
THE EVOLUTION OF APL

Adin D. Falkoff
Kenneth E. Iverson

Research Division
IBM Corporation

This paper is a discussion of the
evolution of the APL language, and it
treats implementations and applications
only to the extent that they appear to have
exercised a major influence on that
evolution. Other sources of historical
information are cited in References I-3; in
particular, The Design of APL [I] provides
supplementary~etal~n--~he-~easons behind
many of the design decisions made in the
development of the language. Readers
requiring background on the current
definition of the language should consult
APL Language [4].

Although we have attempted to confirm
our recollections by reference to written
documents and to the memories of our
colleagues, this remains a personal view
which the reader should perhaps supplement
by consulting the references provided. In
particular, much information about
individual contributions will be found in
the Appendix to The Design of APL [i], and
in the Acknowledge--~ent---s i'~A Programming
Language [I0] and in APL\360 User's Manual
[233. Because Reference ~-~ may ~o--l~-ger
be readily available, the acknowledgements
from it are reprinted in Appendix A.

McDonnell's recent paper on the
development of the notation for the
circular functions [5] shows that the
detailed evolution of any one facet of the
language can be both interesting and
illuminating. Too much detail in the
present paper would, however, tend to
obscure the main points, and we have
therefore limited ourselves to one such
example. We can only hope that other
contributors will publish their views on
the detailed developments of other facets
of the language, and on the development of
various applications of it.

The development of the language was
first begun by Iverson as a tool for
describing and analyzing various topics in
data processing, for use in teaching
classes, and in writing a book, Automatic

Data Processing [6], undertaken together
w~ Frederick P. Brooks, Jr., then a
graduate student at Harvard. Because the
work began as incidental to other work, it
is difficult to pinpoint the beginning, but
it was probably early 1956; the first
explicit use of the language to provide
communication between the designers and
programmers of a complex system occurred
during a leave from Harvard spent with the
management consulting firm of McKinsey and
Company in 1957. Even after others were
drawn into the development of the language,
this development remained largely
incidental to the work in which it was
used. For example, Falkoff was first
attracted to it (shortly after Iverson
joined IBM in 1960) by its use as a tool in
his work in parallel search memories [7],
and in 196~ we began to plan an
implementation of the language to enhance
its utility as a design tool, work which
came to fruition when we were joined by
Lawrence M. Breed in 1965.

The most important influences in the
early phase appear to be Iverson's
background in mathematics, his thesis work
in the machine solutions of linear
differential equations [8] for an economic
input-output model proposed by Professor
Wassily Leontief (who, with Professor
Howard Aiken, served as thesis adviser),
and Professor Aiken's interest in the
newly-developing field of commercial
applications of computers. Falkoff brought
to the work a background in engineering and
technical development, with experience in a
number of disciplines, which had left him
convinced of the overriding importance of
simplicity, particularly in a field as
subject to complication as data processing.

Although the evolution has been
continuous, it will be helpful to
distinguish four phases according to the
major use or preoccupation of the period:
academic use (to 1960), machine description
(1961-1963), implementation (1964-1968),
and systems (after 1968).

© 1978 Association for Computing Machinery, Inc. 4 7 ACM SIGPLAN Notices, Vol. 13, No. 8, August 1978

http://crossmark.crossref.org/dialog/?doi=10.1145%2F960118.808372&domain=pdf&date_stamp=1978-08-01

I. ACADEMIC USE

The machine programming required in
Iverson's thesis work was directed at the
development of a set of subroutines
designed to permit convenient
experimentation with a variety of
mathematical methods. This implementation
experience led to an emphasis on
implementable language constructs, and to
an understanding of the role of the
representation of data.

The mathematical background shows
itself in a variety of ways, notably:

I. In the use of functions with
explicit arguments and explicit results;
even the relations (< ~ = ~ > ~) are
treated as such functions.

2. In the use of logical functions and
logical variables. For example, the
compression function (denoted by /) uses
as one argument a logical vector which
is, in effect, the characteristic vector
of the subset selected by compression.

3. In the use of concepts and
terminology from tensor analysis, as in
inner product and outer product and in
t~ use of rank for t ~ ~-~ionality"
of an array, and in the treatment of a
scalar as an array of rank zero.

4. In the emphasis on generality. For
example, the generalizations of
summation (by F/), of inner product (by
F.G), and of outer product (by o.F)
extended the utility of these functions
far beyond their original area of
application.

5. In the emphasis on identities
(already evident in [93) which makes the
language more useful for analytic
purposes, and which leads to a uniform
treatment of special cases as, for
example, the definition of the reduction
of an empty vector, first given in
Programming Language [I0].

