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This paper is a discussion of the 
evolution of the APL language, and it 
treats implementations and applications 
only to the extent that they appear to have 
exercised a major influence on that 
evolution. Other sources of historical 
information are cited in References I-3; in 
particular, The Design of APL [I] provides 
supplementary~etal~n--~he-~easons behind 
many of the design decisions made in the 
development of the language. Readers 
requiring background on the current 
definition of the language should consult 
APL Language [4]. 

Although we have attempted to confirm 
our recollections by reference to written 
documents and to the memories of our 
colleagues, this remains a personal view 
which the reader should perhaps supplement 
by consulting the references provided. In 
particular, much information about 
individual contributions will be found in 
the Appendix to The Design of APL [i], and 
in the Acknowledge--~ent---s i'~A Programming 
Language [I0] and in APL\360 User's Manual 
[233. Because Reference ~-~ may ~o--l~-ger 
be readily available, the acknowledgements 
from it are reprinted in Appendix A. 

McDonnell's recent paper on the 
development of the notation for the 
circular functions [5] shows that the 
detailed evolution of any one facet of the 
language can be both interesting and 
illuminating. Too much detail in the 
present paper would, however, tend to 
obscure the main points, and we have 
therefore limited ourselves to one such 
example. We can only hope that other 
contributors will publish their views on 
the detailed developments of other facets 
of the language, and on the development of 
various applications of it. 

The development of the language was 
first begun by Iverson as a tool for 
describing and analyzing various topics in 
data processing, for use in teaching 
classes, and in writing a book, Automatic 

Data Processing [6], undertaken together 
w~ Frederick P. Brooks, Jr., then a 
graduate student at Harvard. Because the 
work began as incidental to other work, it 
is difficult to pinpoint the beginning, but 
it was probably early 1956; the first 
explicit use of the language to provide 
communication between the designers and 
programmers of a complex system occurred 
during a leave from Harvard spent with the 
management consulting firm of McKinsey and 
Company in 1957. Even after others were 
drawn into the development of the language, 
this development remained largely 
incidental to the work in which it was 
used. For example, Falkoff was first 
attracted to it (shortly after Iverson 
joined IBM in 1960) by its use as a tool in 
his work in parallel search memories [7], 
and in 196~ we began to plan an 
implementation of the language to enhance 
its utility as a design tool, work which 
came to fruition when we were joined by 
Lawrence M. Breed in 1965. 

The most important influences in the 
early phase appear to be Iverson's 
background in mathematics, his thesis work 
in the machine solutions of linear 
differential equations [8] for an economic 
input-output model proposed by Professor 
Wassily Leontief (who, with Professor 
Howard Aiken, served as thesis adviser), 
and Professor Aiken's interest in the 
newly-developing field of commercial 
applications of computers. Falkoff brought 
to the work a background in engineering and 
technical development, with experience in a 
number of disciplines, which had left him 
convinced of the overriding importance of 
simplicity, particularly in a field as 
subject to complication as data processing. 

Although the evolution has been 
continuous, it will be helpful to 
distinguish four phases according to the 
major use or preoccupation of the period: 
academic use (to 1960), machine description 
(1961-1963), implementation (1964-1968), 
and systems (after 1968). 
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I. ACADEMIC USE 

The machine programming required in 
Iverson's thesis work was directed at the 
development of a set of subroutines 
designed to permit convenient 
experimentation with a variety of 
mathematical methods. This implementation 
experience led to an emphasis on 
implementable language constructs, and to 
an understanding of the role of the 
representation of data. 

The mathematical background shows 
itself in a variety of ways, notably: 

I. In the use of functions with 
explicit arguments and explicit results; 
even the relations (< ~ = ~ > ~) are 
treated as such functions. 

2. In the use of logical functions and 
logical variables. For example, the 
compression function (denoted by /) uses 
as one argument a logical vector which 
is, in effect, the characteristic vector 
of the subset selected by compression. 

3. In the use of concepts and 
terminology from tensor analysis, as in 
inner product and outer product and in 
t~ use of rank for t ~  ~-~ionality" 
of an array, and in the treatment of a 
scalar as an array of rank zero. 

4. In the emphasis on generality. For 
example, the generalizations of 
summation (by F/), of inner product (by 
F.G), and of outer product (by o.F) 
extended the utility of these functions 
far beyond their original area of 
application. 

5. In the emphasis on identities 
(already evident in [93) which makes the 
language more useful for analytic 
purposes, and which leads to a uniform 
treatment of special cases as, for 
example, the definition of the reduction 
of an empty vector, first given in 
Programming Language [I0]. 

