
Integrated Power Management for Video Streaming to

Mobile Handheld Devices

Radu Cornea, Shivajit Mohapatra, Nikil Dutt, Alex Nicolau & Nalini Venkatasubramanian

Dept. of Information & Computer Science

University of California, Irvine, CA 92697-3425

{radu,mopy,dutt,nicolau,nalini}@ics.uci.edu

Technical Report #03-19
Dept. of Information and Computer Science

University of California, Irvine, CA 92697, USA

May 2003

Abstract

Optimizing user experience for streaming video applications on handheld devices
is a significant research challenge. In this paper, we propose an integrated power
management approach that unifies low level architectural optimizations(CPU, mem-
ory, register), OS power-saving mechanisms (Dynamic Voltage Scaling) and adaptive
middleware techniques(admission control, optimal transcoding, network traffic regula-
tion). Specifically, we identify interaction parameters between the different levels and
optimize them to significantly reduce power consumption. With knowledge of device
configurations, dynamic device parameters and changing system conditions, the mid-
dleware layer selects an appropriate video quality and fine tunes the architecture for
optimized delivery of video. Our performance results indicate that architectural op-
timizations that are cognizant of user level parameters(e.g. transcoded video quality)
can provide energy gains as high as 57.5% for the CPU and memory. Middleware adap-
tations to changing network noise levels can save as much as 70% of energy consumed
by the wireless network interface. Furthermore, we demonstrate how such an inte-
grated framework, that supports tight coupling of inter-level parameters can enhance
user experience on a handheld substantially.

1

Contents

1 Motivation 5

2 System Architecture 7
2.1 Modeling User Perception on Handheld Computers 8

3 Architectural Tuning for Improved Multimedia Streaming 10
3.1 Hardware-level Knobs for Handheld Devices 10
3.2 Quality-driven Cache Reconfiguration . 12
3.3 Integrated Dynamic Voltage Scaling . 14

4 Architecture-Aware Middleware Adaptation 15
4.1 Energy-Aware Admission Control & Stream Transformations 15
4.2 Network Traffic Regulation . 16

5 Performance Evaluation 18
5.1 Experimental Setup . 18
5.2 Experimental Results . 19

6 Related Work 24

A Other Experimental Results 27
A.1 Cache Exploration Results Before Applying DVS 27

A.1.1 Action Clips . 27
A.1.2 News Clips . 28

A.2 Cache Exploration Results After Applying DVS 29
A.2.1 Action Clip . 29
A.2.2 News Clip . 30

2

List of Figures

1 Conjunctive low-level and high-level adaptations for optimizing Power & Per-
formance of Streaming Video to Mobile handheld computers 6

2 System Model . 7
3 Main Components of a Handheld Device (a) and CPU Detail (b) 10
4 Internal Relative Power Distribution on the CPU During MPEG Decoding . 11
5 Cache Energy Variation on Size and Associativity 13
6 Admission Control . 16
7 Wireless Network . 17
8 Setup for Power Profiling . 18
9 Cache Optimization for a High Quality, Action Clip 20
10 Cache Optimization for a High Quality, News Clip 20
11 Search Space for a Medium Quality Action Clip, no DVS 21
12 Search Space for a Medium Quality Action Clip, after DVS 21
13 Finding Optimal Burst Time . 23
14 Optimal Burst Times . 23
15 Power vs. Noise . 23
16 Utility Factor over time . 24
17 UF2 . 24
18 Cache Exploration Results for High Quality (Q1, Q2, Q3), Action Clips . . 27
19 Cache Exploration Results for Medium Quality (Q4, Q5, Q6), Action Clips 27
20 Cache Exploration Results for High Quality (Q1, Q2, Q3), News Clips . . . 28
21 Cache Exploration Results for Medium Quality (Q4, Q5, Q6), News Clips . 28
22 Cache/DVS Exploration Results for High Quality (Q1, Q2, Q3), Action Clips 29
23 Cache/DVS Exploration Results for Medium Quality (Q4, Q5, Q6), Action

Clips . 29
24 Cache/DVS Exploration Results for High Quality (Q1, Q2, Q3), News Clips 30
25 Cache/DVS Exploration Results for Medium Quality (Q4, Q5, Q6), News

Clips . 30

3

List of Tables

1 Energy-Aware Transformations for Compaq Ipaq 3650 with bright backlight,
Cisco 350 Series Aironet WNIC card, for the Grand Theft Auto action video(encoded
using MPEG-1), using Pocket Video player(CE, HTTP streaming) and Vide-
oLan client(Linux, UDP streaming). 9

2 Architectural Configurations for Ideal Energy and Performance Gains (Action
Clip) . 22

3 Architectural Configurations for Ideal Energy and Performance Gains (News
Clip) . 22

4 Optimal network video burst lengths(in secs) and corresponding power gains
for different quality and noise levels for the Grand Theft Auto action video,
assuming sufficient buffer available at client and network packet size of 500KB 24

4

1 Motivation

Rapid advances in processor and wireless networking technology are ushering in a new class
of multimedia applications (e.g. video streaming) for mobile handheld devices. These devices
have modest sizes and weights, and therefore inadequate resources - lower processing power,
memory, display capabilities, storage and limited battery lifetime as compared to desktop
and laptop systems. Multimedia applications on the other hand have distinctive Quality
of Service(QoS) and processing requirements which tend to make them extremely resource-
hungry. In addition, the device specific attributes(e.g form factor) significantly influence
the human perception of multimedia quality. Therefore, delivering high quality multimedia
content to mobile handheld devices, while preserving their service lifetimes remain competing
design requirements. This innate conflict introduces key research challenges in the design of
multimedia applications, intermediate adaptations and low-level architectural improvements
of the device.

Recent years have witnessed researchers aggressively trying to propose and optimize tech-
niques for power and performance trade-offs for realtime applications. Several interesting
solutions have been proposed at various computational levels - system cache and external
memory access optimization, dynamic voltage scaling(DVS) [17, 14], dynamic power manage-
ment of disks and network interfaces, efficient compilers and application/middleware based
adaptations [15, 16]. However, an interesting disconnect is observed in the research initiatives
undertaken at each level. Power optimization techniques developed at each computational
level have remained seemingly independent of the other abstraction hierarchy levels, po-
tentially missing opportunities for substantial improvements achievable through cross-level
integration. Noticeably, the joint performance of an aggregation of techniques at various
levels has received relatively little interest. The cumulative power gains observed by aggre-
gating techniques at each stage can be potentially significant; however, it also requires a
study of the trade-offs involved and the customizations required for unified operation. For
example, decisive middleware/OS based adaptations are possible if low-level information(e.g
optimal register file sizes & cache configurations) is made available; similarly low level archi-
tectural components(e.g CPU registers, caches etc.) can be optimized if the architecture is
cognizant of higher-level details such as specific video encoding. Fig. 1 presents the different
computation levels in a typical handheld computer and indicates the cross layer interactions
for optimal power and performance deliverance.

