
Using SVG as the Rendering Model for Structured and 
Graphically Complex Web Material

Julius C. Mong and David F. Brailsford 
Electronic Publishing Research Group 

School of Computer Science & IT 
University of Nottingham 

Nottingham NG8 1BB, UK 

{jxm,dfb}@cs.nott.ac.uk

ABSTRACT 
This paper reports some experiments in using SVG (Scalable 
Vector Graphics), rather than the browser default of 
(X)HTML/CSS, as a potential Web-based rendering technology, 
in an attempt to create an approach that integrates the structural 
and display aspects of a Web document in a single XML-
compliant envelope. 

Although the syntax of SVG is XML based, the semantics of the 
primitive graphic operations more closely resemble those of page 
description languages such as PostScript or PDF. The principal 
usage of SVG, so far, is for inserting complex graphic material 
into Web pages that are predominantly controlled via (X)HTML 
and CSS. 

The conversion of structured and unstructured PDF into SVG is 
discussed. It is found that unstructured PDF converts into pages of 
SVG with few problems, but difficulties arise when one attempts 
to map the structural components of a Tagged PDF into an XML 
skeleton underlying the corresponding SVG. These difficulties are 
not fundamentally syntactic; they arise largely because browsers 
are innately bound to (X)HTML/CSS as their default rendering 
model. Some suggestions are made for ways in which SVG could 
be more totally integrated into browser functionality, with the 
possibility that future browsers might be able to use SVG as their 
default rendering paradigm. 

Categories and Subject Descriptors 
E.1 [Data]: Data Structures — Trees; I.7.2 [Document and Text 
Processing]: Document Preparation — Markup languages; I.7.4 
[Document and Text Processing]: Electronic Publishing. 

General Terms 
Algorithms, Documentation, Experimentation. 

Keywords 
PDF, SVG, XML, vector graphics. 

1.  INTRODUCTION 
Current Web browser technologies are routinely based around the 
HTML markup language (or, more recently, its cleaned-up XML-
compliant version called XHTML).  

FINAL DRAFT of paper accepted for 
DocEng’03, November 20–22, 2003, Grenoble, France. 
Copyright 2003 Mong and Brailsford. 

 

For enhanced Web page styling that goes beyond the XHTML 
defaults there is the option to use the Cascading Stylesheets (CSS) 
facilities. CSS can also be used to style arbitrary XML-based 
documents within the current generation of Web browsers. 

From the outset, Web browsers have supported only simple 
bitmap formats for graphical material, such as GIF and JPEG, 
despite the fact that raster files in these formats are large and the 
resulting bitmap graphics are resolution-dependent. The World 
Wide Web Consortium (W3C), aware of the need for a flexible 
vector graphics format for the Web, set up a working group in 
1998, charged with drawing up draft proposals for Scalable 
Vector Graphics (SVG) to be expressed in XML-compliant 
syntax. The advantages of vector graphics in terms of graphical 
precision and scalability become very apparent in material such as 
maps, line-diagrams and block schematics. The involvement of 
Adobe Systems Inc on the SVG working group did much to 
ensure that although SVG was syntactically XML-compliant the 
actual graphical semantics of its behaviour resembled, fairly 
closely, those of its PostScript and PDF page description 
languages. 

SVG has predefined graphics elements, such as lines, rectangles 
and circles, which can be combined to create simple diagrams. For 
more sophisticated designs, operations are available for specifying 
an individual object’s fill rule, colour space, transformation 
matrix, etc. SVG is also capable of placing text strings at arbitrary 
positions within the display of material on the screen. Indeed there 
is little to prevent it being used as a page layout language, very 
much like PostScript itself. Furthermore, since SVG code is itself 
text based, it is possible for search engines to easily index and 
search within any SVG material. 

2.  INVESTIGATION 
Despite the fact that SVG is an application of XML it is unusual 
in that its tags describe low-level graphic primitives rather than 
the abstract logical structure more generally modelled in other 
XML applications. Thus some other XML-based tagset has to be 
devised to delineate the higher-level document architecture that 
lies behind the presentational use of SVG. 