In 1954 Harvard University published
an announcement Jill of a new graduate
program in Automatic Data Processing
organized by Professor Aiken. (The program
was also reported in a conference on
computer education [12]). Iverson was one
of the new faculty appointed to prosecute
the program; working under the guidance of
Professor Aiken in the development of new
courses provided a stimulus to his interest
in developing notation, and the diversity
of interests embraced by the program
promoted a broad view of applications.

The state of the language at the end
of the academic period is best represented
by the presentation in A Programming
Language [I0], submitte~ for publication in
early 1961. The evolution in the latter

part of the period is best seen by
comparing references 9 and 10. This
comparison shows that reduction and inner
and outer product were all introduced in "
that p-~o~, although not then recognized
as a class later called operators. It also
shows that specification was originally (in
Reference 9) denoted by placing the
specified name at the right, as in P+Q+Z.
The arguments (due in part to F.P. Brooks,
Jr.) which led to the present form (Z÷P+Q)
were that it better conformed to the
mathematical form Z=P+Q, and that in
reading a program, any backward reference
to determine how a given variable was
specified would be facilitated if the
specified variables were aligned at the
left margin. What this comparison does not
show is the removal of a number of special
comparison functions (such as the
comparison of a vector with each row of a
matrix) which were seen to be unnecessary
when the power of the inner product began
to be appreciated, as in the expression
MA.=V. This removal provides one example
of the simplification of the language
produced by generalizations.

2. MACHINE DESCRIPTION

The machine description phase was
marked by the complete or partial
description of a number of computer
systems. The first use of the language to
describe a complete computing system was
begun in early 1962 when Falkoff discussed
with Dr. W.C. Carter his work in the
standardization of the instruction set for
the machines that were to become the IBM
System/360 family. Falkoff agreed to
undertake a formal description of the
machine language, largely as a vehicle for
demonstrating how parallel processes could
be rigorously represented. He was later
joined in this work by Iverson when he
returned from a short leave at Harvard, and
still later by E.H. Sussenguth. This work
was published as "A Formal Description of
System/360" [13].

This phase was also marked by a
consolidation and regularization of many
aspects which had little to do with machine
description. For example, the cumbersome
definition of maximum and minimum (denoted
in Reference 10 by U[V and U[V and
equivalent to what would now be written as
[/U/V and L/U/V) was replaced, at the
suggestion of Herbert Hellerman, by the
present simple scalar functions. This
simplification was deemed practical because
of our increased understanding of the
potential of reduction and inner and outer
product.

The best picture of the evolution in
this period is given by a comparison of A
Programming Language [10] on the one hand,
and "A Formal Description of System/360"
[13] and "Formalism in Programming

48

Languages" [I~] on the other. Using
explicit page references to Reference 10,
we will now give some further examples of
regularization during this period:

I. The elimination of embracing symbols
(such as]XI for absolute value, [XJ for
floor, and IX] for ceiling) and
replacement by the leading symbol only,
thus unifying the syntax for monadic
functions.

2. The conscious use of a single
function symbol to represent both a
monadic and a dyadic function (still
referred to in Re~ence 10 as unary and
binary).

3. The adoption of multi-character
names which, because of the failure
(page 11) to insist on no elision of the
times sign, had been permitted (page 10)
only with a special indicator.

4. The rigorous adoption of a
right-to-left order of execution which,
although stated (page 8) had been
violated by the unconscious application
of the familiar precedence rules of
mathematics. Reasons for this choice
are presented in Elementary Functions
[15], in Berry's APL\360 Primer [163,
and in The Design o~ APL [I].

5. The concomitant definition of
reduction based on a right-to-left order
of execution as opposed to the opposite
convention defined on page 16.

6. Elimination of the requirement for
parentheses surrounding an expression
involving a relation (page 11). An
example of the use without parentheses
occurs near the bottom of page 241 of
Reference 13.

7. The elimination of implicit
specification of a variable (that is,
the specification of some function of
it, as in the expression ±S÷2 on page
81), and its replacement by an explicit
inverse function (T in the cited
example).

Perhaps the most important
developments of this period were in the use
of a collection of concurrent autonomous
programs to describe a system, and the
formalization of shared variables as the
means of communication among the programs.
Again, comparisons may be made between the
system of programs of Reference 13, and the
more informal use of concurrent programs
introduced on page 88 of Reference 10.

It is interesting to note that the
need for a random function (denoted by the
question mark) was first felt in describing
the operation of the computer itself. The
architects of the IBM System/360 wished to
leave to the discretion of the designers of

the individual machines of the 360 family
the decision as to what was to be found in
certain registers after the occurrence of
certain errors, and this was done by
stating that the result was to be random.
Recognizing more general use for the
function than the generation of random
logical vectors, we subsequently defined
the monadic question mark function as a
scalar function whose argument specified
the population from which the random
elements were to be chosen.