The purpose of our study is to develop and integrate hardware based architectural opti-
mization techniques with high level operating system and middleware approaches (Fig. 1),
for improvements in power savings and the overall user experience, in the context of video
streaming to a low-power handheld device. Multimedia applications heavily utilize the
biggest power consumers in modern computers: the CPU , the network and the display(see
Fig. 1). Therefore, we aggregate hardware and software techniques that induce power sav-
ings for these resources. To maximize power gains for a CPU architecture, we identify the
predominant internal units of the architecture that contribute to power consumption. We
use higher-level knowledge such as quality and encoding parameters of the video stream to

5

. Voltage scaling interface

. Architectural tuning knobs

U S E R A P P L I C A T I O N S (Quality perception + Utility)

. Video Quality Feedback

TRANSCODING ADM. CONTROLNETWORK MGMT. DISTRIBUTED
MIDDLEWARE

. Stream quality

. Operating Voltage

. NIC power control

NETWORK
CARD

Cache
Optimization

Memory
Access

Register
AllocationDISPLAY CPU

bus

DVS COMPILER OPTIMIZATIONSOS Optimizations

. A
rc

hi
te

ct
ur

e
 s

pe
ci

fi
c

kn
ob

s
(r

eg
is

te
r

fi
le

 s
iz

es
, c

ac
he

co

nf
ig

ur
at

io
n.

)co
n

tr
o

lle
d

 p
ac

ke
t

st
re

am
in

g

O
p

t.
 o

p
er

at
in

g
 p

o
in

t

. Residual Power Info

. Power API

. NIC idle period

. Video encoding info

Fig. 1. Conjunctive low-level and high-level adaptations for optimizing Power & Perfor-
mance of Streaming Video to Mobile handheld computers

optimize internal cache configurations, CPU registers and the external memory accesses.
Further we study the trade-offs of using DVS alongside the other optimizations. Knowledge
of the underlying architectural configuration is used by the compiler to generate code that
compliments the optimizations at the low-level architecture.

Similarly, we utilize hardware/design level data(e.g cache config.) and user-level infor-
mation(video quality perception) to optimize middleware and OS components for improved
performance and power savings - through effective video transcoding, power-aware admis-
sion control and efficient network transmission. We reduce the power consumption of the
network card by switching it to the “sleep” mode during periods of inactivity. An efficient
middleware is used to control network traffic for optimal power management of the network
interface. To maximize user experience, we conduct extensive tests to study video quality
and power trade-offs for handheld computers. We use these results to drive our optimization
efforts at each computing level.

Research Contributions

In this paper, we address the aforementioned challenge of integrating techniques at different
levels(hardware, OS, middleware, “User”) through a multi-phase approach. Specifically, we
(i) identify low-level architectural tuning knobs combined with compilation techniques for
optimizing CPU performance; optimal operating points are then identified for video streams
of specific quality levels using these knobs. we study the tradeoffs involved in performing
DVS along with our low-level optimization methods. (ii) present a feedback-based middle-
ware for power-aware admission control, quality and power-supported video transcoding.

6

(iii) extensively study power vs. quality tradeoffs in the context of handheld computers; we
combine our extensive survey results on user perception of video quality on handheld com-
puters with our experiences to drive our optimization decisions at each level, (iv) evaluate
the power gains of the wireless network interface using an adaptive middleware technique
for a typical network with multiple users(noise). Finally, we evaluate the performance of the
integrated approach in improving the overall user experience(satisfaction) in the context of
streaming video to handheld computers.

Our performance results indicate that when optimized for discrete quality levels, our ar-
chitectural optimizations saved as much as 47.5% to 57.5% energy for the CPU and memory.
Additionally, our adaptive middleware technique yielded 60%-78% savings in the power con-
sumption of the network interface card. By integrating the above techniques we were able
to enhance the user experience substantially.

2 System Architecture

We assume the system model depicted in Fig. 2. The system entities include a multimedia
server, a proxy server that utilizes a directory service, a rule base for specific devices and
a video transcoder, an ethernet switch, the wireless access point and users with low-power
wireless devices. The circles represent the noise at the access point due to network traffic
introduced by “other” users. The multimedia servers store the multimedia content and
stream videos to clients upon receipt of a request. The users issue requests for video streams
on their handheld devices. All communication between the handheld device and the servers
are routed through the proxy server, that can transcode the video stream in realtime.

P C

Switch Access
Point

Proxy

S
Server

noise

W A N W I R E D E T H E R N E T
W I R E L E SS

C

C

U
 S

 E
 R

 S

Directory
Service

Rule
base

Transcoder

Fig. 2. System Model

The middleware executes on both the handheld device and the proxy, and performs two
important functions. On the device, it obtains residual energy availability information from
the underlying architecture and feeds it back to the proxy and relates the video stream pa-
rameters and network related control information to lower abstraction layers. On the proxy,
it performs a feedback based power aware admission control and realtime transcoding of the
video stream, based on the feedback from the device. It also regulates the video transmis-
sion over the network based on the noise level and the video stream quality. Additionally,

7

the middleware exploits dynamic global state information(e.g mobility info, noise level etc.)
available at the directory service and static device specific knowledge (architecture, OS,
video quality levels) from the static rule base, to optimally perform its functions. The rate
at which feedbacks are sent by the device is dictated by administrative policies like periodic
feedback etc.. Moreover we assume that network connectivity is maintained at all times.

2.1 Modeling User Perception on Handheld Computers

In order to achieve an optimal balance between power and performance, we introduce a
notion of “Utility Factor UF ” for a system, and try to optimize the UF for the system. This
approach precludes the system from aggressively optimizing for power at the expense of
performance and vice-versa; thereby providing an optimized operating point for the system
at all times. Under this strategy, the system tries to utilize all the available energy to
maximize the user experience. UF is a measure of “user satisfaction” and we specify it as
follows: given the residual energy Eres on a handheld device, a threshold video quality level
(QMAX < QA < QMIN), and the time of the video playback T, the UF of the system is
non-negative, if the system can stream the highest possible quality of video to the user such
that the time, quality and the power constraints are satisfied; otherwise UF is negative. Let
PV ID denote the average power consumption rate of the video playback at the handheld and
QPLAY be the quality of video streamed to the user by the system. Using the above notation,
we define UF as follows:

UF =





QMAX −QPLAY IFF PV ID ∗ T < ERES

QPLAY ≥ QA

−1 Otherwise

In order to maintain an acceptable UF for the system, it is important to understand the
notion of video quality for a handheld device and its implications on power consumption.
Though this is not the primary focus of our work, we extensively studied user perception of
video quality for handheld devices. Video applications introduce the notion of human per-
ception of video quality as an important measure of performance. Moreover, user perception
of quality is significantly influenced by the environment and the viewing device(e.g PDA) [1].
These factors make objective assessment [2] of video quality extremely hard and subjective
assessment [1] still remains the primary method of video quality appraisal. To validate our
assessments, we conducted an extensive survey to subjectively assess the human perception
of video quality on handhelds. We tried to follow the recommendations in [1] for our assess-
ment techniques. We showed our subjects various videos(action, news, sports etc.) encoded
at 12 different quality levels streamed onto a handheld(iPAQ). We also recorded the average
overall energy consumption of the handheld for viewing the streams. The same subjects
were also shown the same videos on a laptop. Based on our experiences and the results of
our extensive survey, we present the following interesting observations and conclusions:

• Almost 90% of the subjects were able to differentiate between close video quality levels

8

Quality Transformation Parameters Avg. Power Avg. Power
(Windows CE) (Linux)

Like Original (No improvement required) SIF, 30fps, 650Kbps 4.42 W 6.07 W
Excellent SIF, 25fps, 450Kbps 4.37 W 5.99 W

Very Good SIF, 25fps, 350Kbps 4.31 W 5.86 W
Good HSIF, 24fps, 350Kbps 4.24 W 5.81 W
Fair HSIF, 24fps, 200Kbps 4.15 W 5.73 W
Poor HSIF, 24fps, 150Kbps 4.06 W 5.63 W
Bad QSIF, 20fps, 150Kbps 3.95 W 5.5 W

Terrible (poorer quality not acceptable) QSIF, 20fps,100kbps 3.88 W 5.38 W

Table 1. Energy-Aware Transformations for Compaq Ipaq 3650 with bright backlight,
Cisco 350 Series Aironet WNIC card, for the Grand Theft Auto action video(encoded using
MPEG-1), using Pocket Video player(CE, HTTP streaming) and VideoLan client(Linux,
UDP streaming).

on laptop/desktop systems; however only about 20% were able to differentiate between
close quality levels on a handheld computer.

