Multi-camera Spatio-temporal Fusion and Biased
Sequence-data Learning for Security Surveillance

Gang Wu, Yi Wu, Long Jiao, Yuan-Fang Wang, Edward Chang
Electrical & Computer Engineering and Computer Science
University of California, Santa Barbara, CA 93106

echang@ece.ucsb.edu

ABSTRACT

In this paper, we propose a framework for multi-camera video surveil-
lance. Our framework addresses the detection, represenation, and
recognition of motion events. The detection phase handles spatio-
temporal data fusion for efficiently and reliably extracting motion tra-
jectories from video. The representation phase summarizes raw tra-
jectory data to construct a hierarchical, invariant, and content-rich
representation of the motion events. Finally, the recognition phase
deals with learning using imbalanced training datasets and infinite-
dimensional data that also exhibit temporal ordering. Due to space
limit, only the following two components are discussed in the paper:
fusing spatio-temporal information from multiple camera sources and
characterizing and detecting suspicious surveillance events.

For fusing multi-source data from cameras with overlapping spatial
and temporal coverage, we propose a novel method that uses a two-
level hierarchy of Kalman filters to construct coherent and invariant
event descriptors. Once the event descriptors are constructed, we de-
vise a sequence-alignment kernel function to perform sequence data
learning for detecting suspicious events. When the positive training
instances (i.e., suspicious events) are significantly outnumbered by the
negative training instances, SVMs can suffer from high event-detection
errors. To remedy this problem, we propose an adaptive conformal
transformation algorithm to work with the sequence-alignment kernel.
Through empirical study in a parking-lot surveillance setting, we show
that our spatio-temporal fusion scheme can efficiently and reliably re-
construct scene activities, and that our learning method is highly effec-
tive in identifying suspicious events.

1. INTRODUCTION

United States policymakers, especially in security and intelligence ser-
vices, are increasingly turning toward video surveillance as a means to
combat terrorist threats and a response to the public’s demand for secu-
rity. With the proliferation of inexpensive cameras and the availability
of high-speed, broad-band network, it has become economically and
technically feasible to deploy a large number of cameras for outdoor
security surveillance. However, several important research questions
must be addressed before we can rely upon video surveillance as an
effective tool for crime prevention.

In this paper, we propose a framework for multi-camera video surveil-
lance. Our framework addresses the detection, representation, and
recogntion of motion events. The detection phase handles spatio-temporal
data fusion for efficiently and reliably extracting motion trajectories
from video. The representation phase summarizes raw trajectory data
to construct a hierarchical, invariant, and content-rich representation of
the motion events. Finally, the recognition phase deals with learning
using imbalanced training datasets and infinite-dimensional data that
also exhibit temporal ordering. Due to space limit, we will focus our
discussion on the following core research problems of building a multi-
camera surveillance system: namely, spatio-temporal data fusion, and
event characterization and detection.

e Spatio-temporal data fusion. Objects observed from multiple cam-
eras should be integrated to build spatio-temporal patterns. Such in-
tegration must handle spatial occlusion and temporal shift (e.g., cam-
era recording without precise timing information and with different
frame rates). In addition, a motion pattern should not be affected by
varying camera poses and incidental environmental factors that can
alter object appearance. We formulate the multi-source data-fusion
solution as a two-level hierarchy of Kalman filters. At the base level
of the hierarchy, each Kalman filter estimates, independently, the
position, velocity, and acceleration of the target object in the local
camera reference frame. At the top level, we use one Kalman filter
to register the position, velocity, and acceleration of the vehicle in
the global camera reference frame. An important feature in this hi-
erarchical function is that we allow both bottom-up data fusion and
top-down information dissemination to improve the robustness of the
solution. We present the details in Section 2.

e Event characterization and detection. Event detecion deals with map-
ping motion patterns to semantics (e.g., benign and suspicious events).
Traditional machine learning algorithms such as SVMs and decision
trees cannot be directly applied to such infinite-dimensional data,
which also exhibit temporal ordering. Furthermore, positive events
(i.e., the sought-for hazardous events) are always significantly out-
numbered by negative events in the training data. In such an im-
balanced set of training data, the class boundary tends to skew to-
wards the minority class and becomes very sensitive to noise. (An
example is presented in Section 3.3 to illustrate this problem.) For
effective sequence-data matching, we first discretize a continuous se-
quence. We show that our sequence-alignment kernel is a legitimate
kernel function to be used with SVMs. For tackling the imbalanced
training-data problem, we propose an adaptive conformal transfor-
mation (ACT) algorithm, which conformally and adaptively spread
the area around the class-boundary outward on the Riemannian man-
ifold where all mapped data are located. We present the details in
Section 3.

One particular application scenario we utilized to evaluate our algo-

rithms is detecting suspicious activities in a parking lot. Our empirical
study shows that our spatio-temporal fusion scheme can efficiently and
reliably reconstruct scene activities even when individual cameras may
have spatial or temporal lapses, and that our sequence-alignment ker-
nel and ACT algorithm are highly effective in identifying suspicious
events.

The rest of the paper is organized as follows. Section 2 presents the
hierarchy of Kalman filters for fusing spatio-temporal data. Section 3
presents event characterization and detection methods. Section 4 presents
empirical results. In Section ?? we discuss related work. Finally, in
Section 5 we offer concluding remarks.