3. IMPLEMENTATION

In 1964 a number of factors conspired
to turn our attention seriously to the
problem of implementation. One was the
fact that the language was by now
sufficiently well-defined to give us some
confidence in its suitability for
implementation. The second was the
interest of Mr. John L. Lawrence who, after
managing the publication of our description
of System/360, asked for our consultation
in utilizing the language as a tool in his
new responsibility (with Science Research
Associates) for developing the use of
computers in education. We quickly agreed
with Mr. Lawrence on the necessity for a
machine implementation in this work. The
third was the interest of our then manager,
Dr. Herbert Hellerman, who, after
initiating some implementation work which
did not see completion, himself undertook
an implementation of an array-based
language which he reported in the
Communications of the ACM [173. Although
this work was li~it~ in certain important
respects, it did prove useful as a teaching
tool and tended to confirm the feasibility
of implementation.

Our first step was to define a
character set for APL. Influenced by Dr.
Hellerman's interest in time-sharing
systems, we decided to base the design on
an 88-character set for the IBM 1050
terminal, which utilized the
easily-interchanged Selectric~R~typing
element. The design of this character-set
exercised a surprising degree of influence
on the development of the language.

As a practical matter it was clear
that we would have to accept a
linearization of the language (with no
superscripts or subscripts) as well as a
strict limit on the size of the primary
character set. Although we expected these
limitations to have a deleterious effect,
and at first found unpleasant some of the
linearity forced upon us, we now feel that
the changes were beneficial, and that many
led to important generalizations. For
example:

I. On linearizing indexing we
realized that the sub- and
super-script form had inhibited the

49

use of arrays of rank greater than 2,
and had also inhibited the use of
several levels of indexing; both
inhibitions were relieved by the
linear form A[I;J;K].

2. The linearization of the inner
and outer product notation (from MaN
and M~N to M+.xN and Mo.xN) led
eventually to the recognition of the
operator (which was now represented
by an explicit symbol, the period) as
a separate and important component of
the language.

3. Linearization led to a
regularization of many functions.of
two arguments~(such as N~J for ~](n)
and A*B for a ~) and to the
redefinition of certain functions of
two or three arguments so as to
eliminate one of the arguments. For
example, 1](n) was replaced by IN,
with the simple expression J+iN
replacing the original definition.
Moreover, the simple form iN led to
the recognition that JaiN could
replace N~J (for J a scalar) and that
Jo.aiN could generalize NeJ in a
useful manner; as a result the
functions e and e were eventually
withdrawn.

4. The limitation of the character
set led to a more systematic
exploitation of the notion of
ambiguous valence, the representation
of both a monadic and a dyadic
function by the same symbol.

5. The limitation of the character
set led to the replacement of the two
functions for the number of rows and
the number of columns of an array, by
the single function (denoted by p)
which gave the dimension vector of
the array. This provided the
necessary extension to arrays of
arbitrary rank, and led to the simple
expression ppA for the rank of A.
The resulting notion of the dimension
vector also led to the definition of
the dyadic reshape function DpX.

6. The limitation to 88 primary
characters led to the important
notion of composite characters formed
by striking one of the basic
characters over another. This scheme
has provided a supply of easily-read
and easily-written symbols which were
needed as the language developed
further. For example, the quad,
overbar, and circle were included not
for specific purposes but because
they could be used to overstrike many
characters. The overbar by itself
also proved valuable for the
representation of negative numbers,
and the circle proved convenient in
carrying out the idea, proposed by
E.E. McDonnell, of representing the

entire family of (monadic) circular
functions by a single dyadic
function.

7. The use of multiple fonts had to
be re-examined, and this led to the
realization that certain functions
were defined not in terms of the
value of the argument alone, but also
in terms of the form of the name of
the argument. Such dependence on the
forms of names was removed.

We did, however, include
characters which could print above
and below alphabetics to provide for
possible font distinctions. The
original typing element included both
the present flat underscore, and a
saw-tooth one (the pralltriller as
shown, for example, in Webster's
Second), and a hyphen. In practice,
we found the two underscores somewhat
difficult to distinguish, and the
hyphen very difficult to distinguish
from the minus, from which it
differed only in length. We
therefore made the rather costly
change of two characters,
substituting the present delta and
del (inverted delta) for the
pralltriller and the hyphen.

