) step. Experiments
have demonstrated that multi-step algorithm outperform a
brute-force method by more than a factor of 5, and per-

form equally well or even better than less effective retrieval
methods.

As future work, we attack the problem of region-based re-
trieval from several angles: first, we are searching for cheaper
but still tight lower bounding functions. Especially, we are
interested in functions which do not require the distance ma-
trix between the two region sets. Second, we like to extend
our retrieval model to cover spatial constraints. However,
such a model is only reasonable if there exists an efficient
retrieval algorithm or indexing structure. Third, we want
to further decrease response times for region-based queries.
Since our multi-step algorithm have a linear structure, they
are ideal for grid computing and an almost linear speedup
of retrieval should be feasible.
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