• It was hard to programmatically identify video quality parameters(a combination of
bit rate, frame rate and video resolution) that produced a user perceptible change in
video quality and/or a noticeable shift in power consumption.

• The manner of video display (auto, nominal, fit screen(stretching)) has a an impact on
power consumption for the lowest quality streams but is insignificant for high quality
streams. Almost all users preferred to watch the video in “auto” mode that preserved
the video resolution.

• For all the video streams to handheld devices, it was enough to use just three standard
intermediate formats(e.g SIF(320x240), Half SIF(340x160) and Quarter SIF(160x120))
for frame resolution values. Other resolutions did not produce a perceptible quality
change or power uptake compared to the nearest SIF encoded video with similar bit and
frame rates. For videos of resolution higher than SIF, the player automatically resized
the video with the power consumption being similar to videos encoded with SIF and
nearest frame rate and bit rates.

Based on these conclusions, we identify the eight dynamic video stream transformation
parameters (Table 1) for our proxy-based realtime transcoding and use the profiled average
power consumption values to perform a high-level(coarse) power aware admission control
for the system. Note that similar device specific transformations can be made for other
portable computers. More importantly, we also optimize our low-level architecture based on
these discrete video quality levels. This approach provides us with two significant advan-
tages: (i) Real time stream quality transformations can be performed with no overheads of

9

CPU

MemoryDisplay

Network
card

a b

Data
Cache

Register
File

Functional
Units

Clock

Fig. 3. Main Components of a Handheld Device (a) and CPU Detail (b)

dynamically determining quality degradation parameters, (ii) using the architectural tun-
ing, optimized operating points can be pre-determined for a particular video stream quality.
With the knowledge of the stream qualities, low-level cpu voltage scaling can also be opti-
mized. The following sections describe the architectural and middleware optimizations that
are integrated into our system.

3 Architectural Tuning for Improved Multimedia Stream-

ing

Hardware design techniques that identify multiple modes of operation and dynamic reconfig-
uration can be employed to attain high power and performance gains at the CPU architecture
level. In order to optimize the architecture for delivering optimal energy performance, we
first identify the low level functional units that have maximal impact on power consumption.
Furthermore, for video applications, some architectural components are more amenable for
power improvements than others. We focus on these components for architectural level fine
tuning, in the context of MPEG video applications; we identify ”knobs” for these compo-
nents that can be made available to the higher abstraction levels for dynamically tuning the
hardware for MPEG video applications.

3.1 Hardware-level Knobs for Handheld Devices

As shown on Fig. 3(a), there are three major sources of power consumption in a handheld
device (e.g. iPaq): display (around 1W for full backlight), network hardware (1.4W) and
CPU/memory (1-3W, with the additional board circuits). Each of these subsystems expose
ways for controlling the power dissipation. In case of the display (LCD), the main energy
drain comes from the backlight, which is a predefined user setting and therefore has a limited
degree of controllability by the system (without affecting the final utility). The network
interface allows for efficient power savings if cognizant of the higher level protocol’s behavior
and will be explored in a subsequent section. Out of the three components mentioned above,
the CPU coupled with the memory subsystem poses the biggest challenge. Its intrinsic
high dependence on the input data to be processed, the quality of the code generated by

10

the compiler and the organization of its internal architecture make predicting its power
consumption profile very hard in general; nevertheless, very good power saving results can
be obtained by utilizing the knowledge of the application running on it and through extensive
profiling of a representative data input set from the application’s domain. Over the rest of
this section, we focus our attention on the possible optimizations at the CPU level for a
multimedia streaming application (MPEG).

We identified the subcomponents of the CPU (Fig. 3(b)) that consume the most power
and observed the power distribution inside the CPU for MPEG decoding. Using extensive
experimentation (Fig. 4) we conclude that:

• The relative power contribution of the internal units of the CPU do not vary signifi-
cantly with the nature or quality of the video played. A possible reason for this is the
symmetrical and repetitive nature of MPEG decoding, whose processing is done on
fixed size blocks or macroblocks.

• The units that show an important contribution to the overall power consumption and
are amenable for power optimization are: caches, register files, functional units. Cache
behavior greatly affects the memory performance and hence power consumption, so we
optimize the entire memory subsystem in an integrated way.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Renaming

Branch
 P

redictor

Instr
uctio

n W
indow

Load-S
tore Q

ueue

Regist
er F

ile

Instr
ucti

on C
ache

Data C
ach

e

ALU U
nits

Resu
lt B

us

Fig. 4. Internal Relative Power Distribution on the CPU During MPEG Decoding

We briefly discuss the components identified above and suggest some additional improve-
ments as a part of future work.

• Caches/Memory: cache configurations are determined by their size, number of sets,
and associativity. The size specifies how large a cache should be, while the associativ-
ity/number of sets control its internal structure. We identify that most power gains for
MPEG are possible through cache reconfiguration, more specific the data cache; cache
optimizations influence memory traffic, so they are studied in an integrated way.

11

• Compiler: An efficient compiler can automatically set knobs as it generates the code.
One example is the register file size. Each functions in the code has its own processing
and storage requirements and therefore the compiler can choose a minimal register
set to be used at runtime; this allows for the rest of the registers to be turned off,
therefore saving power. We have experimented with this technique and noticed that
the performance improvements in the case of MPEG decoding were just marginal and
did not justify further evaluation.

• Frame Traversal: Decompressing MPEG video in its implied order does not leave
space for exploiting the limited locality existent between dependent macroblocks. By
just changing the frame traversal order algorithm based on the existing locality, faster
decompression rates and significant power saving are achieved via reduced memory
accesses [8]. Our proxy-based approach allows for a transparent on-the fly traversal
reordering at transcoding time, giving an advantage over previous work where this was
done at the device, incurring unacceptable frame decoding delays. However, we cite
this as future work and this is not included in our results.

We should mention that while current processors (including the ARM core on iPaq)
in general do not exhibit such aggressive architectural reconfigurations, except for special
purposes, there are many research projects on this and eventually the techniques will be
incorporated into more future processors.

Another knob, independent of the above is power management through the use of dynamic
voltage scaling of the processor(DVS). DVS provides significant savings for MPEG streaming
as it allows tradeoffs for transforming the frame decoding slack time (CPU idle time) into
important power savings. We discuss DVS in a subsequent section and investigate the
implications of DVS on other knobs in the system. All these knobs when fine-tuned for a
specific video quality, will provide the best operating point(for power and performance) for
a specific video stream.