In the placement of the character set
on the keyboard we were subject to a number
of constraints imposed by the two forms of
the IBM 2741 terminal (which differed in
the encoding from keyboard-position to
element-position), but were able to devise
a grouping of symbols which most users find
easy to learn. One pleasant surprise has
been the discovery that numbers of people
who do not use APL have adopted the type
element for use in mathematical typing.
The first publication of the character set
appears to be in Elementary Functions [15].

Implementation led to a new class of
questions, including the formal definition
of functions, the localization and scope of
names, and the use of tolerances in
comparisons and in printing output. It
also led to systems questions concerning
the environment and its management,
including the matter of libraries and
certain parameters such as index origin,
printing precision, and printing width.

Two early decisions set the tone of
the implementation work: I) The
implementation was to be experimental, with
primary emphasis on flexibility to permit
experimentation with language concepts, and
with questions of execution efficiency
subordinated, and 2) The language was to be
compromised as little as possible by
machine considerations.

These considerations led Breed and
P.S. Abrams (both of whom had been
attracted to our work by Reference 13) to

50

propose and build an interpretive
implementation in the summer of 1965. This
was a batch system with punched card input,
using a multi-character encoding of the
primitive function symbols. It ran on the
IBM 7090 machine and we were later able to
experiment with it interactively, using the
typeball previously designed, by placing
the interpreter under an experimental time
sharing monitor (TSM) available on a
machine in a nearby IBM facility.

TSM was available to us for only a
very short time, and in early 1966 we began
to consider an implementation on
System/360, work that started in earnest in
July and culminated in a running system in
the fall. The fact that this interpretive
and experimental implementation also proved
to be remarkably practical and efficient is
a tribute to the skill of the implementers,
recognized in 1973 by the award to the
principals (L.M. Breed, R.H. Lathwell, and
R.D. Moore) of ACM's Grace Murray Hopper
Award. The fact that the many APL
implementations continue to be largely
interpretive may be attributed to the array
character of the language which makes
possibleefficient interpretive execution.

We chose to treat the occurrence of a
statement as an order to evaluate it, and
rejected the notion of an explicit function
to indicate evaluation. In order to avoid
the introduction of "names" as a distinct
object class, we also rejected the notion
of "call by name" The constraints imposed
by this decision were eventually removed in
a simple and general way by the
introduction of the execute function, which
served to execute its character string
argument as an APL expression. The
evolution of these notions is discussed at
length in the section on "Execute and
Format" in The Design of APL [I].

In earlier discussions with a number
of colleagues, the introduction of
declarations into the language was urged
upon us as a requisite for implementation.
We resisted this on the general basis of
simplicity, but also on the basis that
information in declarations would be
redundant, or perhaps conflicting, in a
language in which arrays are primitive.
The choice of an ~nterpretl~ve
implementation made the exclusion of
declarations feasible, and thins, coupled
wi't~ the determinatm~on to mini~a~e the
influence of macF~ne considerations suck as
the internal representatiDns of numbers on
the design of the language, led to an early
dec£sa~on to exclude them.

~n provi~l~ng a mecbani~m Dy which a
user could define a new function, we wished
to provide six forms in all: functions width
0~ I, or 2 explicit arguments, and
functions with 0 or I explicit results.
This led to the adoption of a header for
the function definition which was, rn
effect, a paradigm for the way in which a

function was used. For example, a function
F of two arguments having an explicit
result would typically be used in an
expression such as Z÷A F B, and this was
the form used for the header.

The names for arguments and results
in the header were of course made local to
the function definition, but at the outset
no thought was given to the localization of
other names. Fortunately, the design of
the interpreter made it relatively easy to
localize the names by adding them to the
header (separated by semicolons), and this
was soon done. Names so localized were
strictly local to the defined function, and
their scope did not extend to any other
functions used within it. It was not until
the spring of 1968 when Breed returned from
a talk by Professor Alan Perlis on what he
called "dynamic localization" that the
present scheme was adopted, in which name
scopes extend to functions called within a
function.

We recognized that the finite limits
on the representation of numbers imposed by
an implementation would raise problems
which might require some compromise in the
definition of the language, and we tried to
keep these compromises to a minimum. For
example, it was clear that we would have to
provide both integer and floating point
representations of numbers and, because we
anticipated use of the system in logical
design, we wished to provide an efficient
(one bit per element) representation of
logical arrays as well. However, at the
cost of considerable effort and some loss
of efficiency, both well worthwhile, the
transitions between representations were
made to be imperceptible to the user,
except for secondary effects such as
storage requirements.

Problems such as overflow (i.e., a
result outside the range of the
representations available) were treated as
domain errors, the term domain being
understood as the domain of~e machine
function provided, rather than as the
domain of the abstract mathematical
function on which it was based.