2. MULTI-SOURCE FUSION

We use the Kalman filter [2, 12] as the tool for fusing information
spatially and temporally from multiple cameras. The Kalman filter
is an optimal linear data-smoothing and prediction algorithm. It has
been applied extensively in control, signal processing, and navigation
applications since its introduction in 1960. Our novel contribution is
in using two-level Kalman filters to fuse data from multiple sources.

—_———_——_——_———

i = " &
X =i vorak { ‘| X,];S,?;gg,,_wom?(

a 3 1
X, 'I;(mzzggewovjd

o B

= . X

|f— — — —

m mage, —world |

[ie - B~]

FH S

Figure 1: Two-level hierarchical Kalman filter configuration
The Kalman filter has been widely used to estimate the internal state of
a system based on the observation of the system’s external behavior [2,
12]. Furthermore, a system’s state estimate can be computed and then
updated by incorporating external measurements iteratively—without
recomputing the estimate from scratch each time a new measurement
becomes available. Such an iterative process is optimal in the sense
that the Kalman filter incorporates all available information from past
measurements, weighted by their precision. Optimal information fu-
sion is achieved by combining three factors: (1) knowledge of the sys-
tem and measurement device dynamics, (2) the statistical description
of the system noises, measurement errors, and uncertainty in the sys-
tem model, and (3) relevant initial state description [12]. While the
Kalman filter is optimal only among linear estimators and when cer-
tain assumptions about the noise processes are valid, it is easy to imple-
ment and is efficient at run time. Work has also been done on relaxing
some of the assumptions, such as the Gaussian noise assumption and
the linearity assumption [11].

-]

Suppose that a vehicle is moving in the parking lot, whose trajectory is
described in the global reference system by P(¢) = [X (¢), Y (t), Z(£)]".
The trajectory may be observed in camera i, as p; (t) = [z:(t), y: (t)]7,
where ¢ = 1,---,m (m is the number of cameras used).> The ques-

1 There might be multiple moving vehicles in a busy parking lot, and
it may be difficult to synchronize the activities observed in multiple
cameras. The question is then how we disambiguate the correspon-
dence of multiple trajectories both spatially and temporally. Spatial
and temporal trajectory correspondence can be established through the
camera registration and stereopsis correspondence processes [3, 4, 7, 9,
10, 13, 14, 15], which are well established techniques in photogram-
metry and computer vision. For our discussion, we will assume that
these problems can be solved and we can achieve spatial and temporal

tion is then how to best estimate P(¢) given p;(¢),s = 1,--- ,m.

We formulate the solution as a two-level hierarchy of the Kalman fil-
ters. Referring to Fig. 1, at the bottom level of the hierarchy, we em-
ploy for each camera a Kalman filter to estimate, independently, the
position p;(t), velocity p;(t), and acceleration p;(t) of the vehicle,
based on the tracked image trajectory of the vehicle in the local camera
reference frame. Or in the Kalman filter jargon, the position, velocity,
and acceleration vectors establish the “state” of the system while the
image trajectory serves as the “observation” of the system state. At
the top level of the hierarchy, we use a single Kalman filter to esti-
mate the vehicle’s position P(t), velocity P(¢), and acceleration P(t)
in the global world reference frame—this time, using the estimated
positions, velocities, and accelerations from multiple cameras (p;(t),
p:(t), Di(t)) as observations (the solid feed-upward lines in Fig. 1).
This is possible because camera calibration and registration [3, 7, 10,
14, 15] are used for deriving the transform matrix Timage; worid-
This matrix allows p;, measured in the reference frame of an individ-
ual camera, to be related to P in the global world system. We also allow
dissemination of fused information to individual cameras (the dashed
feed-downward lines in Fig. 1) to help to guide image processing.

3. EVENT REPRESENTATION AND EVENT
DETECTION

In this section, we first depict how an event is characterized. We then
design a sequence-alignment kernel function to work with SVMs for
event detection. Finally, we propose using adaptive conformal trans-
formation, which adaptively modifies the resolution in the metric space
to deal with the imbalanced training-data problem.

3.1 Event Descriptors

We first segment a raw trajectory fused from multiple cameras into
fragments. Using a constrained optimization approach under the EM
(expectation-maximization) framework, we then label these fragments
semantically (e.g., a fragment representing a left turn action). We ap-
proximate the acceleration trajectory of a vehicle as a piecewise con-
stant (zeroth-order) or linear (first-order) function in terms of its di-
rection and its magnitude. When the magnitude of acceleration is first
order (r(t) = r, +try in Eq. 1), it gives rise to a motion trajectory that
is a concatenation of piecewise polynomials that can be as high as third
order (cubic). This is often considered sufficient to describe a multi-
tude of motion curves in the real world (e.g., in computer-aided design
[6] and computer graphics [8], piecewise third-order Hermite, Bezier,
and B-spline curves are universally used for design and manufactur-
ing). We chop the whole acceleration trajectory P(t), from ¢ = tmin
10 trmae (Where [tmin, tmaz] IS the time interval that a vehicle is ob-
served by one or more of the surveillance cameras) into, say, k pieces
suchthatt, <t; <--- <tpandt, = tmin, tk = tmaz

t; <t <tig1,8=0,---,k—1.