In 1954 Harvard University published 
an announcement Jill of a new graduate 
program in Automatic Data Processing 
organized by Professor Aiken. (The program 
was also reported in a conference on 
computer education [12]). Iverson was one 
of the new faculty appointed to prosecute 
the program; working under the guidance of 
Professor Aiken in the development of new 
courses provided a stimulus to his interest 
in developing notation, and the diversity 
of interests embraced by the program 
promoted a broad view of applications. 

The state of the language at the end 
of the academic period is best represented 
by the presentation in A Programming 
Language [I0], submitte~ for publication in 
early 1961. The evolution in the latter 

part of the period is best seen by 
comparing references 9 and 10. This 
comparison shows that reduction and inner 
and outer product were all introduced in " 
that p-~o~, although not then recognized 
as a class later called operators. It also 
shows that specification was originally (in 
Reference 9) denoted by placing the 
specified name at the right, as in P+Q+Z. 
The arguments (due in part to F.P. Brooks, 
Jr.) which led to the present form (Z÷P+Q) 
were that it better conformed to the 
mathematical form Z=P+Q, and that in 
reading a program, any backward reference 
to determine how a given variable was 
specified would be facilitated if the 
specified variables were aligned at the 
left margin. What this comparison does not 
show is the removal of a number of special 
comparison functions (such as the 
comparison of a vector with each row of a 
matrix) which were seen to be unnecessary 
when the power of the inner product began 
to be appreciated, as in the expression 
MA.=V. This removal provides one example 
of the simplification of the language 
produced by generalizations. 

2. MACHINE DESCRIPTION 

The machine description phase was 
marked by the complete or partial 
description of a number of computer 
systems. The first use of the language to 
describe a complete computing system was 
begun in early 1962 when Falkoff discussed 
with Dr. W.C. Carter his work in the 
standardization of the instruction set for 
the machines that were to become the IBM 
System/360 family. Falkoff agreed to 
undertake a formal description of the 
machine language, largely as a vehicle for 
demonstrating how parallel processes could 
be rigorously represented. He was later 
joined in this work by Iverson when he 
returned from a short leave at Harvard, and 
still later by E.H. Sussenguth. This work 
was published as "A Formal Description of 
System/360" [13]. 

This phase was also marked by a 
consolidation and regularization of many 
aspects which had little to do with machine 
description. For example, the cumbersome 
definition of maximum and minimum (denoted 
in Reference 10 by U[V and U[V and 
equivalent to what would now be written as 
[/U/V and L/U/V) was replaced, at the 
suggestion of Herbert Hellerman, by the 
present simple scalar functions. This 
simplification was deemed practical because 
of our increased understanding of the 
potential of reduction and inner and outer 
product. 

The best picture of the evolution in 
this period is given by a comparison of A 
Programming Language [10] on the one hand, 
and "A Formal Description of System/360" 
[13] and "Formalism in Programming 
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Languages" [I~] on the other. Using 
explicit page references to Reference 10, 
we will now give some further examples of 
regularization during this period: 

I. The elimination of embracing symbols 
(such as ]XI for absolute value, [XJ for 
floor, and IX] for ceiling) and 
replacement by the leading symbol only, 
thus unifying the syntax for monadic 
functions. 

2. The conscious use of a single 
function symbol to represent both a 
monadic and a dyadic function (still 
referred to in Re~ence 10 as unary and 
binary). 

3. The adoption of multi-character 
names which, because of the failure 
(page 11) to insist on no elision of the 
times sign, had been permitted (page 10) 
only with a special indicator. 

4. The rigorous adoption of a 
right-to-left order of execution which, 
although stated (page 8) had been 
violated by the unconscious application 
of the familiar precedence rules of 
mathematics. Reasons for this choice 
are presented in Elementary Functions 
[15], in Berry's APL\360 Primer [163, 
and in The Design o~ APL [I]. 

5. The concomitant definition of 
reduction based on a right-to-left order 
of execution as opposed to the opposite 
convention defined on page 16. 

6. Elimination of the requirement for 
parentheses surrounding an expression 
involving a relation (page 11). An 
example of the use without parentheses 
occurs near the bottom of page 241 of 
Reference 13. 

7. The elimination of implicit 
specification of a variable (that is, 
the specification of some function of 
it, as in the expression ±S÷2 on page 
81), and its replacement by an explicit 
inverse function (T in the cited 
example). 

Perhaps the most important 
developments of this period were in the use 
of a collection of concurrent autonomous 
programs to describe a system, and the 
formalization of shared variables as the 
means of communication among the programs. 
Again, comparisons may be made between the 
system of programs of Reference 13, and the 
more informal use of concurrent programs 
introduced on page 88 of Reference 10. 