3.2 Quality-driven Cache Reconfiguration

There are various techniques pertinent to cache optimizations. Power consumption for the
cache depends on the runtime access counts: while hits result in only a cache access, misses
add the penalty of accessing the main memory (external). Fortunately, in most applications
the inherent locality of data means that cache miss rate is relatively low and so are accesses to
external memory. However, MPEG decoding exhibits a relatively poor data locality, which,
when combined with the large data sets exercised by the algorithm, leads to an increase in
the cache memory-traffic.

The best configuration of the cache is not easily predictable; in fact, it may even be
counter-intuitive. Decreasing the cache size, or the associativity, yields a reduction in cache
power consumption; on the other hand it will generate more memory traffic due to the more
frequent misses and line cache replacements, increasing power uptake. Finding the best

12

solution point is only achievable through an extensive simulation and profiling with data
that is representative for the video domain.

Internal CPU caches are characterized by their size(S), number of sets(NS), line size(LS)
and associativity(A). The relation between them is given by the formula NS × LS × A =
S. We maintain the line size constant LS = c, as it is typically harder to change line size
through reconfiguration. As a result, we can fully describe the configuration of a cache by
a pair (S, A). Over the next paragraphs, by cache we refer to data cache (not instruction
cache, which is not the scope of our optimizations).

Our cache reconfiguration goal is optimizing energy consumption for a particular video
quality level Qk. In general, cache power consumption for a particular configuration and
video quality is given by the function Ecache,k(S, A). By profiling this function for the entire
search space (S, A) of available cache configurations, we generate a cache energy variation
graph shown in Fig. 5. Depending on the video quality Qk played, there will be one optimal
operating point for that video quality: (Sopt

k , Aopt
k).

1 2 4 8 16 32
64

32

16

8

4

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Cache
Size

Cache Associativity

Total Energy (J)

Fig. 5. Cache Energy Variation on Size and Associativity

We found out that for all video qualities an optimized operating point exists and it
improves cache power consumption by up to 10-20% (as opposed to a suboptimized configu-
ration). This technique effectively fine-tune the organization of the cache so that it perfectly
matches the application and the data sets to be processed, yielding important power savings.

Cache behavior (especially misses) greatly affect memory performance (in terms of num-
ber of accesses). As we are interested in the total system power consumption and memory
power is significant at this level; therefore we include it in our analysis. A memory ac-
cess is performed (i) in case of a cache miss, to fetch an entire cache line and (ii) when a
line needs to be replaced and is marked dirty (has been modified and needs to be written
back to the memory). Hence the number of accesses to the memory can be computed as
accesses = misses + writebacks. Because we are not modifying the line size when
reconfiguring the cache, energy consumption for a single memory access is constant Eaccess.
With this, the memory energy consumption is given by the formula Ememory,k(S, A) =

13

accessesk(S, A) × Eaccess. By including the memory energy, the optimal operating point
may change, as shown by the total energy consumption graph, as a function of cache param-
eters. Our results are along the line suggested in previous work [19].

3.3 Integrated Dynamic Voltage Scaling

The previous section shows that significant power savings can be achieved by optimally
reconfiguring the cache to match the video quality. The savings can be further increased
when this is combined with dynamic voltage scaling (DVS). A processor normally operates
at a specific supply voltage V and clock frequency f . The dynamic power dissipated by
the CPU (and any other CMOS circuits due to switching activity, in addition to the static
component) varies linearly with frequency and circuit capacitance, and quadratically with
voltage: P ∝ C × f × V 2. The disadvantage of applying dynamic voltage scaling is its
power-performance tradeoff. The values of P and f are not independent, the supply voltage
determines the circuit delay τ (τ ∝ V/(V − VT)α, where VT is the threshold voltage and
α is a velocity saturation index). Lowering the voltage causes an increase in the circuit delay
and so a decrease in the frequency supported. As a consequence, DVS is only applied where
such a tradeoff can be made.

In MPEG decoding, frames are processed in a fraction of the frame delay (Fd = 1/frame rate).
The actual value for the frame decoding time D depends on the type of MPEG frame being
processed (I, P, B) and also on the cache configuration (S, A) and DVS setting (f, V). In
this study, we assume a buffered based decoding, where the decoded frames are placed in a
temporary buffer and are only read when the frame is displayed. This allows us to decouple
the decoder from the displaying; decoding time it still different for different frame, but we can
assume an average D for a particular video stream/quality. The difference between the aver-
age frame delay and actual frame decoding time gives us the slack time θ = Fd − D. When
we perform DVS, we slow down the CPU so as to decrease the slack time to a minimum.

Let us assume that the initial configuration for the CPU before applying DVS is (f0, V0).
Frame decoding time is dependent on the cache configuration and the frequency at which the
processor was running during profiling D(S, A, f0). The equation for the frame decoding
slack time can be written as: θ0 = Fd − D(S, A, f0). After applying voltage scaling, the
new values for frequency and voltage are (fnew, Vnew). The frame decoding time changes:
Dnew = Fd − D(S, A, f0) ∗ f0/fnew and the slack time is θnew = Fd − D(S, A, f0) ∗
f0/fnew. The optimal solution is attained when the slack time θnew is closest but not less
than zero. For a particular quality level Qk the frame delay Fd is a constant (known). The
value for fnew is optimal when it minimizes θnew (the slack time).

Having the best DVS setting for each cache configuration and quality level, we can look
at the effect of the integrated approach on the power consumption. The DVS is not totally
independent of the cache reconfiguration technique (cache configurations with a largest slack
time allow for higher DVS based power reductions) and as a result it effectively reshapes
the total power consumption. Through simulation, we find the best operating points for the
DVS/cache reconfiguration combined approach in a manner similar to the one applied in the

14

previous section.

4 Architecture-Aware Middleware Adaptation

As seen in the previous section, architectural level optimizations can lead to substantial
power and performance improvements. The gains can be further amplified if the low-level
architecture is cognizant of the exact characteristics of the streamed video. An adaptive
middleware framework at a proxy can dynamically intercept and doctor a video stream to
exactly match the video characteristics for which the target architecture has been optimized.
Additionally, it can regulate the network traffic to induce maximal power savings in a net-
work interface. In this section, we introduce middleware techniques that compliment the
architectural optimization approach.

4.1 Energy-Aware Admission Control & Stream Transformations

The middleware on the proxy utilizes the feedback from the device, to continuously monitor
the Uf of the system. It performs an energy aware admission control initially to identify
whether a request can be scheduled. Subsequently, it monitors the residual energy at the
device and streams the highest quality video (performing realtime video transcoding) that
meets the energy budget at the device and maintains an acceptable Uf . We characterize the
admission control and stream transformations using the following parameters:

• Tstart,Tcur: The start time of the video streaming and the current time respectively.
• T : duration of the entire video.
• Eres : Residual energy of the device.
• Q1 .. QN : The ’N’ video quality levels with the associated video transforma-

tion(Table 1) and architectural optimization parameters.
• P1 .. PN : The average power consumption(e.g. Table 1) of the corresponding quality

levels of the video.
• If : Interval between successive feedbacks. This is decided by administrative policies.
• Qa : Lowest user acceptable video quality for the request.
• Ri, F : The initial request and the feedback from the device respectively. The initial

request contains Eres, Qa and device specific details such as (NIC model, CPU arch etc).
The feedback(F) simply contains values for Eres and Qa. Note that Ri is used for initial
admission and F is used for maintaining an acceptable Uf .