@

We employ an iterative expectation and maximization (EM) algorithm
[5] to segment trajectories. The EM algorithm consists of two stages:
(1) The E-stage hypothesizes the number of segments and their start
and stop locations, and (2) the M-stage optimizes the fitting parame-
ters based on the start and stop locations and the number of segments
from the E-stage. These two steps iterate until the solution converges.
Table 1 sketches the pseudo-code of the algorithm (using fitting 8(t)
as an illustration).

P(t) = r(t)e”), where

r(t) = r((,i_) or i) + trgi_)
8(t) = 65 or 659 + ol

registration of vehicle trajectories.

Tapie I THhe Motion eVent SEgMmentation process
1.) Initialization: Compute a linear fit to the 6(t) curve between the specified end points, denoted as [tmin, tmaz). Using the notation

Omaz = O(tmaz) aNd Opnin, = 0(tmin), We have
(emam

- emzn)t + (tmm, - tmam)e + (emzn - emam)tmin + (tmam - tmzn)emln =0 (2)

2.) Refinement: Compute location t,,qz4ev iN between ¢,,,:, and tmq. as the largest deviation of the true acceleration curve from the fitting,

tmazdev = argmazi|(fmae

- emzn)t + (tmzn - tmaw)e(t) + (9mzn -

emaz)tmin + (tmaac - tmzn)9m1n|/A (3)

mazdev = |(9mam — emin)tmawdeu + (tmzn - tmam)e(tmaxdev) + (emzn - emam)tmin + (tmam - tmzn)gmznvA (4)

where A = \/(Omam — gmzn)z + (tmam - tmin)2

3.) Iteration: If maxdev is above a preset threshold, break the curve into two sections [tmin, tmazdev) aNd [tmazdev, tmaz) and repeat the

first two steps using these two new intervals.

We label each segmented fragment based on its acceleration and veloc-
ity statistics. More specifically, we denote the initial vehicle velocity
when each segment starts as 'V, which can be either zero or nonzero.
The acceleration (Eqg. 1) can be either of a constant or linearly-varying
magnitude and/or of a constant or a linearly-varying direction. For
example, if |r| = 0, the motion pattern is either “constant speed” or
“stop.” Segmentation based on 6 is meaningful and necessary only
when |r| > 0. If |r| > 0, possible motion patterns include “speed
up,” “slow down,” “left turn,” and “right turn.” “Speed up” and “slow
down” can be determined by the sign of P - P. “Left turn” and “right
turn” are determined by the sign of (P x P).. If (P x P), > 0itisa
right turn, otherwise, it is a left turn.

3.2 Sequence Alignment Learning

In the previous section, we have labeled each segmented fragment of
a trajectory with a semantic label and its detailed attributes including
velocity and acceleration statistics. For convenience, we use a sym-
bol to denote the semantic label, e.g., ‘R’ represents “RightTurn,” ‘L’
represents “LeftTurn,” etc. We label each segment with a two-level
descriptor: a primary segment symbol and a set of secondary variables
(e.g., velocity and acceleration). We use s to denote a sequence, which
comprises the concatenation of segment symbols s; € A, where A is
the legal symbol set. We use v; to denote the vector of the 5** sec-
ondary variable.

The following example depicts a sequence with this two-level descrip-
tor. Sequence s denotes the segmented trajectory with v representing
the velocity and v, the acceleration. For velocity and acceleration, we
use their average values taken place in a segment.

S: c D v ¢ L R R L
vi: 07 05 08 08 07 08 06 0.5
ve2: 00 -02 03 00 -01 01 —-02 -01

Now, the trajectory learning problem is converted to the problem of
sequence-data learning with secondary variables. For this purpose, we
construct a new sequence-alignment kernel that can be applied to mea-
sure pair-wise similarity between sequences with secondary variables.

3.2.1 Tensor Product Kernel

The sequence-alignment kernel will take into consideration both the
degree of conformity of the symbolic summarizations and the similar-
ity between the secondary numerical descriptions (i.e., velocity and
acceleration) of the two sequences. Two separate kernels are used
for these two criteria and are then combined into a single sequence-
alignment kernel through tensor product. These are explained below.

Let x € X be a composite structure and z1,...,zn be its “parts”,
where z, € X, X = X1 x---x Xn, and N is a positive integer. For
our sequence data, x is a sequence with both primary segment symbols
and secondary variables. Let z; denote its primary symbol sequence,
and each other z; be its (3 — 1)“‘ secondary vector. Assume that X,
X1,...,An are nonempty sets. We define the tensor product kernel as
follows:

Definition 1. Tensor Product Kernel. Given x = (z1,...,ZN) €
X and x' = (z},...,2%) € X. If K1,...Kn are (positive definite)
kernels defined on X x X71,..., Xn x Xn respectively, then their tensor
product, K1 ® - - - ® K, defined on X x X is

Ki® - QKnxx)=K(z1,2]) Kn(zn,zy).0
Since kernels are closed under product [?], it is easy to see that the
tensor product kernel is positive definite if each individual kernel is
positive definite.

3.2.2 Sequence-alignment Kernel

To measure the similarity between two sequences, our idea is to first
compare their similarity at the symbol level. After the similarity is
computed at the primary level, we consider the similarity at the sec-
ondary variable level. We then use the tensor product kernel to fuse
the similarity at the primary and secondary level.