It is interesting to note that the 
need for a random function (denoted by the 
question mark) was first felt in describing 
the operation of the computer itself. The 
architects of the IBM System/360 wished to 
leave to the discretion of the designers of 

the individual machines of the 360 family 
the decision as to what was to be found in 
certain registers after the occurrence of 
certain errors, and this was done by 
stating that the result was to be random. 
Recognizing more general use for the 
function than the generation of random 
logical vectors, we subsequently defined 
the monadic question mark function as a 
scalar function whose argument specified 
the population from which the random 
elements were to be chosen. 

3. IMPLEMENTATION 

In 1964 a number of factors conspired 
to turn our attention seriously to the 
problem of implementation. One was the 
fact that the language was by now 
sufficiently well-defined to give us some 
confidence in its suitability for 
implementation. The second was the 
interest of Mr. John L. Lawrence who, after 
managing the publication of our description 
of System/360, asked for our consultation 
in utilizing the language as a tool in his 
new responsibility (with Science Research 
Associates) for developing the use of 
computers in education. We quickly agreed 
with Mr. Lawrence on the necessity for a 
machine implementation in this work. The 
third was the interest of our then manager, 
Dr. Herbert Hellerman, who, after 
initiating some implementation work which 
did not see completion, himself undertook 
an implementation of an array-based 
language which he reported in the 
Communications of the ACM [173. Although 
this work was li~it~ in certain important 
respects, it did prove useful as a teaching 
tool and tended to confirm the feasibility 
of implementation. 

Our first step was to define a 
character set for APL. Influenced by Dr. 
Hellerman's interest in time-sharing 
systems, we decided to base the design on 
an 88-character set for the IBM 1050 
terminal, which utilized the 
easily-interchanged Selectric~R~typing 
element. The design of this character-set 
exercised a surprising degree of influence 
on the development of the language. 

As a practical matter it was clear 
that we would have to accept a 
linearization of the language (with no 
superscripts or subscripts) as well as a 
strict limit on the size of the primary 
character set. Although we expected these 
limitations to have a deleterious effect, 
and at first found unpleasant some of the 
linearity forced upon us, we now feel that 
the changes were beneficial, and that many 
led to important generalizations. For 
example: 

I. On linearizing indexing we 
realized that the sub- and 
super-script form had inhibited the 

49 



use of arrays of rank greater than 2, 
and had also inhibited the use of 
several levels of indexing; both 
inhibitions were relieved by the 
linear form A[I;J;K]. 

2. The linearization of the inner 
and outer product notation (from MaN 
and M~N to M+.xN and Mo.xN) led 
eventually to the recognition of the 
operator (which was now represented 
by an explicit symbol, the period) as 
a separate and important component of 
the language. 

3. Linearization led to a 
regularization of many functions.of 
two arguments~(such as N~J for ~](n) 
and A*B for a ~) and to the 
redefinition of certain functions of 
two or three arguments so as to 
eliminate one of the arguments. For 
example, 1](n) was replaced by IN, 
with the simple expression J+iN 
replacing the original definition. 
Moreover, the simple form iN led to 
the recognition that JaiN could 
replace N~J (for J a scalar) and that 
Jo.aiN could generalize NeJ in a 
useful manner; as a result the 
functions e and e were eventually 
withdrawn. 

4. The limitation of the character 
set led to a more systematic 
exploitation of the notion of 
ambiguous valence, the representation 
of both a monadic and a dyadic 
function by the same symbol. 

5. The limitation of the character 
set led to the replacement of the two 
functions for the number of rows and 
the number of columns of an array, by 
the single function (denoted by p) 
which gave the dimension vector of 
the array. This provided the 
necessary extension to arrays of 
arbitrary rank, and led to the simple 
expression ppA for the rank of A. 
The resulting notion of the dimension 
vector also led to the definition of 
the dyadic reshape function DpX. 

6. The limitation to 88 primary 
characters led to the important 
notion of composite characters formed 
by striking one of the basic 
characters over another. This scheme 
has provided a supply of easily-read 
and easily-written symbols which were 
needed as the language developed 
further. For example, the quad, 
overbar, and circle were included not 
for specific purposes but because 
they could be used to overstrike many 
characters. The overbar by itself 
also proved valuable for the 
representation of negative numbers, 
and the circle proved convenient in 
carrying out the idea, proposed by 
E.E. McDonnell, of representing the 

entire family of (monadic) circular 
functions by a single dyadic 
function. 