One difficulty we had not anticipated
was the provision of sensible results for
the comparison of quantities represented to
a limited precision. For example, if X and
Y were specified by Y+2÷3 and X+3xY, then
we wished to have the comparison 2=X yield
l (representing true) even though the
representation of~e quantity X would
differ slightly from 2.

This was solv@d by introducing a
comparison tolerance (christened fuzz by
L.M. Breed, who knew of its use in~e Bell
Interpreter [18]) which was multiplied by
the larger in magnitude of the arguments to
give a tolerance to be applied in the
comparison. This tolerance was at first
fixed (at IE-13) and was later made

51

specifiable by the user. The matter has
proven more difficult than we first
expected, and discussion of it still
continues [19, 20].

A related, but less serious, question
was what to do with the rational root of a
negative number, a question which arose
because the exponent (as in the expression
-8*2÷3) would normally be presented as an
approximation to a rational. Since we
wished to make the mathematics behave "as
you thought it did in high school" we
wished to treat such cases properly at
least for rationals with denominators of
reasonable size. This was achieved by
determining the result sign by a continued
fraction expansion of the right argument
(but only for negative left arguments) and
worked for all denominators up to 80 and
"most" above.

Most of the mathematical functions
required were provided by programs taken
from the work of the late Hirondo Kuki in
the FORTRAN IV Subroutine Library. Certain
functions (such as the inverse hyperbolics)
were, however, not available and were
developed, during the summers of 1967 and
1968, by K. M. Brown, then on the faculty
of Cornell University.

The fundamental decision concerning
the systems environment was the adoption of
the concept of a workspace. As defined in
"The APL\360 Terminal System" [21]:

APL\360 is built around the idea of a
workspace, analogous to a notebook,
in which one keeps work in progress.
The workspace holds both defined
functions and variables (data), and
it may be stored into and retrieved
from a library holding many such
workspaces. When retrieved from a
library by an appropriate command
from a terminal, a copy of the stored
workspace becomes active at that
terminal, and the functions defined
in it, together with all the APL
primitives, become available to the
user.

The three commands required for
managing a library are "save",
"load", and "drop", which
respectively store a copy of an
active workspace into a library, make
a copy of a stored workspace active,
and destroy the library copy of a
workspace. Each user of the system
has a private library into which only
he can store. However, he may load
a workspace from any of a number of
common libraries, or if he is privy
to the necessary information, from
another user's private library.
Functions or variables in different
workspaces can be combined, either
item by item or all at once, by a
fourth command, called "copy". By
means of three cataloging commands, a

user may get the names of workspaces
in his own or a common library, or
get a listing of functions or
variables in his active workspace.

The language used to control the
system functions of loading and storing
workspaces was not APL, but comprised a set
of s[stem commands. The first character of
each system command is a right parenthesis,
which cannot occur at the left of a valid
APL expression, and therefore acts as an
"escape character", freeing the syntax of
what follows. System commands were used
for other aspects such as sign-on and
sign-off, messages to other users, and for
the setting and sensing of various system
parameters such as the index origin, the
printing precision, the print width, and
the random link used in generating the
pseu o-~d~ sequence for the random
function.

When it first became necessary to
name the implementation we chose the
acronym formed from the book title A
Pro@ramming Language [I0] and, to allow a
clear distinction between the language and
any particular implementation of it,
initiated the use of the machine name as
part of the name of the implementation (as
in APL\1130 and APL\360). Within the
design group we had until that time simply
referred to "the language".

A brief working manual of the APL\360
system was first published in November 1966
[22], and a full manual appeared in 1968
[23]. The initial implementation (in
FORTRAN on an IBM 7090) was discussed by
Abrams [24], and the time-shared
implementation on System/360 was discussed
by Breed and Lathwell [25].

3. SYSTEMS

Use of the APL system by others in
IBM began long before it had been completed
to the point described in APL\360 User's
Manual [2 3] . We quickly le~neTt~
~-~i~ulties associated with changing the
specifications of a system already in use,
and the impact of changes on established
users and programs. As a result we learned
to appreciate the importance of the
relatively long period of development of
the language which preceded the
implementation; early implementation of
languages tends to stifle radical change,
limiting further development to the
addition of features and frills.

On the other hand, we also learned
the advantages of a running model of the
language in exposing anomalies and, in
particular, the advantage of input from a
large population of users concerned with a
broad range of applications. This use
quickly exposed the major deficiencies of
the system.

52

Some of these deficiencies were
rectified by the generalization of certain
functions and the addition of others in a
process of gradual evolution. Examples
include the extension of the catenation
function to apply to arrays other than
vectors and to permit lamination, and the
addition of a generalized matrix inverse
function discussed by M.A. Jenkins [26].