At the primary (segment-symbol) level, we use kernel Ki(s,s’) to
measure symbol-sequence similarity. We define K;(s,s’) as a joint
probability distribution (p.d.) that assigns a higher probability to more
similar sequence pairs. We employ pairs-HMM (PHMM) [?], a gen-
erative probability model, to model the joint p.d. of two symbol se-
quences. (Notice that PHMM is different from HMM, which aims to
model the evolution of individual sequence data.)

A realization of PHMM is a sequence of states, starting with START
and finishing with END; and in between there are three possible states:
states AB, A, and B. State AB emits two symbols, state A emits one
symbol for sequence a only, and state B emits one symbol for sequence
b only. State AB has an emission probability distribution pa;p; for
emitting an aligned a; : b;, and states A and B have distributions ga;,
and gs,; , respectively, for emitting a symbol against a gap, such as a; :
‘~"and ‘~" : b;. Parameter § denotes the transition probability from
AB to an insert gap state A or B, € the probability of staying in an insert
state, and 7 the probability of a transition into the END state. Any
particular pair of sequences a and b may be generated by exponentially
many different realizations. The dynamic programming algorithms can
sum over all possible realizations to calculate the joint probability of
any two sequences. The overall computational complexity is O(mn),
in which m and n are the lengths of the two sequences respectively.

To compute the similarity at the secondary level, we can concatenate all
variables into one vector, and employ a traditional vector-space kernel
such as an RBF function. Let K,(v,v’) denote such a kernel mea-
suring the distance between v and v’. (Notice that vectors v and v’
may differ in length since s and s’ may have different length. We will
discuss shortly how we align two vectors into the same length via an
example.) Finally, we define the tensor product on (S x §) x (V x V)

as
(KS ® K”)((Sav)a (S’,V’)) = KS(S:S’)KU(VaVI)' (5)

In the following we present an example to show the steps of comput-
ing similarity between two sequences using our sequence-alignment
kernel.

Example 1:
S: C D U C L R R L
v: 07 05 08 08 07 08 06 0.5
s: C U C L R L C
v': 05 04 04 05 06 0.6 0.6

Suppose we have two sequences (s, v) and (s’, v') as depicted above.
The similarity between the sequences is computed in the following
three steps:

o Step 1. Primary symbol-level similarity computation: K,(s,s’).
By using PHMM, we can obtain the joint p.d. K(s,s’) between
symbol sequences s and s’. As a part of the PHMM computation,
two sequences are aligned as follows:

¢c D U C L R R L -
¢ - v ¢ L R - L C

e Step 2. Secondary variable-level similarity computation: K, (v, v’).
The unaligned positions in v and v’ are padded by zero. We obtain
two equal-length vectors, and can compute their similarity by using
a traditional SVM kernel, e.g., an RBF function.

0.7 05 08 08 07 08 06 0.

5 0.0
05 00 04 04 05 06 00 06 0.6

o Step 3. Tensor fusion: (K ® Ky,)((s,v),(s',v')). O

There are three advantages of the above sequence-alignment kernel.
First, it can use any sequence-alignment algorithms to obtain a pair-
wise probability distribution for measuring variable-length sequence
similarity. (Again, we employ PHMM to perform the measurement.)
Second, the kernel considers not only the alignment of symbol strings
but also secondary variables, making the similarity measurement be-
tween two sequences more informative. Third, compared with the
SVM-Fisher kernel (discussed in Section ??), our sequence-alignment
kernel adds the ability to learn from negative training instances, as well
from positive training instances.

3.3 Imbalanced Learning via Adaptive Confor-

mal Transformation

Skewed class boundary is a subtle but severe problem that arises in us-
ing an SVM classifier—in fact in using any classifier—for real world
problems with imbalanced training data. To understand the nature
of the problem, let us consider it in a binary (positive vs. negative)
classification setting. Recall that the Bayesian framework estimates
the posterior probability using the class conditional and the prior [?].
When the training data are highly imbalanced, it can be inferred that
the state of the nature favors the majority class much more than the
other. Hence, when ambiguity arises in classifying a particular sample
because of similar class conditional densities for the two classes, the
Bayesian framework will rely on the large prior in favor of the majority
class to break the tie. Consequently, the decision boundary will skew
toward the minority class.

To illustrate this skew problem graphically, we use a 2D checkerboard
example. The checkerboard divides a 200 x 200 square into four quad-
rants. The top-left and bottom-right quadrants contain negative (major-
ity) instances while the top-right and bottom-left quadrants are occu-
pied by positive (minority) instances. The lines between the classes are
the “ideal” boundary that separates the two classes. In the rest of the
paper, we will use positive when referring to minority instances, and
negative when referring to majority instances.

Figure 2 exhibits the boundary distortion between the two left quad-
rants in the checkerboard under two different negative/positive training-

data ratios, where a black dot with a circle represents a support vector,
and its radius represents the weight value «; of the support vector.
The bigger the circle, the larger the «;. Figure 2(a) shows the SVM
class boundary when the ratio of the number of negative instances (in
the quadrant above) to the number of positive instances (in the quad-
rant below) is 10 : 1. Figure 2(b) shows the boundary when the ratio
increases to 10,000 : 1. The boundary in Figure 2(b) is much more
skewed towards the positive quadrant than the boundary in Figure 2(a),
and hence causes a higher incidence of false negatives.