7. The use of multiple fonts had to 
be re-examined, and this led to the 
realization that certain functions 
were defined not in terms of the 
value of the argument alone, but also 
in terms of the form of the name of 
the argument. Such dependence on the 
forms of names was removed. 

We did, however, include 
characters which could print above 
and below alphabetics to provide for 
possible font distinctions. The 
original typing element included both 
the present flat underscore, and a 
saw-tooth one (the pralltriller as 
shown, for example, in Webster's 
Second), and a hyphen. In practice, 
we found the two underscores somewhat 
difficult to distinguish, and the 
hyphen very difficult to distinguish 
from the minus, from which it 
differed only in length. We 
therefore made the rather costly 
change of two characters, 
substituting the present delta and 
del (inverted delta) for the 
pralltriller and the hyphen. 

In the placement of the character set 
on the keyboard we were subject to a number 
of constraints imposed by the two forms of 
the IBM 2741 terminal (which differed in 
the encoding from keyboard-position to 
element-position), but were able to devise 
a grouping of symbols which most users find 
easy to learn. One pleasant surprise has 
been the discovery that numbers of people 
who do not use APL have adopted the type 
element for use in mathematical typing. 
The first publication of the character set 
appears to be in Elementary Functions [15]. 

Implementation led to a new class of 
questions, including the formal definition 
of functions, the localization and scope of 
names, and the use of tolerances in 
comparisons and in printing output. It 
also led to systems questions concerning 
the environment and its management, 
including the matter of libraries and 
certain parameters such as index origin, 
printing precision, and printing width. 

Two early decisions set the tone of 
the implementation work: I) The 
implementation was to be experimental, with 
primary emphasis on flexibility to permit 
experimentation with language concepts, and 
with questions of execution efficiency 
subordinated, and 2) The language was to be 
compromised as little as possible by 
machine considerations. 

These considerations led Breed and 
P.S. Abrams (both of whom had been 
attracted to our work by Reference 13) to 
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propose and build an interpretive 
implementation in the summer of 1965. This 
was a batch system with punched card input, 
using a multi-character encoding of the 
primitive function symbols. It ran on the 
IBM 7090 machine and we were later able to 
experiment with it interactively, using the 
typeball previously designed, by placing 
the interpreter under an experimental time 
sharing monitor (TSM) available on a 
machine in a nearby IBM facility. 

TSM was available to us for only a 
very short time, and in early 1966 we began 
to consider an implementation on 
System/360, work that started in earnest in 
July and culminated in a running system in 
the fall. The fact that this interpretive 
and experimental implementation also proved 
to be remarkably practical and efficient is 
a tribute to the skill of the implementers, 
recognized in 1973 by the award to the 
principals (L.M. Breed, R.H. Lathwell, and 
R.D. Moore) of ACM's Grace Murray Hopper 
Award. The fact that the many APL 
implementations continue to be largely 
interpretive may be attributed to the array 
character of the language which makes 
possibleefficient interpretive execution. 

We chose to treat the occurrence of a 
statement as an order to evaluate it, and 
rejected the notion of an explicit function 
to indicate evaluation. In order to avoid 
the introduction of "names" as a distinct 
object class, we also rejected the notion 
of "call by name" The constraints imposed 
by this decision were eventually removed in 
a simple and general way by the 
introduction of the execute function, which 
served to execute its character string 
argument as an APL expression. The 
evolution of these notions is discussed at 
length in the section on "Execute and 
Format" in The Design of APL [I]. 

In earlier discussions with a number 
of colleagues, the introduction of 
declarations into the language was urged 
upon us as a requisite for implementation. 
We resisted this on the general basis of 
simplicity, but also on the basis that 
information in declarations would be 
redundant, or perhaps conflicting, in a 
language in which arrays are primitive. 
The choice of an ~nterpretl~ve 
implementation made the exclusion of 
declarations feasible, and thins, coupled 
wi't~ the determinatm~on to mini~a~e the 
influence of macF~ne considerations suck as 
the internal representatiDns of numbers on 
the design of the language, led to an early 
dec£sa~on to exclude them. 

~n provi~l~ng a mecbani~m Dy which a 
user could define a new function, we wished 
to provide six forms in all: functions width 
0~ I, or 2 explicit arguments, and 
functions with 0 or I explicit results. 
This led to the adoption of a header for 
the function definition which was, rn 
effect, a paradigm for the way in which a 

function was used. For example, a function 
F of two arguments having an explicit 
result would typically be used in an 
expression such as Z÷A F B, and this was 
the form used for the header. 