Other deficiencies were of a systems
nature, concerning the need to communicate
between concurrent APL programs (as in our
description of System/360), to communicate
with the APL system itself within APL
rather than by the ad hoc device of system
commands, to communicate with alien systems
and devices (as in the use of file
devices), and the need to define functions
within the language in terms of their
representation by APL arrays. These
matters required more fundamental
innovations and led to what we have called
the system phase.

The most pressing practical need for
the application of APL systems to
commercial data processing was the
provision of file facilities. One of the
first commercial systems to provide this
was the File Subsystem reported by Sharp
[27] in 1970, and defined in a SHARE
presentation by L.M. Breed [28], and in a
manual published by Scientific Time Sharing
Corporation [29]. As its name implies, it
was not an integral part of the language
but was, like the system commands, a
practical ad hoc solution to a pressing
problem.

In 1970 R.H. Lathwell proposed what
was to become the basis of a general
solution to many systems problems of
APL\360, a shared variable processor [303
which implemented the shared variable
scheme of communication among processors.
This work culminated in the APLSV System
[31] which became generally available in
1973.

Falkoff's "Some Implications of
Shared Variables" [32] presents the
essential notion of the shared variable
system as follows:

A user of early APL systems
essentially had what appeared to be
an "APL machine" at his disposal, but
one which lacked access to the rest
of the world. In more recent
systems, such as APLSV and others,
this isolation is overcome and
communication with other users and
the host system is provided for by
shared variables.

Two classes of shared variables are
available in these systems. First,
there is a ~eneral shared variable
facility with which a user may
establish arbitrary, temporary,

interfaces with other users or with
auxiliary processors. Through the
latter, communication may be had with
other elements of the host system,
such as its file subsystem, or with
other systems altogether. Second,
there is a set of system variables
which define parts of the permanent
interface between an APL program and
the underlying processor. These are
used for interrogating and
controlling the computing
environment, such as the origin for
array indexing or the action to be
taken upon the occurrence of certain
exceptional conditions.

4. A DETAILED EXAMPLE

At the risk of placing undue emphasis
on one facet of the language, we will now
examine in detail the evolution of the
treatment of numeric constants, in order to
illustrate how substantial changes were
commonly arrived at by a sequence of small
steps.

Any numeric constant, including a
constant vector, can be written as an
expression involving APL primitive
functions applied to decimal numbers as,
for example, in 3.14xi0,-5 and -2.718 and
(3.14×10,-5),(-2.718).5. At the outset we
permitted only non-negative decimal
constants of the form 2.7~8, and all other
values had to be expressed as compound
statements.

Use of the monadic negation function
in producing negative values in vectors was
particularly cumbersome, as in
(-4),3,(-5),-7. We soon realized that the
adoption of a specific "negative" symbol
would solve the problem, and familiarity
with Beberman's work [333 led us to the
adoption of his "high minus" which we had,
rather fortuitously, included in our
character set. The constant vector used
above could now be written as -4.3, 5, 7.

Solution of the problem of negative
numbers emphasized the remaining
awkwardness of factors of the form 10*N.
At a meeting of the principals in Chicago,
which included Donald Mitchell and Peter
Calingaert of Science Research Associates,
it was realized that the introduction of a
scaled form of constant in the manner used
in FORTRAN would not complicate the syntax,
and this was soon adopted.

These refinements left one function
in the writing of any vector constant,
namely, catenation. The straightforward
execution of an expression for a constant
vector of N elements involved N-I
catenations of scalars with vectors of
increasing length, the handling of roughly
.5xN×N+I elements in all. To avoid gross
inefficiencies in the input of a constant
vector from the keyboard, catenation was

53

therefore given special treatment in the
original implementation.

This system had been in use for
perhaps six months when it occurred to
Falkoff that since commas were not required
in the normal representation of a matrix,
vector constants might do without them as
well. This seemed outrageously simple, and
we looked for flaws. Finding none we
adopted and implemented the idea
immediately, but it took some time to
overcome the habit of writing expressions
such as (3,3)pX instead of 3 3pZ.

5. CONCLUSIONS

Nearly all programming languages are
rooted in mathematical notation, employing
such fundamental notions as functions,
variables, and the decimal (or other radix)
representation of numbers, and a view of
programming languages as part of the
longer-range development of mathematical
notation can serve to illuminate their
development.