Fig 6 outlines the high level admission control algorithm employed by the proxy middle-
ware. An initial admission control is performed to check whether the video can be streamed
at the user requested quality level for the entire length of the video. Subsequently, the stream
quality is adjusted using the periodic feedbacks from the device.

15

WHILE (TRUE)
{

IF (Ri OR F received)
{

Determine i, such that Qi = Qa;
IF ((T – (Tcur – Tstart)) * Pi <= E res&& Uf == acceptable)

Find Highest Qi that satisfies the above
inequality. Set the corresponding transformation
parameters for the transcoder.

ELSE
REJECTthe request OR (Negotiate video quality)

}
}

Fig. 6. Admission Control

4.2 Network Traffic Regulation

In this section, we develop a proxy-based traffic regulation mechanism to reduce energy
consumption by the device network interface. Our mechanism (a) dynamically adapts to
changing network(e.g noise) and device conditions. (b) accounts for attributes of the wireless
access points (e.g. buffering capabilities) and the underlying network protocol (e.g. packet
size). (c) uses the proxy to buffer and transmit optimized bursts of video along with control
information to the device. However, even though packets are transmitted in bursts by the
proxy, the device receives packets that are skewed over time Fig. 7; this cuts power savings,
as the net sleep time of the interface is reduced. The skew is caused due to the ethernet
access protocol(e.g CSMA/CD) and/or the fair queueing algorithms implemented at the AP.
Our mechanism optimizes the stream, such that the optimal video bursts sizes are sent for
a given noise level, thus maximizing energy savings without performance costs.

Wireless network interface(WNIC) cards typically operate in four modes: transmit, re-
ceive, sleep and idle. We estimated the power consumption of the Cisco Aironet 350 series
WLAN card to have the following power consumption characteristics: transmit(1.68W), re-
ceive(1.435W), idle(1.34W) and sleep(0.184W) which agree with the measurements made by
Havinga et al. in [12, 20]. This observation [6] suggests that significant energy savings can
be achieved by transitioning the network interface from idle to sleep mode during periods
of inactivity. The use of bursty traffic was first suggested by Chandra [6, 7] and control
information was used for adaptation in [18].

We analyze the above power saving approach using a realistic network framework(Fig. 7),
in the presence of noise and AP limitations. The proxy middleware buffers the transcoded
video and transmits I seconds of video in a single burst along with the time τ=I for the
next transmission as control information. The device then uses this control information to
switch the interface to the active/idle mode at time τ + γ × DEtoE, where γ is an estimate
between zero and one and DEtoE is the end-to-end network delay with no noise [18].

Let B be the average video transmission bit-rate, F the video frame rate, SN the packet

16

t t

P CHTTP/TCP/IP

RTP/UDP/IP
802.11b

C

C
Wired

Wired wireless

User NUser 1

Proxy

Access
Point

Wireless
device

packets

Fig. 7. Wireless Network

size used by the underlying network protocol. Let there be N users in the system. We model
each “other” user as a Poisson process that injects packets into the network with the packet
inter-arrival times following an exponential distribution with rate λ, with a density function
of f(t) = λ.e−λt. Therefore, the number of packets introduced into the network by each
user in an interval ’t’ has an expected value E(t) = λ.t. Assume that the AP employs
a simple round robin service for transmitting packets and let LAP be the buffer length(in
number of packets) available at the AP for downstream traffic. Let BWs, BWd be the
bandwidth available to the wireless device for transmitting and receiving data; TAP , Pd be
the queueing transmission delay per packet of the AP and propagation delay of the wireless
network respectively. Using the above characterization, the number of packets per frame α
= B

8×SN ×F
and the total number of packets transmitted in one burst Pb = α × F × I.

To simplify the analysis, we further assume that there are no loss of packets at the AP
due to weak signal strengths or collisions. However, packets do get dropped if the AP buffer
capacity (LAP) is less than the number of arriving packets. A queueing theory analysis is
used to predict packet loss rates at the AP. We omit the details due to space constraints. If
Tb is the time taken to transmit the burst by the proxy, then the total expected number of
packets received at the AP in that interval is σ = Pb +

∑k=N−1
k=1 Ek(Tb), where Ek is the

expected value of noise from by user k.
The worst case expected transmission delay experienced by the last packet in the burst

is D = σ × TAP . Using the above approach of bursty transmissions, the total “sleep”
time(δ) of the network interface can be calculated as δ = τ − (D + γ × DEtoE), neglecting
the propagation delay of the final packet. As significant power gains are only achieved
when the network interface is in the sleep mode, the total power savings are Psaved = δ *
(PIDLE - PSLEEP). Observe that large values of I can result in packet losses at the access
point and/or buffer overflows at the device. We acknowledge that a QoS aware preferential
service algorithm at the access point can impact power management significantly. The above
analysis can be used by an adaptive middleware to calculate an optimal I (burst length) for
any given video stream and noise level.

In the previous section, we demonstrated how low level architecture can be optimized

17

using high level information. In this section, we presented two middleware techniques that
can be used to compliment the low-level hardware optimizations, lower energy consumption
of the NIC and improve the overall utility of the system. We now present the performance
results.

5 Performance Evaluation

We adopted a multi-phase methodology to achieve our results. First, through extensive ex-
perimentation and profiling we identified eight determinate video quality levels for a hand-
held. This determined our dynamic video transcoding parameters. Next, we optimized the
low-level architecture to perform optimally with the above video streams. We also identified
the best network transmission characteristics for video streams encoded at the above quality
levels. Using these operating points for architecture and network transmission, we used our
proxy admission control algorithm to optimally stream videos to the iPAQ, and measured
the Utility Factor(UF) for the system.

5.1 Experimental Setup

For video quality measurements, we used the setup shown in Fig. 8. All our measurements
were made for a Compaq iPAQ 3650, with a 206Mhz Intel StrongArm processor, with 16MB
ROM, 32MB SDRAM. The iPAQ used a Cisco 350 Series Aironet 11Mbps wireless PCMCIA
network interface card for communication. The batteries were removed from the iPAQ
during the experiment. We used a National Instruments PCI DAQ board to sample voltage
drops across a resistor and the iPAQ, and sampled the voltages at 200K samples/sec. We
calculated the instantaneous and average power consumption of the iPAQ using the formula
PiP AQ = VR

R
× ViP AQ (Fig. 8). A number of videos ranging from high, medium and low

action content were studied.

Cable

DAQ

Power measurement system
(Windows XP, 650 MHz

E
xt

er
n

al
 V

o
lt

ag
e

S
u

p
p

ly
 (

 5
V

)

AP

BNC-2110
connector

802.11b

Streaming
video

Serial connection

Wireless

R=.22ohm

ProxyVR

V
iP

A
Q

Fig. 8. Setup for Power Profiling

18

The CPU architecture simulation was implemented using the Wattch/SimpleScalar [5]
power simulator. We configured our simulated CPU to resemble a typical Intel XScale
processor (widely used in today’s mobile devices, mostly due to their excellent MIPS/Watt
performance): ARM core, 400 MHz, 1.3V, 0.18um, 32k instruction cache, 32k data cache,
single issue. The MPEG decoder from Berkeley MPEG Tools was used. Video transcoding
was done using the commercially available TMPGEnc transcoder. As input video for the
decoding, we used traces from various video clips from low action(e.g. “news”) like content
to high action (e.g. GTA) fast scene changing streams. For each of these clips, we extract a
sequence to be simulated and we encode it at noticeable different levels of quality (Table 1).
The decoding program is then simulated through Wattch and statistics are extracted from
the simulator output.