The names for arguments and results 
in the header were of course made local to 
the function definition, but at the outset 
no thought was given to the localization of 
other names. Fortunately, the design of 
the interpreter made it relatively easy to 
localize the names by adding them to the 
header (separated by semicolons), and this 
was soon done. Names so localized were 
strictly local to the defined function, and 
their scope did not extend to any other 
functions used within it. It was not until 
the spring of 1968 when Breed returned from 
a talk by Professor Alan Perlis on what he 
called "dynamic localization" that the 
present scheme was adopted, in which name 
scopes extend to functions called within a 
function. 

We recognized that the finite limits 
on the representation of numbers imposed by 
an implementation would raise problems 
which might require some compromise in the 
definition of the language, and we tried to 
keep these compromises to a minimum. For 
example, it was clear that we would have to 
provide both integer and floating point 
representations of numbers and, because we 
anticipated use of the system in logical 
design, we wished to provide an efficient 
(one bit per element) representation of 
logical arrays as well. However, at the 
cost of considerable effort and some loss 
of efficiency, both well worthwhile, the 
transitions between representations were 
made to be imperceptible to the user, 
except for secondary effects such as 
storage requirements. 

Problems such as overflow (i.e., a 
result outside the range of the 
representations available) were treated as 
domain errors, the term domain being 
understood as the domain of~e machine 
function provided, rather than as the 
domain of the abstract mathematical 
function on which it was based. 

One difficulty we had not anticipated 
was the provision of sensible results for 
the comparison of quantities represented to 
a limited precision. For example, if X and 
Y were specified by Y+2÷3 and X+3xY, then 
we wished to have the comparison 2=X yield 
l (representing true) even though the 
representation of~e quantity X would 
differ slightly from 2. 

This was solv@d by introducing a 
comparison tolerance (christened fuzz by 
L.M. Breed, who knew of its use in~e Bell 
Interpreter [18]) which was multiplied by 
the larger in magnitude of the arguments to 
give a tolerance to be applied in the 
comparison. This tolerance was at first 
fixed (at IE-13) and was later made 
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specifiable by the user. The matter has 
proven more difficult than we first 
expected, and discussion of it still 
continues [19, 20]. 

A related, but less serious, question 
was what to do with the rational root of a 
negative number, a question which arose 
because the exponent (as in the expression 
-8*2÷3) would normally be presented as an 
approximation to a rational. Since we 
wished to make the mathematics behave "as 
you thought it did in high school" we 
wished to treat such cases properly at 
least for rationals with denominators of 
reasonable size. This was achieved by 
determining the result sign by a continued 
fraction expansion of the right argument 
(but only for negative left arguments) and 
worked for all denominators up to 80 and 
"most" above. 

Most of the mathematical functions 
required were provided by programs taken 
from the work of the late Hirondo Kuki in 
the FORTRAN IV Subroutine Library. Certain 
functions (such as the inverse hyperbolics) 
were, however, not available and were 
developed, during the summers of 1967 and 
1968, by K. M. Brown, then on the faculty 
of Cornell University. 

The fundamental decision concerning 
the systems environment was the adoption of 
the concept of a workspace. As defined in 
"The APL\360 Terminal System" [21]: 

APL\360 is built around the idea of a 
workspace, analogous to a notebook, 
in which one keeps work in progress. 
The workspace holds both defined 
functions and variables (data), and 
it may be stored into and retrieved 
from a library holding many such 
workspaces. When retrieved from a 
library by an appropriate command 
from a terminal, a copy of the stored 
workspace becomes active at that 
terminal, and the functions defined 
in it, together with all the APL 
primitives, become available to the 
user. 

The three commands required for 
managing a library are "save", 
"load", and "drop", which 
respectively store a copy of an 
active workspace into a library, make 
a copy of a stored workspace active, 
and destroy the library copy of a 
workspace. Each user of the system 
has a private library into which only 
he can store. However, he may load 
a workspace from any of a number of 
common libraries, or if he is privy 
to the necessary information, from 
another user's private library. 
Functions or variables in different 
workspaces can be combined, either 
item by item or all at once, by a 
fourth command, called "copy". By 
means of three cataloging commands, a 

user may get the names of workspaces 
in his own or a common library, or 
get a listing of functions or 
variables in his active workspace. 

The language used to control the 
system functions of loading and storing 
workspaces was not APL, but comprised a set 
of s[stem commands. The first character of 
each system command is a right parenthesis, 
which cannot occur at the left of a valid 
APL expression, and therefore acts as an 
"escape character", freeing the syntax of 
what follows. System commands were used 
for other aspects such as sign-on and 
sign-off, messages to other users, and for 
the setting and sensing of various system 
parameters such as the index origin, the 
printing precision, the print width, and 
the random link used in generating the 
pseu o-~d~ sequence for the random 
function. 