Before the advent of the
general-purpose computer, mathematical
notation had, in a long and painful
evolution well-described in Cajori's
history of mathematical notations [341,
embraced a number of important notions:

I. The notion of assigning an
alphabetic name to a variable or
unknown quantity (Cajori, Secs.
339-3~I).

2. The notion of a function which
applies to an argument or arguments
to produce an explicit result which
can itself serve as argument to
another function, and the associated
adoption of specific symbols (such as
+ and x) to denote the more common
functions (Cajori, Secs. 200-233).

3. Aggregation or grouping symbols
(such as the parentheses) which make
possible the use of composite
expressions with an unambiguous
specification of the order in which
the component functions are to be
executed (Cajori, Secs. 342-355).

4. Simple, uniform representations
for numeric quantities (Cajori, Secs.
276-289).

5. The treatment of quantities
without concern for the particular
representation used.

6. The notion of treating vectors,
matrices, and higher-dimensional
arrays as entities, which had by this
time become fairly widespread in
mathematics, physics, and
engineering.

With the first computer languages
(machine languages) all of these notions
were, for good practical reasons, dropped;
variable names were represented by
"register numbers", application of a
function (as in A+B) was necessarily broken
into a sequence of operations (such as
"Load register 801 into the Addend
register, Load register 802 into the Augend
register, etc."), grouping of operations
was therefore non-existent, the various
functions provided were represented by
numbers rather than by familiar
mathematical symbols, results depended
sharply on the particular representation
used in the machine, and the use of arrays,
as such, disappeared.

Some of these limitations were soon
removed in early "automatic programming"
languages, and languages such as FORTRAN
introduced a limited treatment of arrays,
but many of the original limitations
remain. For example, in FORTRAN and
related languages the size of an array is
not a language concept, the asterisk is
used instead of any of the familiar
mathematical symbols for multiplication,
the power function is represented by two
occurrences of this symbol rather than by a
distinct symbol, and concern with
representation still survives in
declarations.

APL has, in its development, remained
much closer to mathematical notation,
retaining (or selecting one of) established
symbols where possible, and employing
mathematical terminology. Principles of
simplicity and uniformity have, however,
been given precedence, and these have led
to certain departures from conventional
mathematical notation as, for example, the
adoption of a single form (analogous to
3+4) for dyadic functions, a single form
(analogous to -4) for monadic functions,
and the adoption of a uniform rule for the
application of all scalar functions to
arrays. This relationship to mathematical
notation has been discussed in The Design
of APL [13 and in "Algebra as a Language"
which occurs as Appendix A in Algebra: an
algorithmic treatment [353.

The close ties with mathematical
notation are evident in such things as the
reduction operator (a generalization of
sigma notation), the inner product (a
generalization of matrix product), and the
outer product (a generalization of the
outer product used in tensor analysis). In
other aspects the relation to mathematical
notation is closer than might appear. For
example, the order of execution of the
conventional expression F G H (Z) can be
expressed by saying that the right argument
of each function is the value of the entire
expression to its right; this rule,
extended to dyadic as well as monadic
functions, is the rule used in APL.
Moreover, the term operator is used in the

54

same sense as in "derivative operator" or
"convolution operator" in mathematics, and
to avoid conflict it is not used as a
synonym for function.

As a corollary we may remark that the
other major programming languages, although
known to the designers of APL, exerted
little or no influence, because of their
radical departures from the line of
development of mathematical notation which
APL continued. A concise view of the
current use of the language, together with
comments on matters such as writing style,
may be found in Falkoff's review of the
1975 and 1976 International APL Congresses
[3 6] .

Although this is not the place to
discuss the future, it should be remarked
that the evolution of APL is far from
finished. In particular, there remain
large areas of mathematics, such as set
theory and vector calculus, which can
clearly be incorporated in APL through the
introduction of further operators.

There are also a number of important
features which are already in the abstract
language, in the sense that their
incorporation requires little or no new
definition, but are as yet absent from most
implementations. Examples include complex
numbers, the possibility of defining
functions of ambiguous valence (already
incorporated in at least two systems
[37, 38]), the use of user defined
functions in conjunction with operators,
and the use of selection functions other
than indexing to the left of the assignment
arrow.

We conclude with some general
comments, taken from The Design of APL [13,
on principles which gul~e~-~
circumstances which shaped, the evolution
of APL:

The actual operative principles
guiding the design of any complex
system must be few and broad. In the
present instance we believe these
principles to be simplicity and
practicality. Simplicity enters in
four guises: uniformity (rules are
few and simple), generality (a small
numbe! of general functions provide
as special cases a host of more
specialized functions), familiarity
(familiar symbols and usages are
adopted whenever possible), and
brevity (economy of expression is
sought). Practicality is manifested
in two respects: concern with actual
application of the language, and
concern with the practical
limitations imposed by existing
equipment.