While the external memory is not simulated in Wattch, we estimate the power for memory
accesses based on values from memory catalogs and cache statistics that translate in memory
accesses (read and write misses). Including the external memory in our experiments is very
important for accurate results, as is has been shown that the cache-memory traffic is very
inefficient for MPEG video decoding [19]. In our experiments, we vary the cache size from
4Kb to 64Kb (4, 8, 16, 32, 64) and the associativity from 1 (direct mapped) to 32 (1, 2, 4,
8, 16, 32). This translates in a 5 x 6 = 30 point search space. The same exploration is done
for each video quality (Q1 through Q8). Level 1 correspond to the best possible quality:
320x240 frame size, 30fps framerate, 650kbps bitrate. From 1 to 8, each level differs from
the previous one by at least one parameter (frame size, frame rate or bitrate). This way, we
have a clear (observable) degradation in quality between each quality level. We collect the
total energy consumption for the duration of the clips (10 seconds).

We simulated the overall system using the admission control, network traffic regulation
for measuring the Utility factor(UF) for the system. First, for each video quality(Q1-Q8), we
varied the video burst time(100ms to 20sec) and the network noise level(N=1 to N=15), the
network packet size (200bytes to 700 bytes) with the constant end-to-end network delay of
400ms. The wired and wireless ethernet bandwidths were set to 10Mbps and 8Mbps(effective
B/W, 802.11b is capable of higher throughput) and γ was set to a 0.85. The transmission
delay of the wireless access point was also fixed at 400µs per packet. Using the search space,
we determined the ideal video burst size for a particular noise level and packet size, for each
quality level. Using these operating points, we measured the overall UF of the system for
video streams of various playback times.

5.2 Experimental Results

In this section, we first analyze the performance of our architectural and middleware opti-
mizations. Later, we present the improvements in the overall utility of the system achieved
in the system with the integrated approach.

19

Architectural Optimizations

We profile short (10sec) video clips through our power simulator, for all combinations of
cache parameters. Two examples of the total (CPU/memory) energy variation is shown in
Fig. 9 and Fig. 10 (high quality MPEG clips). For all video quality levels, we were able
to determine a cache configuration that minimizes energy consumption. Moreover, through
cache reconfiguration, we obtained power savings in the range 10-15%, depending on the
nature of the video.

From the two graphs we make the following observations:

• The type of video content has a great impact on the shape of the energy consumption
vs cache parameters. Looking at the two figures, we can observe that the first one
(representing an action video) has a steeper shape, while the second (news video) is
more flat.

• Cache associativity produces the largest shift in energy consumption, extreme values
proving very inefficient(especially for direct mapped caches).

• The best cache configurations were in most of the cases [32Kb, 2-way set-associative]
and [8Kb, 8-way set associative]. This reflects the internal storage requirements for
different frame sizes and organization of the decoding algorithm.

1
2

4
8

16
32

64

32

16

8

4

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Cache
SizeCache Associativity

Total Energy (J)

Fig. 9. Cache Optimization for a High
Quality, Action Clip

1 2 4 8 16 32
64

32

16

8

4

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Cache
Size

Cache Associativity

Total Energy (J)

Fig. 10. Cache Optimization for a High
Quality, News Clip

Optimized Knobs after Applying DVS

We combined dynamic voltage scaling technique with cache reconfiguration for an increased
overall effect on power consumption. Fig 11 and Fig 12 plot energy consumption for a
medium quality level of the same video used in Fig. 9, before and after DVS. The combined

20

1 2 4 8 16 32
64

32

16

8

4

0.45

0.50

0.55

0.60

0.65

0.70

Cache
Size

Cache Associativity

Total Energy (J)

Fig. 11. Search Space for a Medium Qual-
ity Action Clip, no DVS

1
2

4
8

16
32

64

32

16

8

4

0.23

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

Cache
SizeCache Associativity

Total Energy (J)

Fig. 12. Search Space for a Medium Qual-
ity Action Clip, after DVS

approach gave us up to 60% in energy savings as compared with the initial architecture.
We repeated the same procedure for all the video quality levels. We make the following
observations:

• DVS effectively lowers the floor on the energy surface, for most cache configurations,
with the exception of small caches, with low associativity and small sizes. The reason
is that the small, directed caches are already very inefficient for MPEG decoding and
cannot accept the extra performance degradation caused by DVS.

• Comparing the high & medium quality video energy graphs for the same clip, we can
see that lowering the video quality level, not only decreases the energy consumption,
but also shifts the optimized point in regions very inefficient previously (e.g. 32k, 2-way
cache vs 8k, 8-way).

• In most of the cases we were able to run the CPU at a significant lower voltage
(100MHz, 66MHz), mainly due to the initial high speed of the simulated XScale pro-
cessor (400MHz) and the quality of the code (highly optimized). A real device may not
be able to scale the frequency to such a low level, due to other required computations
except MPEG decoding (network drivers, OS, image rendering).

The overall energy savings we obtained after both above techniques and the knob values
for the optimized configuration are shown in Table 2 and Table 3, for action and news video
clips.

Middleware Optimization for Video Bursts

Fig. 15 shows the power optimization space for an “action video” for the eight video quality
streams in the presence of noise. The case(N=1) represents the case with no noise(recall

21

Video Cache Cache Clock Voltage Original Optimized Savings
Quality Size Associativity Frequency Energy Energy
Q1 8 8 100 1 1.29 0.76 47.5%
Q2 8 8 100 1 1.09 0.64 47.8%
Q3 8 8 100 1 0.95 0.56 48.0%
Q4 32 2 66 0.9 0.54 0.26 57.6%
Q5 32 2 66 0.9 0.48 0.23 57.8%
Q6 32 2 33 0.9 0.42 0.20 58.0%
Q7 8 8 33 0.9 0.29 0.14 57.3%
Q8 8 8 33 0.9 0.24 0.11 57.5%

Table 2. Architectural Configurations for Ideal Energy and Performance Gains (Action
Clip)

Video Cache Cache Clock Voltage Original Optimized Savings
Quality Size Associativity Frequency Energy Energy
Q1 8 8 100 1 1.19 0.70 47.7%
Q2 8 8 100 1 1.02 0.60 48.1%
Q3 8 8 100 1 0.94 0.55 48.4%
Q4 32 2 66 0.9 0.54 0.26 57.7%
Q5 32 2 66 0.9 0.48 0.23 57.9%
Q6 32 2 66 0.9 0.43 0.21 58.2%
Q7 32 2 33 0.9 0.31 0.15 57.4%
Q8 32 2 33 0.9 0.26 0.12 57.7%

Table 3. Architectural Configurations for Ideal Energy and Performance Gains (News
Clip)

number of users introducing noise is N-1 in our model). It was seen that the power saved at
the NIC, is the least for the highest quality video and the most for the lowest quality video.
Also, as expected the power gains diminish with noise. Fig. 14 shows the optimal burst time
search space for the video streams. As expected the highest quality video has a very small
burst time compared to the lowest quality video. The ideal burst times were ascertained
such that none of the frames missed deadlines at the device. With a small tolerance to
missed frames the power savings can be improved even further. Table 4 shows the ideal
burst times and the corresponding power savings for the same video stream encoded at the
eight quality levels. Fig. 13 shows the percentage of packets dropped in the network for
different burst times and noise levels for the highest quality stream. Clearly very small burst
times yield no gains. The vertical line indicates the point at which packets start getting
dropped. Interestingly, for every additional user in the system, a new optimal burst time

22

exists.