With the help of all the characteristics and tools of XML, such as 
well-formedness, namespaces, schemas and DOM, document 
structure can be presented as a traversable tree, because the 
structure of XML itself is fundamentally tree-oriented. With this 
in mind we have performed several experiments to investigate the 
feasibility of using an SVG rendering mechanism, coupled with a 
simple XML-based tagset for document structure, to create an 
integrated and totally XML-based electronic document. 



We have created an Acrobat plug-in to carry out five levels of 
conversion from PDF to SVG. The first level is a direct 
conversion of PDF (both structured and unstructured) content 
streams into plain SVG, with one SVG document corresponding 
to each page of the original PDF and with no attempt being made 
to map any PDF structure tree that might be present. The second 
level involves iterating through the PDF structure tree and 
converting the marked-content sequences at every leaf into SVG. 

The third level traverses the PDF structure tree and incorporates 
into the SVG document all the PDF structure elements, mapped as 
XML tags and named according to the PDF Standard Structure 
Types (SST) [2], while extracting content sequences at every leaf. 
The resulting SVG document has custom tags at various places 
which mark the logical structure using an XML version of the 
SST (see example below). We have written a Schema for this 
custom tagset to be used as a validation reference by browsers and 
XML parsers. Note that this XML custom tagset has its own 
namespace in order to avoid interference with the SVG tagset 
when the two are intermixed in an SVG document. 

<svg xmlns="svg-URI" …> 
<sst:H1> 

<text …> 
<tspan …>T</tspan> 
<tspan …>est Do</tspan> 
<tspan …>cument</tspan> 

<text …> 
</sst:H1> 
… 
</svg> 

The fourth level of our conversion experiments involved writing 
an XML structure tree layout out the original PDF document 
structure into a “structured” SVG document labelled with the SST 
tagset, while using XLink pointers at the leaves of the XML tree 
as the referencing mechanism for relating logical structure to 
actual contents stored in an external “unstructured” SVG 
document obtained directly from the level 1 conversion. 

In the final level, not only is structure information incorporated 
into the output document, individual SVG elements are also 
presented as separate graphical inserts. This level extends the 
previous levels further by inserting the “unstructured” contents as 
<defs> elements into the “logically-structured” output 
document, imitating the PDF architecture of having the logical 
structure separate from the content streams. 

<svg xmlns="svg-URI" 
xmlns:sst="sst-URI"  
xmlns:xsi="xmlschema-URI" … > 
<sst:page number="1"> 
 <sst:H1> 
<svg viewBox="0 0 595 842"> 
<use xlink:href="#txt0"> 

</svg> 
    </sst:H1> 

… 
</sst:page> 
… 
<defs> 
  <text id="txt0" … > 

<tspan …>T</tspan> 
<tspan …>est Do</tspan> 
<tspan …>cument</tspan> 

 </text> 
</svg> 

The intention of this approach is to propose SVG as a final-form 
graphic format, and as a potential Web rendering mechanism.  In 
this way an entire document, containing single or multiple pages 
of very high quality content, can be self-inclusive as a single 
document file. This mechanism would be particularly useful if it 
were to work in Web browsers. It would enable, for example, 
SVG graphical inserts to be placed within a logically structured 
and paginated single XML document. Each of the inserts would 
have its own graphics state and could be scaled, animated, viewed 
independently and reused elsewhere in the document, provided 
that viewer/browser support is available. 

3.  FINDINGS 
We carried out a number of conversion experiments on both 
unstructured and structured PDF documents. These conversions 
involve direct extraction of content streams, iteration through the 
PDF structure tree, and the extraction of marked-content 
sequences at each tree node. It was found that a PDF document, 
with or without logical structure, can be converted into plain 
SVG, with very few problems at the content stream level. 
However a structured (Tagged) PDF may present some difficulties 
when converted at levels 2 and above (as defined in the previous 
section). For instance, a traversal of the structure tree in a 
correctly tagged PDF document should result in the correct 
reading order for the textual content, but this is not always aligned 
with the painting, or rendering, order of the various components.  