While the Bayesian framework gives the optimal results (in terms of
the smallest average error rate) in a theoretical sense, one has to be
careful in applying it to real-world applications. In a real-world ap-
plication such as security surveillance, the risk (or consequence) of
mispredicting a positive event (a false negative) far outweights that of
mispredicting a negative event (a false positive). It is well known that
in a binary classification problem, Bayesian risks are defined as:

R(ap|x) = AppP(wp|x) + Apn P(wn|x) (6)
R(an|x) = AnpP(wp|x) + Ann P(wn|x)

where p and n refer to the positive and negative events, respectively,
Anp refersto the risk of a false negative, and A, the risk of a false pos-
itive. Which action (o, or a,,) to take—or which action has a smaller
risk—is affected not just by the event likelihood (which directly influ-
ences the misclassification error), but also by the risk of mispredictions
(Anp and Apn).

For security surveillance, positive (suspicious) events often occur much
less frequently than negative (benign) events. This fact causes imbal-
anced training data, and thereby results in higher incidence of false
negatives. To remedy this boundary-skew problem, we propose an
adaptive conformal transformation algorithm. In the remainder of this
section, we first outline how our prior work [?] deals with the prob-
lem in a vector space (Section 3.3.1). We then present our solution to
sequence-data learning where a discretized variable-length sequence
may not have a vector-space representation (Section 3.3.2).

C =1000 and Sigma = 31.62 C =1000 and Sigma = 10.0

105 105

951 °

0 20 40 60 80 100 900 20 40 60 80 100

(a) 10:1 (b) 10,000:1

Figure 2: Boundaries of Different Ratios.

3.3.1 Conformal Transformation in a Vector Space

In [?], we proposed feature-space adaptive conformal transformation
(ACT) for imbalance-data learning. We showed that conducting con-
formal transformation adaptively to data distribution, and adjusting
the degree of magnification based on feature-space distance (rather
than based on input-space distance proposed by [1]) can remedy the
imbalance-data learning problem.

A conformal transformation, also called a conformal mapping, is a
transformation 7" which takes the elements X € D to elements Y €
T'(D) while preserving the local angles between the elements after the
mapping, where D is the domain in which the elements X reside [?].

Kernel-based methods, such as SVMs, introduce a mapping function
& which embeds the the input space I into a high-dimensional feature

space F' as a curved Remannian manifold S where the mapped data
reside [?]. A Riemannian metric g;;(x) is then defined for S, which is
associated with the kernel function K (x, x’).

1 92K (x,X) K (x,x") ;
) Ox; Oz h azgaz; szl' @
The metric g;; shows how a local area around x in I is magnified in
F under the mapping of ®. The idea of conformal transformation in
SVMs is to enlarge the margin by increasing the magnification factor
g:j(x) around the boundary (represented by support vectors) and to
decrease it around the other points. This could be implemented by a
conformal transformation of the related kernel K (x,x') according to
Eq. 7, so that the spatial relationship between the data would not be
affected much [1]. Such a conformal transformation can be depicted
as

9ij(x) =

K(x,x') = D(X)D(X')K (x,x'), (8)
where D(z) is a properly defined positive conformal function. D(x)
should be chosen in a way such that the new Remannian metric g;; (x),
associated with the new kernel function K (x,x'), has larger values
near the decision boundary. Furthermore, to deal with the skew of the
class-boundary, we magnify g;; (X) more in the boundary area close to
the minority class. An RBF distance function such as

| xg]
kgg:v exp(T]?) 9)
is a good choice for D(x).

D(x) =

To reflect the spatial distribution of the support vectors in F', we hope
that the 7+, (the magnification factor in the neighborhood of support
vector z) would be smaller for the area in feature space F' where the
support vectors are dense, so as to get a larger magnification metric
i (X); otherwise 74, should be larger for the area in F' where the sup-
port vectors are scarce. In this way, 7 can be chosen as

Th = AVGie 10— 3 12< M, yi i} (12(x) — @(xx)[?), (20)
where the average comprises all support vectors falling into its neigh-
borhood with the radius of M but having different class labels with
®(x;). Here, M is the average distance of the nearest and the farthest
support vector from x. Choosing 7 in this way takes into consider-
ation the spatial distribution of the support vectors in F'. Although the
mapping ® is unknown, we can play the kernel trick to calculate the
distance in F':

[[@(x:) — ®(x)I)% = K (X5, X;) + K (Xp, Xz) — 2K (X3, Xg) (11)
Substituting Eq. 11 into Eqg. 10, we can then calculate the 7 for each
support vector, which can adaptively reflect the spatial distribution of
the support vector in F', not in 1.

When the training dataset is very imbalanced, the class boundary would
be skewed towards the minority class in the input space I. In this sit-
uation, the minority support vectors are located more closely to the
class-boundary than the majority ones in I. We then hope that the new
metric g;; (x) would further magnify the area far away from a minority
support vector x; so that the boundary imbalance could be alleviated.
Our algorithm thus assigns a coefficient for the 7 in Eq. 10 to reflect
the boundary skew in D(x). We choose the the square of 7, as n,7¢ if
Xy is a minority support vector, otherwise it is as 7, 72. We empirically
demonstrate that 7, and r, are proportional to the skew of support

vectors, or 1, s O({gy-), and . as O(3y+1), where [SV + | and

|SV — | denote the number of minority and majority support vectors,
respectively. Please refer to [?, ?] for details.