When it first became necessary to 
name the implementation we chose the 
acronym formed from the book title A 
Pro@ramming Language [I0] and, to allow a 
clear distinction between the language and 
any particular implementation of it, 
initiated the use of the machine name as 
part of the name of the implementation (as 
in APL\1130 and APL\360). Within the 
design group we had until that time simply 
referred to "the language". 

A brief working manual of the APL\360 
system was first published in November 1966 
[22], and a full manual appeared in 1968 
[23]. The initial implementation (in 
FORTRAN on an IBM 7090) was discussed by 
Abrams [24], and the time-shared 
implementation on System/360 was discussed 
by Breed and Lathwell [25]. 

3. SYSTEMS 

Use of the APL system by others in 
IBM began long before it had been completed 
to the point described in APL\360 User's 
Manual [ 2 3 ] .  We quickly le~neTt~ 
~-~i~ulties associated with changing the 
specifications of a system already in use, 
and the impact of changes on established 
users and programs. As a result we learned 
to appreciate the importance of the 
relatively long period of development of 
the language which preceded the 
implementation; early implementation of 
languages tends to stifle radical change, 
limiting further development to the 
addition of features and frills. 

On the other hand, we also learned 
the advantages of a running model of the 
language in exposing anomalies and, in 
particular, the advantage of input from a 
large population of users concerned with a 
broad range of applications. This use 
quickly exposed the major deficiencies of 
the system. 
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Some of these deficiencies were 
rectified by the generalization of certain 
functions and the addition of others in a 
process of gradual evolution. Examples 
include the extension of the catenation 
function to apply to arrays other than 
vectors and to permit lamination, and the 
addition of a generalized matrix inverse 
function discussed by M.A. Jenkins [26]. 

Other deficiencies were of a systems 
nature, concerning the need to communicate 
between concurrent APL programs (as in our 
description of System/360), to communicate 
with the APL system itself within APL 
rather than by the ad hoc device of system 
commands, to communicate with alien systems 
and devices (as in the use of file 
devices), and the need to define functions 
within the language in terms of their 
representation by APL arrays. These 
matters required more fundamental 
innovations and led to what we have called 
the system phase. 

The most pressing practical need for 
the application of APL systems to 
commercial data processing was the 
provision of file facilities. One of the 
first commercial systems to provide this 
was the File Subsystem reported by Sharp 
[27] in 1970, and defined in a SHARE 
presentation by L.M. Breed [28], and in a 
manual published by Scientific Time Sharing 
Corporation [29]. As its name implies, it 
was not an integral part of the language 
but was, like the system commands, a 
practical ad hoc solution to a pressing 
problem. 

In 1970 R.H. Lathwell proposed what 
was to become the basis of a general 
solution to many systems problems of 
APL\360, a shared variable processor [303 
which implemented the shared variable 
scheme of communication among processors. 
This work culminated in the APLSV System 
[31] which became generally available in 
1973. 

Falkoff's "Some Implications of 
Shared Variables" [32] presents the 
essential notion of the shared variable 
system as follows: 

A user of early APL systems 
essentially had what appeared to be 
an "APL machine" at his disposal, but 
one which lacked access to the rest 
of the world. In more recent 
systems, such as APLSV and others, 
this isolation is overcome and 
communication with other users and 
the host system is provided for by 
shared variables. 

Two classes of shared variables are 
available in these systems. First, 
there is a ~eneral shared variable 
facility with which a user may 
establish arbitrary, temporary, 

interfaces with other users or with 
auxiliary processors. Through the 
latter, communication may be had with 
other elements of the host system, 
such as its file subsystem, or with 
other systems altogether. Second, 
there is a set of system variables 
which define parts of the permanent 
interface between an APL program and 
the underlying processor. These are 
used for interrogating and 
controlling the computing 
environment, such as the origin for 
array indexing or the action to be 
taken upon the occurrence of certain 
exceptional conditions. 

4. A DETAILED EXAMPLE 

At the risk of placing undue emphasis 
on one facet of the language, we will now 
examine in detail the evolution of the 
treatment of numeric constants, in order to 
illustrate how substantial changes were 
commonly arrived at by a sequence of small 
steps. 

Any numeric constant, including a 
constant vector, can be written as an 
expression involving APL primitive 
functions applied to decimal numbers as, 
for example, in 3.14xi0,-5 and -2.718 and 
(3.14×10,-5),(-2.718).5. At the outset we 
permitted only non-negative decimal 
constants of the form 2.7~8, and all other 
values had to be expressed as compound 
statements. 