Optimal Burst Times

-10

0

10

20

30

40

50

60

70

80

0.
25

0.
30

0.
35

0.
45

0.
50

0.
70

0.
80

0.
90

1.
00

1.
20

1.
30

1.
40

1.
45

1.
50

1.
75

2.
00

2.
50

3.
00

Burst Times

N=3

N=3

N=5

N=5

N=8

N=8

N=12

N=12

N
O

 G
A

IN

Power saved (100mW)
%

 p
ac

ke
ts

 d
ro

ppe
d

(ms of video)

Fig. 13. Finding Optimal Burst Time

0

2

4

6

8

10

12

14

16

18

Q1Q2Q3Q4Q5Q6Q7Q8

N=1

N=3

N=5

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18

B
ur

st
 ti

m
es

 (
se

cs
)

video quality
no

ise

Fig. 14. Optimal Burst Times

Q1
Q2

Q3
Q4

Q5
Q6

Q7
Q8

N=1
N=3

N=5

55

60

65

70

75

80

Video quality
no

ise

%
 p

ow
er

 s
av

ed

Fig. 15. Power vs. Noise

Utility Factor of the Integrated Framework

We finally evaluate the performance of the integrated framework with the architectural and
middleware optimizations in place. Here we observe how the Utility Factor (UF), which is
a measure of ”user satisfaction” is improved by the system. Fig. 16 plots the Utility Factor
versus time for a two hour video sequence with varying initial residual energy values at
the device. The horizontal lines indicate the UF without the optimizations. Clearly, the
savings allow for a significant improvement in the UF , and hence substantially improves
the user experience. Fig. 16 shows the same video requested but this time with a random
user induced energy cost(due to other processes, backlight etc.). Clearly, the utility factor
is improved with the integrated approach even in the presence of noise. Note that for us
“Q1” is the highest quality and “Q8” is the lowest quality, therefore a higher utility factor
indicates better user experience.

23

Quality Level Burst Length Power Saved Burst Length Power Saved Burst Length Power Saved
(N=1, secs) (N=1,Watts) (N=3, secs) (N=3,Watts) (N=5, secs) (N=5, Watts)

Q1 2.3 .925 2.0 0.89 1.8 0.87
Q2 3.5 1.0 3.05 0.98 2.76 0.96
Q3 4.6 1.04 4.05 1.02 3.68 1.0
Q4 4.85 1.05 4.2 1.03 3.85 1.02
Q5 6.8 1.08 6.25 1.07 5.75 1.06
Q6 14.5 1.12 12.5 1.11 11.5 1.11
Q7 17.5 1.13 15.0 1.12 13.5 1.11
Q8 17.0 1.12 15.4 1.12 14.0 1.11

Table 4. Optimal network video burst lengths(in secs) and corresponding power gains
for different quality and noise levels for the Grand Theft Auto action video, assuming
sufficient buffer available at client and network packet size of 500KB

0

1

2

3

4

5

6

7

8

0

33
0

66
0

99
0

13
20

16
50

19
80

23
10

26
40

29
70

33
00

36
30

39
60

42
90

46
20

49
50

52
80

56
10

59
40

62
70

66
00

69
30

IIL = LIFETIME OF iPAQ AT THE
TIME OF VIDEO REQUEST

IIL = 144 – 148 mins (No Optimizations)

Video playback time
(secs)

IIL = 150 to 154 mins (No Optimizations)

IIL
 =

 1
44

 m
in

IIL
 =

 1
46

 m
in

IIL
 =

 1
50

 m
in

With optimization

UF at start of streaming

Fig. 16. Utility Factor over time

0

1

2

3

4

5

6

7

8

0

3
00

6
00

9
00

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

51
00

54
00

57
00

60
00

63
00

66
00

69
00

72
00

U
ti

lit
y

F
ac

to
r

II
L

 =
 1

46
 m

in
s

IIL = 146min (no optimization)

IIL = LIFETIME OF iPAQ AT THE
TIME OF VIDEO REQUEST

UF at start of streaming

With optimization and noise

Video playback time
(secs)

Fig. 17. UF2

6 Related Work

To provide acceptable video performance at the hardware level, efforts have concentrated on
analyzing the behavior of the decoder software and devising either architectural enhance-
ments or software improvements for the decoding algorithm. Until recently it was believed
that caches can bring no potential benefit in the context of MPEG (video) decoding. In fact,
due to the poor locality of the data stream, many MPEG implementations viewed video data
as “un-cacheable” and completely disabled the internal caches during playback. However,
Soderquist and Leeser [19] show that video data has sufficient locality that can be exploited
to reduce cache-memory traffic by 50 percent or more through simple architectural changes.
Dynamic Voltage Scaling [14, 9] for MPEG streams have been widely researched. A differ-
ent way of improving cache performance by reordering frame traversal was proposed in [8].

24

Register file reconfiguration was applied in [4]. At the application and middleware levels, the
primary focus has been to optimize network interface power consumption [10, 6, 7]. A thor-
ough analysis of power consumption of wireless network interfaces has been presented in [10].
Chandra et al. [6] have explored the wireless network energy consumption of streaming video
formats like Windows Media, Real media and Apple Quick Time. In [7], they have explored
the effectiveness of energy aware traffic shaping closer to a mobile client. In [18], Shenoy sug-
gests performing power friendly proxy based video transformations to reduce video quality
in real-time for energy savings. They also suggest an intelligent network streaming strategy
for saving power on the network interface. We have a similar approach, but we model a noisy
channel. Caching streams of multiple qualities for efficient performance has been suggested
in [11]. The GRACE project [23] professes the use of cross-layer adaptations for maximizing
system utility. They suggest both coarse grained and fine grained tuning of parameters for
optimal gains. In [22], a resource aware admission control and adaptation is suggested for
multimedia applications for optimal CPU gains. Dynamic transcoding techniques have been
studied in [3] and objective video quality assessment has been studied in [21, 13].

Conclusions & Future Work

In this paper, we integrated low-level hardware optimizations with high level middleware
adaptations for enhancing the user experience for streaming video onto handheld computers.
We identified and fine tuned low level hardware to perform optimally with video streams at
discrete quality levels. We then used a higher level middleware approach to intercept and
doctor the stream to compliment the architectural optimizations. A proxy based adaptive
network transmission mechanism was developed to minimize the power consumption of the
network interface card. Finally, all the above techniques were integrated into a system, and
the overall system utility in terms of user satisfaction was measured. Significant improve-
ments were observed in the requested video stream quality, enhancing the user experience
substantially. We are currently exploring further architectural and middleware adaptations
for improving the power consumption of displays, storage devices etc. and integrating them
into the framework. In mobile multimedia environments, composition of additional middle-
ware services like domain security levels and service protocols pose interesting challenges,
that we plan to investigate.

References

[1] “ITU-R Recommendation BT-500.7, Methodology for the subjective assessment of the quality of tele-
vision pictures”. In ITU Geneva Switzerland, 1995.

[2] Sarnoff Corporation white paper, JND: a human vision system model for objective picture quality
measurements. In http://www.sarnoff.com, 2001.