3.3.2 Conformal Transformation in a Metric Space
The sequence data do not reside in a Euclidean vector space. In this
particular situation, we cannot directly apply our adaptive conformal

transformation method for sequence-data learning. Fortunately, we
can embed them into a metric space via the sequence-alignment kernel
K, ® K, we constructed in Section 3.2. We can then apply the idea of
adaptive conformal transformation by modifying the metric distance in
this space.

D(X)=eXp(‘1/T2(1/Kxxk(X'Xk)-l))
1 T

T T T
08 -
_06F .
z /
a
04 . 1=50.0 ——
0.2 //’ =50 -------- m
// .
0 il 1 1 1
0 02 04 06 08 1
Kxxk(xvxk)

Figure 3: D(x) with Different ;.

Since x is a sequence instance, we cannot choose D(x) as in Eq. 9.
It is impossible to calculate the Euclidean distance |x — x;|. In Sec-
tion 3.3.2, we show that D(x) should be chosen in such a way that
the spatial resolution of the manifold S would be magnified around
the support vectors. In other words, if a training sample x’ is similar
to a support sequence? x, its embedded point via K, is close to the
support vector embedded by the support sequence x (or in its neigh-
borhood), D(x) then should be larger so as to achieve a greater mag-
nification. Since our sequence-alignment kernel K, (x,x") models
the similarity between the sequence data x and x’, we can assume that
their similarity represents their distance in a metric space (and vice
versa). Therefore, we choose D(x) as

ekl
Kagz, (x,x
Do)=Y exp |-~
kESQ Tk
where S@Q denotes the support sequence set, and 7 controls the magni-
tude of D(x). Figure 3 illustrates a D(z) for a given support sequence
xx, Where we can see D(z) becomes larger when a sequence x is more
similar to x;, (a larger K4,), and is shaped very differently with dif-
ferent 7. We thus adaptively choose 7 as

(12)

Tlg = AVGiE{Dist(x,-—xk)<M, yi#yk}DiSt(xi - Xk). (13)
In the above equation, the distance Dist(x; — xx) between two se-
quence data x; and xy, is calculated via the kernel trick as

Dist(x; — xg) = Koz, (Xi,%3) + Ka;zp, (Xky X)) — 2% Kgjay (Xi,Xg)-

The threshold M is chosen as the average of the minimal distar%ég
Distqn and the maximal distance Dist,,q.. In addition, 7 is scaled
in the same way as we did in Section 3.3.1 for dealing with the imbal-
anced training-data problem.

Figure 4 summarizes the ACT algorithm in sequence-data learning. We
apply ACT on the training dataset X:,qn until the testing accuracy
on X;.s+ cannot be further improved. In each iteration, ACT adap-
tively calculates 72 for each support sequence (step 9), based on the
distribution of support vectors embedded by support sequences in fea-
ture space F. ACT scales the 72 according to the negative-to-positive
support-sequence ratio (steps 10 to 13). Finally, ACT updates the ker-
nel matrix and performs retraining on X¢,qin (Steps 14 to 17).

2Since a training sample x is actually not a vector, but a discrete
sequence, we call it a support sequence if its embedded point via
K, = K, ® K, isasupport vector in the metric space.

Input:
Xtrain: Xtest: 9: K;
Output:
C; I* output classifier */
Variables:
SQ; /* support sequence set */
M; [* distance threshold */
s; [* asupport sequence */
s.T; [* parameter of s */
s.y; I* class label of s */
Function Calls:
SVMTrain(X¢rain, K); /* train SVM classifier C */
SVMClassify(Xtest, C); [* classify Xiest by C */

ExtractSQ(C); /* obtain SQ from C */
ComputeThresh(C); /* compute distance threshold */
Begin

1) C + SVMTrain(X¢rain, K);
2) €o1d 00;
3) €new < SVMClassify(Xziest,C);
4) while (Enew — Eo1q4 > 0
5) SQ<«ExtractSQ(C);
- +
6) My ¢ O(5&1), nn O(153=1);
7) foreachs € SQ
8) M «+ComputeThresh(s, SQ);
9) S.T < SqT‘t(AVGq;e{Dist(si—s)<M, s,'.y;és.y}DiSt(Si - S))’

10) ifs € SQ then /* a minority support sequence */
11) S.T 4 \/Tp X 8.7}
12) else /* a majority */
13) S.T < /Nn X s.T;
(oY)’
14) D(X) = 3 c50€XP 52
15) for each K;; in K
16) Kij < D(Xl) X D(Xj)XKij;
17) C « SVMTrain(X¢rain,K);
18) Eold < Enew;

19) enew « SVMClassify(Xiest, C);
20) return C;
End

Figure 4: ACT Algorithm for Learning Sequence Data.

4. EXPERIMENTAL RESULTS

We have conducted experiments on detecting suspicious events in a
parking-lot setting to validate the effectiveness of our proposed meth-
ods. We recorded one hour and a half’s video at parking lot-20 on
UCSB campus using two cameras. We collected trajectories depict-
ing five motion patterns: circling, zigzag-pattern or M-pattern, go-
straight, back-and-forth and parking. We classify these events into the
benign and suspicious categories. The benign-event category consists
of patterns go-straight and parking, and the suspicious-event category
consists of the other three patterns. We are most interested in detecting
suspicious event accurately. Specifically, we would like to answer the
following three questions:

1. Can the use of the two-level Kalman filter successfully reconstruct
motion patterns?

2. Can our sequence-data characterization and learning methods, in
particular, the tensor product kernel, work effectively to fuse the de-
gree of comformity of the symbolic symmarizations and the similar-
ity beween the secondary descriptions?