By exploiting the differences between rendering and reading 
orders a PDF document can achieve certain graphic effects (e.g. 
object A partly superimposed on top of object B) while still 
asserting, via the PDF structure tree ordering, that A should be 
read out before B. In an XML/SVG equivalent to this PDF the 
reading order and the rendering order are necessarily the same 
since everything is controlled by a top-down descent of the XML 
tree. Thus, if the PDF to XML/SVG translation is guided by the 
PDF structure tree, rather than the ordering of A and B in the PDF 
file, then B will be superimposed on A, instead of the other way 
around.  

3.1.  Painting Order 
Apart from occasional problems of content ordering, as outlined 
above, it is generally the case that a direct conversion of the 
content streams of a Tagged PDF document — which may contain 
text, line diagrams, hyperlinks (converted from PDF annotations 
into SVG <a> elements), tables (treated as text and line diagrams) 
and raster images — will result in an SVG rendering which 
closely matches that of the PDF.  

SVG 1.2 [1] proposes adding the ability to specify the Z-order 
(painting order) of individual elements. Since the painting order 
can be obtained implicitly from the PDF content streams, it would 
be possible to specify the Z-order in the converted SVG once 
SVG 1.2 becomes a W3C Recommendation. However, with the 
current version of PDF and SVG, and with the painting order 
being determined implicitly from the ordering of content 
sequences in a content stream, synchronisation of the reading 
order specified by the structure tree and the painting order of 
marked-content sequences must be enforced in order for 
structured PDF to be converted with maximum precision. 

3.2.  The Page Concept 
Pages in PDF are currently imitated in SVG by creating an 
individual SVG document for every page of the original PDF. 



There is however a proposal in SVG 1.2 for a page model so that 
SVG drawings can be defined on its own <page>, each enclosed 
in a <pageset> collection [5]. This feature will further extend 
the use of SVG as a Web presentation language.  

3.3.  Content Reflow 
It has also been proposed that SVG 1.2 should provide 
functionality to wrap SVG elements so that they can be reflowed 
as necessary, for example, in the case when a flowRegion, 
containing shapes, or a flowText, containing text is transformed 
via transformation matrices.  

The proposed “flow” elements in SVG 1.2 can be used to wrap 
text in a shape, or shapes in a region, so that they can be reflowed 
individually when their wrappers are transformed, but an SVG 
document containing a collection of shapes, text and 
miscellaneous elements cannot be reflowed as a whole according 
to the display screen size or resolution. Thus the reflow proposals, 
as currently formulated, would still encounter problems if SVG 
were displayed on, say, a Personal Digital Assistant (PDA). 

Since there is no native method for accessing system 
environments in SVG, the reflow of whole SVG drawings can, at 
present, be done only via scripting; a <script> element can 
contain JavaScript to explicitly transform the viewport and all the 
coordinates and dimensions of elements within the SVG 
document. Although W3C has produced SVG Tiny and SVG Basic 
[4] to address some issues of displaying SVG on mobile devices; 
these do not yet provide a solution to the reflow limitation. 

3.4.  Browser Limitations 
To view SVG documents, either a Web browser plugin or a 
standalone viewer application can be used. Adobe has developed 
an SVG viewer plugin (currently version 3) that relies heavily on 
the Web browser’s CSS-oriented XML rendering mechanism. For 
instance, Internet Explorer displays general XML documents in an 
expandable tree form whenever it does not recognise the tagset as 
one of its built-in document types (e.g. (X)HTML); the Adobe 
SVG plugin builds on this rendering mechanism with the result 
that  SVG rendering is turned off for any tree branches that are 
found not to be pure SVG. Thus, if SVG tags are intermixed with 
other XML tags then the entirety of the coding is hierarchically 
displayed but interpretation of the SVG portions is disabled. For 
this reason the SVG output documents produced by conversion 
levels 2 to 4, as defined in the previous section, will have all or 
part of the document ignored by the Adobe SVG viewer. 