[3] S. Acharia and B.C.Smith. Compressed Domain Transcoding of MPEG. In ICMCS, 1998.

[4] A. Azevedo, R. Cornea, I. Issenin, R. Gupta, N. Dutt, A. Nicolau, and A. Veidenbaum. Architectural
and compiler strategies for dynamic power management in the copper project. In IWIA, 2001.

25

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level power analysis
and optimizations. June 2000.

[6] S. Chandra. Wireless Network Interface Energy Consumption Implications of Popular Streaming For-
mats. In MMCN, January 2002.

[7] S. Chandra and A. Vahdat. Application-specific Network Management for Energy-aware Streaming of
Popular Multimedia Formats. In Usenix Annual Technical Conference, June 2002.

[8] W. chi Feng and S. Sechrest. Improving data caching for software mpeg video decompression. In
IS&T/SPIE Digital Video Compresssion: Algorithms and Technologies, February 1996.

[9] K. Choi, K. Dantu, W.-C. Chen, and M. Pedram. Frame-Based Dynamic Voltage and Frequency Scaling
for a MPEG Decoder. In ICCAD 2000, 2002.

[10] L. Feeney and M. Nilsson. Investigating the Energy Consumption of a Wireless Network Interface in
an ad hoc Networking Environment. In IEEE Infocom, April 2001.

[11] J. Flinn and M. Satyanarayanan. Energy-Aware Adaptations for Mobile Applications. In SOSP.

[12] P. J. M. Havinga. Mobile Multimedia Systems. PhD thesis, University of Twente, Feb 2000.

[13] J. Jansen, T. Coppens, and D. D. Vleeschauwer. Quality Assessment of Video Streaming in the Broad-
band Era. In ACIVS, 2002.

[14] M. Mesarina and Y. Turner. A Reduced Energy Decoding of MPEG Streams. In MMCN, January
2002.

[15] S. Mohapatra and N. Venkatasubramanian. PARM: Power-Aware Reconfigurable Middleware. In
ICDCS-23, 2003.

[16] B. D. Noble, M. Satyanarayanan, D.Narayanan, J.E.Tilton, and J. Flinn. Agile Application-Aware
Adaptation for Mobility. In SOSP, October 1997.

[17] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-Power Embedded Operating
Systems. In SOSP, 2001.

[18] P. Shenoy and P. Radkov. Proxy-Assisted Power-Friendly Streaming to Mobile Devices. In MMCN,
2003.

[19] P. Soderquist and M. Leeser. Optimizing the data cache performance of a software MPEG-2 video
decoder. In ACM Multimedia, pages 291–301, 1997.

[20] M. Stemm and R. Katz. Measuring and Reducing energy consumption of network interfaces in hand-held
devices. In IEICE, August 1997.

[21] S. Winkler. Issues in vision modeling for perceptual video quality assessment. In Signal Processing
78(2), 1999., 1999.

[22] W. Yuan and K. Nahrstedt. A Middleware Framework Coordinating Processor/Power Resource Man-
agement for Multimedia Applications. In IEEE Globecom, Nov 2001.

[23] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets. Design and Evaluation of a Cross-Layer
Adaptation Framework for Mobile Multimedia Systems. In MMCN, January 2003.

26

A Other Experimental Results

A.1 Cache Exploration Results Before Applying DVS

A.1.1 Action Clips

1 2 4 8 16 32
64

32

16

8

4

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Cache
Size

Cache Associativity

Total Energy (J)

1 2 4 8 16 32
64

32

16

8

4

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Cache
Size

Cache Associativity

Total Energy (J)

1 2 4 8 16 32
64

32

16

8

4

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Cache
Size

Cache Associativity

Total Energy (J)

Fig. 18. Cache Exploration Results for High Quality (Q1, Q2, Q3), Action Clips

1 2 4 8 16 32
64

32

16

8

4

0.5

0.6

0.6

0.7

0.7

0.8

Cache
Size

Cache Associativity

Total Energy (J)

1 2 4 8 16 32
64

32

16

8

4

0.45

0.50

0.55

0.60

0.65

0.70

Cache
Size

Cache Associativity

Total Energy (J)

1 2 4 8 16 32
64

32

16

8

4

0.40

0.45

0.50

0.55

0.60

0.65

Cache
Size

Cache Associativity

Total Energy (J)

Fig. 19. Cache Exploration Results for Medium Quality (Q4, Q5, Q6), Action Clips

27

A.1.2 News Clips

1 2 4 8 16 32
64

32

16

8

4

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

Cache
SizeCache Associativity

Total Energy (J)

1 2 4 8 16 32
64

32

16

8

4

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Cache
SizeCache Associativity

Total Energy (J)

1 2 4 8 16 32
64

32

16

8

4

0.9

1.1

1.3

1.5

1.7

1.9

2.1

Cache
SizeCache Associativity

Total Energy (J)

Fig. 20. Cache Exploration Results for High Quality (Q1, Q2, Q3), News Clips

1 2 4 8 16 32
64

32

16

8

4

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Cache
SizeCache Associativity

Total Energy (J)

1 2 4 8 16 32
64

32

16

8

4

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Cache
SizeCache Associativity

Total Energy (J)

1 2 4 8 16 32
64

32

16

8

4

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Cache
SizeCache Associativity

Total Energy (J)

Fig. 21. Cache Exploration Results for Medium Quality (Q4, Q5, Q6), News Clips

28

A.2 Cache Exploration Results After Applying DVS

A.2.1 Action Clip

1
2

4
8

16
32

64

32

16

8

4

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Cache
Size

Cache Associativity

Total Energy (J)

1
2

4
8

16
32

64

32

16

8

4

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Cache
Size

Cache Associativity

Total Energy (J)

1
2

4
8

16
32

64

32

16

8

4

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Cache
Size

Cache Associativity

Total Energy (J)

Fig. 22. Cache/DVS Exploration Results for High Quality (Q1, Q2, Q3), Action Clips

1
2

4
8

16
32

64

32

16

8

4

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

0.45

Cache
Size

Cache Associativity

Total Energy (J)

1
2

4
8

16
32

64

32

16

8

4

0.23

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

Cache
Size

Cache Associativity

Total Energy (J)

1
2

4
8

16
32

64

32

16

8

4

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

Cache
Size

Cache Associativity

Total Energy (J)

Fig. 23. Cache/DVS Exploration Results for Medium Quality (Q4, Q5, Q6), Action Clips

29

A.2.2 News Clip

1
2

4
8

16
32

64

32

16

8

4

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

Cache
Size

Cache Associativity

Total Energy (J)

1
2

4
8

16
32

64

32

16

8

4

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

Cache
Size

Cache Associativity

Total Energy (J)

1
2

4
8

16
32

64

32

16

8

4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Cache
Size

Cache Associativity

Total Energy (J)

Fig. 24. Cache/DVS Exploration Results for High Quality (Q1, Q2, Q3), News Clips

1
2

4
8

16
32

64

32

16

8

4

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Cache
Size

Cache Associativity

Total Energy (J)

1
2

4
8

16
32

64

32

16

8

4

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Cache
Size

Cache Associativity

Total Energy (J)

1
2

4
8

16
32

64

32

16

8

4

0.18

0.23

0.28

0.33

0.38

0.43

0.48

Cache
Size

Cache Associativity

Total Energy (J)

Fig. 25. Cache/DVS Exploration Results for Medium Quality (Q4, Q5, Q6), News Clips

30