3. Can ACT reduce the incidence of false negatives while maintain-
ing low incidence of false positives?

We use specificity and sensitivity as the evaluation criteria. We define
the sensitivity of a learning algorithm as the ratio of the number of
true positive (TP) predictions over the number of positive instances
(TP+FN) in the test set, or Sensitivity = TP/(TP+FN). The specificity
is defined as the ratio of the number of true negative (TN) predictions
over the number of negative instances (TN + FP) in the test set. For

surveillance applications, we care more about the sensitivity and at the
same time, hopefully the specificity will not suffer too much from the
other side.

Table 2 depicts the two datasets, a balanced and a skewed dataset,
which we used to conduct the experiments. The balanced dataset was
produced from the recorded video. We then added synthetic trajaecories
to produce the skewed dataset. For each experiment, we chose 60% of
the data as the training set, and the remaining 40% as our testing data.
We used PHMM for sequence alignment and selected an RBF function
for K,(v,v') that works the best on the dataset. (The kernel and the
parameter selection processes are rather routine, so we do not report
them here.) We employed the best parameter settings obtained through
running a five-fold cross validation, and report average class-prediction
accuracy.

Balanced Data Set | Skewed Data Set
Motion Pattern # of Instances | # of Instances
Clircling 22 30
M — pattern 19 22
Back — and — forth 38 40
Benign event 41 3,361

Table 2: Datasets.

Experiment #1: Kalman filter evaluation.

For this experiment, two cameras were used to record the activi-
ties in the parking lot. Sample images for a circling pattern are
shown in Fig. 5(a) and (b).®> We employed a simple mechanism
for figure-background separation. As in our current experiment the
camera aims were fixed, we detected the presence of moving objects
by performing a simple difference operation between adjacent video
frames. We then extracted the moving objects by another difference
operation with an adjacent video frame with no motion. The Kalman
filter was used to track the moving vehicles. It helped in smooth-
ing the trajectories, fusing the trajectories from the two cameras, and
providing velocity and acceleration estimates from the raw trajecto-
ries. Fig. 5(c) shows the fused raw vehicle trajectories from the two
cameras. Sample raw and filtered vehicle trajectories are shown in
Fig. 5(d) where the black (dark) curve is the raw vehicle trajectory
and the red (light) curve is the Kalman filtered and fused trajectory.
The agreement of the two curves demonstrates the effectiveness of
our fusion and trajectory reconstruction method.

For trajectory segmentation, we imposed the piecewise linearity con-
straint on both |r| and € of the acceleration curve after the trajectory
was segmented into two types: where |r| > 0, and where |r| = 0.
In our experiment, the threshold for |r| to be considered roughly
zero was 0.9. (This level is indicated as the horizontal dashed line
in Figs. 5(e) and 6(c).)

In Fig. 5 (d) and (e), we show the sample results of segmenting a
circling pattern. Fig. 5(e) depicts the |r|, 8, and (P x P), curves
used in segmentation. The 8 and |r| trajectories estimated from the
Kalman filter are shown in black while the piecewise linear approxi-
mations of these curves using the EM algorithm described before are
shown in red. Vertical lines show the begin and end of each segment.
For illustration, the boundaries between adjacent segments and the
segment labels are shown in Fig. 5(d) as well.

Fig. 6 shows another result of segmenting an M-pattern. Fig. 6(a) de-
picts the raw, condensed footage from the left camera only. Fig. 6(b)
depicts the raw (in black) and the Kalman filtered (in red) trajecto-
ries, and (c) the |r|, 8, and (P x P), curves used in segmentation.
The segment boundaries and labels are superimposed on Fig. 6(b).
As can be seen from Figs. 5 and 6, the Kalman filter was able to
smooth the noisy raw trajectories and arrived at reasonable velocity

3To conserve space and to better illustrate the motion trajectories, we
superimposed multiple video frames into a single picture for display.

CS Right Right ; pight CS imgk Right Riit cs lime
wm wn wm tun tun

)

Figure 5: A Circling Pattern. (a) and (b) condensed video footages
from the left camera, (c) condensed video footage from the right
camera, (d) raw (black or dark) and the Kalman filtered (red or
light) trajectories with segment boundaries and labels, and (e) ac-
celeration curves used in segmentation.

and acceleration estimates. And our EM segmentation algorithm was
able to segment the trajectories into pieces that conformed to the in-
tuitive notion of a human observer. These results demonstrate that
our tracking and segmentation algorithms work correctly.
Experiment #2: Sequence-alignment kernel evaluation.

We used the balanced dataset to conduct this experiment. We com-
pared the classification accuracy between when we only have the pri-
mary segment symbols and when we also take secondary description
velocity into consideration. Figures 7(a) and 7(b) show that when the
secondary structure was considered, both sensitivity and specificity
were improved. The improvement is marked (about 6%) in sensi-
tivity. In the rest of the experiments, we thus considered both the
primary and secondary information.

Experiment #3: ACT evaluation.

In this experiment, we examined the effectiveness of ACT on two
datasets of different benign/suspicious ratios. The balanced dataset
(the second column in Table 2) has a benign/suspicious ratio of about

5T A Sl By E g S e o B Ut
Right Left ‘Right Left: :Right : Lef Right -
wn C3 i O hum CStum €S tum €8 tunCS tum time

Figure 6: An M-pattern. (a) c%cr)ldensed video footages, (b) raw
(black or dark) and the Kalman filtered (red or light) trajectories
with segment boundaries and labels, and (c) acceleration curves
used in segmentation.