The behaviour of the Adobe SVG Viewer, in the way it handles 
unrecognised tagsets, follows the ‘letter of the law’ as set out in 
the SVG 1.1 specification. However, the spirit of what we need 
seems to be better addressed in W3C’s Amaya browser; this 
interprets SVG natively and is designed to render all W3C 
technologies, even though it started life as an HTML/CSS editor-
browser. When given the scenario described above, Amaya 
simply ignores any tags that are not SVG and displays the 
drawing as a pure SVG document. The results therefore seem 
promising in that the logical structure tagset we incorporated does 
not affect the appearance aspects of the SVG, but does contain the 
essential document structure information should it be required. 

W3C provides an SVG Test Suite [3]  that includes a test utilising 
XLink in tref elements (similar to use in our conversion). Both 
the Adobe SVG Viewer and Amaya do not display the tref 
elements referencing text stored in a separate file; the text 

elements are simply ignored. However, we understand that this 
shortcoming has now been addressed in the most recent release of 
the Adobe SVG viewer. 

4.  CONCLUSION 
On the purely syntactic front the svg namespace, if used 
correctly, can happily co-exist with others. The difficulties we 
have encountered arise because SVG is more than “just another 
XML-based tagset”. It is one that fundamentally affects the way 
in which Web browsers render documents, and SVG is very 
different in this regard from (X)HTML/CSS.  

It must be remembered that SVG’s original place in the scheme of 
things was to provide high-quality vector-graphic inserts into 
material that was predominantly (X)HTML/CSS based.  If we 
expand the bounding box of the “SVG insert” so that it takes over 
the rendering of the whole screen then its geometrically bounded 
nature prompts us at once into thinking of “pages” just as the 
original PDF material we have translated was also page based.  
But that, in turn, leads us to the fact that the Web, at the moment, 
has no capabilities for understanding the concept of “page”. 

However, we are greatly encouraged by the success of our plug-in 
in being able to translate a wide variety of PDF features directly 
into SVG graphic equivalents.  It is also easy to appreciate the 
attraction of mapping the PDF structure, as we have done, into a 
supporting abstract XML structure behind the SVG. 

The results from the Amaya browser also begin to show how this 
combination could work well provided the SVG 1.2 specification 
moves in the right direction. It should be possible to validate any 
custom (i.e. non-SVG) XML tags against a DTD or Schema, 
while having the SVG viewer ignore them so that it can 
concentrate on the SVG content alone. 

From our investigations into combining SVG and XML, and the 
extent to which such a combination can be used as the default 
rendering mechanism in Web browsers, we are confident that, as 
technologies such as SVG, XLink and implementations of SVG 
rendering gain further stability and maturity, SVG will attract 
increasing attention and serious consideration of its possible role 
as a high quality alternative for many Web presentations that are 
currently dominated by HTML and CSS. 

5.  ACKNOWLEDGMENTS 
We thank Adobe Systems Inc. for taking an interest in Julius 
Mong’s Ph.D. studies. In particular we would like to thank Jon 
Ferraiolo, Jim King and Steve Zilles for answering technical 
questions on PDF and SVG. 

6.  REFERENCES 
[1] W3C Working Draft of Scalable Vector Graphics 1.2 

http://www.w3.org/TR/SVG12/ 
[2] Tagged PDF – Standard Structure Types 

PDF Reference (Third Edition) version 1.4 (Chapter 9.7.4),  
Adobe Systems Incorporated, 
ISBN 0-201-75839-3, Addison-Wesley, December 2001. 

[3] W3C SVG Test Suite 
http://www.w3.org/Graphics/SVG/Test/ 

[4] Mobile SVG Profiles: SVG Tiny and SVG Basic 
W3C Recommendations 14 January 2003 
http://www.w3.org/TR/SVGMobile/ 

[5] SVG 1.2 – Multiple Pages 
http://www.w3.org/TR/SVG12/#multipage 

http://www.w3.org/TR/SVG12/
http://www.w3.org/Graphics/SVG/Test/
http://www.w3.org/TR/SVGMobile/
http://www.w3.org/TR/SVG12/

	INTRODUCTION
	INVESTIGATION
	FINDINGS
	Painting Order
	The Page Concept
	Content Reflow
	Browser Limitations

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