Use of the monadic negation function 
in producing negative values in vectors was 
particularly cumbersome, as in 
(-4),3,(-5),-7. We soon realized that the 
adoption of a specific "negative" symbol 
would solve the problem, and familiarity 
with Beberman's work [333 led us to the 
adoption of his "high minus" which we had, 
rather fortuitously, included in our 
character set. The constant vector used 
above could now be written as -4.3, 5, 7. 

Solution of the problem of negative 
numbers emphasized the remaining 
awkwardness of factors of the form 10*N. 
At a meeting of the principals in Chicago, 
which included Donald Mitchell and Peter 
Calingaert of Science Research Associates, 
it was realized that the introduction of a 
scaled form of constant in the manner used 
in FORTRAN would not complicate the syntax, 
and this was soon adopted. 

These refinements left one function 
in the writing of any vector constant, 
namely, catenation. The straightforward 
execution of an expression for a constant 
vector of N elements involved N-I 
catenations of scalars with vectors of 
increasing length, the handling of roughly 
.5xN×N+I elements in all. To avoid gross 
inefficiencies in the input of a constant 
vector from the keyboard, catenation was 
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therefore given special treatment in the 
original implementation. 

This system had been in use for 
perhaps six months when it occurred to 
Falkoff that since commas were not required 
in the normal representation of a matrix, 
vector constants might do without them as 
well. This seemed outrageously simple, and 
we looked for flaws. Finding none we 
adopted and implemented the idea 
immediately, but it took some time to 
overcome the habit of writing expressions 
such as (3,3)pX instead of 3 3pZ. 

5. CONCLUSIONS 

Nearly all programming languages are 
rooted in mathematical notation, employing 
such fundamental notions as functions, 
variables, and the decimal (or other radix) 
representation of numbers, and a view of 
programming languages as part of the 
longer-range development of mathematical 
notation can serve to illuminate their 
development. 

Before the advent of the 
general-purpose computer, mathematical 
notation had, in a long and painful 
evolution well-described in Cajori's 
history of mathematical notations [341, 
embraced a number of important notions: 

I. The notion of assigning an 
alphabetic name to a variable or 
unknown quantity (Cajori, Secs. 
339-3~I). 

2. The notion of a function which 
applies to an argument or arguments 
to produce an explicit result which 
can itself serve as argument to 
another function, and the associated 
adoption of specific symbols (such as 
+ and x) to denote the more common 
functions (Cajori, Secs. 200-233). 

3. Aggregation or grouping symbols 
(such as the parentheses) which make 
possible the use of composite 
expressions with an unambiguous 
specification of the order in which 
the component functions are to be 
executed (Cajori, Secs. 342-355). 

4. Simple, uniform representations 
for numeric quantities (Cajori, Secs. 
276-289). 

5. The treatment of quantities 
without concern for the particular 
representation used. 

6. The notion of treating vectors, 
matrices, and higher-dimensional 
arrays as entities, which had by this 
time become fairly widespread in 
mathematics, physics, and 
engineering. 

With the first computer languages 
(machine languages) all of these notions 
were, for good practical reasons, dropped; 
variable names were represented by 
"register numbers", application of a 
function (as in A+B) was necessarily broken 
into a sequence of operations (such as 
"Load register 801 into the Addend 
register, Load register 802 into the Augend 
register, etc."), grouping of operations 
was therefore non-existent, the various 
functions provided were represented by 
numbers rather than by familiar 
mathematical symbols, results depended 
sharply on the particular representation 
used in the machine, and the use of arrays, 
as such, disappeared. 

Some of these limitations were soon 
removed in early "automatic programming" 
languages, and languages such as FORTRAN 
introduced a limited treatment of arrays, 
but many of the original limitations 
remain. For example, in FORTRAN and 
related languages the size of an array is 
not a language concept, the asterisk is 
used instead of any of the familiar 
mathematical symbols for multiplication, 
the power function is represented by two 
occurrences of this symbol rather than by a 
distinct symbol, and concern with 
representation still survives in 
declarations. 

APL has, in its development, remained 
much closer to mathematical notation, 
retaining (or selecting one of) established 
symbols where possible, and employing 
mathematical terminology. Principles of 
simplicity and uniformity have, however, 
been given precedence, and these have led 
to certain departures from conventional 
mathematical notation as, for example, the 
adoption of a single form (analogous to 
3+4) for dyadic functions, a single form 
(analogous to -4) for monadic functions, 
and the adoption of a uniform rule for the 
application of all scalar functions to 
arrays. This relationship to mathematical 
notation has been discussed in The Design 
of APL [13 and in "Algebra as a Language" 
which occurs as Appendix A in Algebra: an 
algorithmic treatment [353. 