50%. Figures 7(c) and 7(d) show that the employment of ACT im-
proves sensitivity significantly by 39%, whereas it degrades speci-
ficity by just 4%. Next, we repeated the ACT test on the skewed
dataset (the third column in Table 2), where the benign/suspicious
ratio is less than 3%. Figures 7(e) and 7(f) show that the average
sensitivity suffers from a drop from 68% to 35%. After applying
ACT, the average sensitivity improved to 70% by giving away just
3% in specificity.

5. CONCLUSIONS

In this paper, we have presented methods for 1) fusing multi-camera
surveillance data, 2) characterizing motion patterns and their secondary
structure, 3) and conducting statistical learning in an imbalanced training-
data setting for detecting rare events. For fusing multi-source data from
cameras with overlapping spatial and temporal coverage, we proposed
using a two-level hierarchy of Kalman filters. For characterizing mo-
tion patterns, we proposed our sequence-alignment kernel, which uses
tensor product to fuse a motion sequence’s symbolic summarizations
(e.g., left-turn and right-turn, which cannot be represented in a vector
space) and its secondary numeric characteristics (e.g., velocity, which

100 p 100 lgg DOWi thout ACT
90 0 mWith ACT
z 80 0 Symbol z 80 0 Symbol 20
:6” Zg description :JE Zg description = T0
2 o = o T 60
§ 40 W Symbol § 20 W Symbol .
% 30 description 2nd % 30 description 2nd g
& 9 description T description E 40
10 10 " 20
] 0 20
& > N & % < 10
é‘;&& o w°¢ c‘@" é‘:”& ol w°c e“* i
o < e * o < ¥ TR
o < o “ « & Circling H-pattern Back-forth
(a) Sensitivity (Kernel Test) (b) Specificity (Kernel Test)) (c) Sensitivity (ACT Test — Balanced Data)

,_.

=

=4
1

100
90
20
70
60
50
40
30
20
10
0
Circling M-pattern Back-forth Circling MN-pattern Back-forth Circling M-pattern Back-forth

MW thout ACT mWithout ACT MW thout ACT
MWith ACT MRith ACT MWith ACT

Percentage (%)
o
Z
Percentage (%)
Percentage (%)

L [[0 1 O L] A [0

L [[0 1 O L] A [0

(d) Specificity (ACT Test — Balanced Data) (e) Sensitivity (ACT Test — Skewed Data) (F) Specificity (ACT Test — Skewed Data)
Figure 7: Sensitivity and Specificity of Three Test Cases.

can be represented in a vector space). When the positive training in-
stances (i.e., suspicious events) are significantly outnumbered by the
negative training instances, we showed that kernel methods can suffer
from high event-detection errors. To remedy this problem, we pro-
posed an adaptive conformal transformation algorithm to work with
our sequence-alignment kernel. Through extensive empirical study in
a parking-lot surveillance setting, we showed that our system is highly
effective in identifying suspicious events.

6. REFERENCES

[1] S. Amari and S. Wu. Improving support vector machine classifiers by
modifying kernel functions. Neural Networks, 1999.

[2] R. G. Brown. Introduction to Random Signal Analysis and Kalman
filtering. Wiley, New York, NY, 1983.

[3] E. Church. Revised Geometry of the Aerial Photograph. Bulletin of
Aerial Photogrammetry, 15, 1945.

[4] D.F. DeMenthon and L. S. Davis. Model-based object pose in 25 lines
of code. Int. J. Comput. Vision, 15:123-141, 1995.

[5] R.O.Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2nd Ed.
Wiley, New York, 2001.

[6] G. Farin. Curves and Surfaces for Computer Aided Geometric Design.
Academic Press, San Diego, CA, 4 edition, 1997.

[7] O. Faugeras. Three-Dimensional Computer Vision. MIT Press,
Cambridge, MA, 1993.

[8] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice, 2nd ed. Addison-Wesley, Reading,
MA, 1990.

[9] R. Haralick, H. Joo, C. Lee, X. Zhuang, V. Vaidya, and M. Kim. Pose
estimation from corresponding point data. IEEE Trans. Syst., Man,
Cybern., 19:1426-46, 1989.

[10] R. Horaud, F. Dornaika, B. Lamiroy, and S. Christy. Object pose: The
link between weak perspective, paraperspective and full perspective. Int.
J. Comput. Vision, 22:173-189, 1997.

[11] S.J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte. A New Approach
for Filtering Nonlinear Systems. In Proc. Amiercan Control Conference,
Seattle, WA, 1995.

[12] P.S. Maybeck. Stochastic Models, Estimation, and Control, vol. 1.
Academic Press, New York, NY, 1979.

[13] F. W. Sears. Optics, 3rd Ed. Addison-Wesley, Reading, MA, 1958.

[14] G. Xuand Z. Zhang. Epipolar Geometry in Stereo, Motion and Object
Recognition. Kluwer Academic Publishers, The Netherlands, 1996.

[15] Z. Zhang. A flexible new technique for camera calibration. IEEE Trans.
Pattern Analy. Machine Intell., 22:1330-4, 2000.