The close ties with mathematical 
notation are evident in such things as the 
reduction operator (a generalization of 
sigma notation), the inner product (a 
generalization of matrix product), and the 
outer product (a generalization of the 
outer product used in tensor analysis). In 
other aspects the relation to mathematical 
notation is closer than might appear. For 
example, the order of execution of the 
conventional expression F G H (Z) can be 
expressed by saying that the right argument 
of each function is the value of the entire 
expression to its right; this rule, 
extended to dyadic as well as monadic 
functions, is the rule used in APL. 
Moreover, the term operator is used in the 
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same sense as in "derivative operator" or 
"convolution operator" in mathematics, and 
to avoid conflict it is not used as a 
synonym for function. 

As a corollary we may remark that the 
other major programming languages, although 
known to the designers of APL, exerted 
little or no influence, because of their 
radical departures from the line of 
development of mathematical notation which 
APL continued. A concise view of the 
current use of the language, together with 
comments on matters such as writing style, 
may be found in Falkoff's review of the 
1975 and 1976 International APL Congresses 
[ 3 6 ] .  

Although this is not the place to 
discuss the future, it should be remarked 
that the evolution of APL is far from 
finished. In particular, there remain 
large areas of mathematics, such as set 
theory and vector calculus, which can 
clearly be incorporated in APL through the 
introduction of further operators. 

There are also a number of important 
features which are already in the abstract 
language, in the sense that their 
incorporation requires little or no new 
definition, but are as yet absent from most 
implementations. Examples include complex 
numbers, the possibility of defining 
functions of ambiguous valence (already 
incorporated in at least two systems 
[37, 38]), the use of user defined 
functions in conjunction with operators, 
and the use of selection functions other 
than indexing to the left of the assignment 
arrow. 

We conclude with some general 
comments, taken from The Design of APL [13, 
on principles which gul~e~-~ 
circumstances which shaped, the evolution 
of APL: 

The actual operative principles 
guiding the design of any complex 
system must be few and broad. In the 
present instance we believe these 
principles to be simplicity and 
practicality. Simplicity enters in 
four guises: uniformity (rules are 
few and simple), generality (a small 
numbe! of general functions provide 
as special cases a host of more 
specialized functions), familiarity 
(familiar symbols and usages are 
adopted whenever possible), and 
brevity (economy of expression is 
sought). Practicality is manifested 
in two respects: concern with actual 
application of the language, and 
concern with the practical 
limitations imposed by existing 
equipment. 

We believe that the design of APL was 
also affected in important respects 
by a number of procedures and 
circumstances. Firstly, from its 
inception APL has been developed by 
using it in a succession of areas. 
This emphasis on application clearly 
favors practicality and simplicity. 
The treatment of many different areas 
fostered generalization: for 
example, the general inner product 
was developed in attempting to obtain 
the advantages of ordinary matrix 
algebra in the treatment of symbolic 
logic. 

Secondly, the lack of any machine 
realization of the language during 
the first seven or eight years of its 
development allowed the designers the 
freedom to make radical changes, a 
freedom not normally enjoyed by 
designers who must observe the needs 
of a large working population 
dependent on the language for their 
daily computing needs. This 
circumstance was due more to the 
dearth of interest in the language 
than to foresight. 

Thirdly, at every stage the design of 
the language was controlled by a 
small group of not more than five 
people. In particular, the men who 
designed (and coded) the 
implementation were part of the 
language design group, and all 
members of the design group were 
involved in broad decisions affecting 
the implementation. On the other 
hand, many ideas were received and 
accepted from people outside the 
design group, particularly from 
active users of some implementation 
of APL. 

Finally, design decisions were made 
by Quaker consensus; controversial 
innovations were deferred until they 
could be revised or reevaluated so as 
to obtain unanimous agreement. 
Unanimity was not achieved without 
cost in time and effort, and many 
divergent paths were explored and 
assessed. For example, many 
different notations for the circular 
and hyperbolic functions were 
entertained over a period of more 
than a year before the present scheme 
was proposed, whereupon it was 
quickly adopted. As the language 
grows, more effort is needed to 
explore the ramifications of any 
major innovation. Moreover, greater 
care is needed in introducing new 
facilities, to avoid the possibility 
of later retraction that would 
inconvenience thousands of users. 
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