We believe that the design of APL was
also affected in important respects
by a number of procedures and
circumstances. Firstly, from its
inception APL has been developed by
using it in a succession of areas.
This emphasis on application clearly
favors practicality and simplicity.
The treatment of many different areas
fostered generalization: for
example, the general inner product
was developed in attempting to obtain
the advantages of ordinary matrix
algebra in the treatment of symbolic
logic.

Secondly, the lack of any machine
realization of the language during
the first seven or eight years of its
development allowed the designers the
freedom to make radical changes, a
freedom not normally enjoyed by
designers who must observe the needs
of a large working population
dependent on the language for their
daily computing needs. This
circumstance was due more to the
dearth of interest in the language
than to foresight.

Thirdly, at every stage the design of
the language was controlled by a
small group of not more than five
people. In particular, the men who
designed (and coded) the
implementation were part of the
language design group, and all
members of the design group were
involved in broad decisions affecting
the implementation. On the other
hand, many ideas were received and
accepted from people outside the
design group, particularly from
active users of some implementation
of APL.

Finally, design decisions were made
by Quaker consensus; controversial
innovations were deferred until they
could be revised or reevaluated so as
to obtain unanimous agreement.
Unanimity was not achieved without
cost in time and effort, and many
divergent paths were explored and
assessed. For example, many
different notations for the circular
and hyperbolic functions were
entertained over a period of more
than a year before the present scheme
was proposed, whereupon it was
quickly adopted. As the language
grows, more effort is needed to
explore the ramifications of any
major innovation. Moreover, greater
care is needed in introducing new
facilities, to avoid the possibility
of later retraction that would
inconvenience thousands of users.

55

ACKNOWLEDGEMENTS

For critical comments arising from
their reading of this paper, we are
indebted to a number of our colleagues who
were there when it happened, particularly
P.S. Abrams of Scientific Time Sharing
Corporation, R.H. Lathwell and R.D. Moore
of I.P. Sharp Associates, and L.M. Breed
and E.E. McDonnell of IBM Corporation.

REFERENCES

I. Falkoff, A.D., and K.E. Iverson, The
Design of APL, IBM Journal of Research
and Development, Voi.17, No.W, July
1973, pages 324-334.

2. The Story of APL, Computing Report i__n
Science and Engineering, IBM Corp.,
Vol.6, No.2, April 1970, pages 14-18.

3. Origin of APL, a videotape prepared by
John Clark for the Fourth APL
Conference , 1974, with the
participation of P.S. Abrams, L.M.
Breed, A.D. Falkoff, K.E. Iverson, and
R.D. Moore. Available from Orange
Coast Community College, Costa Mesa,
California.

4. Falkoff, A.D., and K.E. Iverson, APL
Language, Form No. GC26-3847, IBM
Corp., 1975

5. McDonnell, E. E., The Story of o, APL
Quote-Quad, Vol. 8, No. 2, ACM, SIGPLAN
Tec~ic~ Committee on APL (STAPL),
December, 1977, pages 48-54.

6. Brooks, F.P., and K.E. Iverson,
Automatic Data Processing, John Wiley
and Sons, ~7~.

7. Falkoff, A.D., Algorithms for Parallel
Search Memories, Journal of the ACM,
Vol. 9, 1962, pages 488-51~.--

B. Iverson, K.E., Machine Solutions of
Linear Differential E~uatfons:
App'~ations to a Dynamic'Economic
Model, Harvard University, 1954 (Ph.D.
Te~s).

9. Iverson, K.E., The Description of
Finite Sequential Processes,
Proceedings of the Fourth London
Symposium-on I--no~matlon--~---'Teo~ Colin
Cherry, Editor, 1960, pages 447-457.

10. Iverson, K.E., A Programming Language,
John Wiley and Sons, 1962.

11. Graduate Prqgram in Automatic Data
Processing, Harvard University,q54,
(Brochure).

12. Iverson, K.E., Graduate Research and
Instruction, Proceedings of First
Conference on Training Pe~onn~for
the Computing Machine Field, Wayne
State University, DetroiT, Michigan,
June, 1954, Arvid W. Jacobson, Editor,
pages 25-29.

13. Falkoff, A.D., K.E. Iverson, and E.H.
Sussenguth, A Formal Description of
System/360, IBM Systems Journal, Vol 4,
No. 4, Octobe~19~4, pages 198-262.

14. Iverson, K.E., Formalism in Programming
Languages, Communications of the ACM,
Vol.7, No.2, February 1964, pages
80-88.

15. Iverson, K.E., Elementary Functions,
Science Research Associates, 1966.

16. Berry, P.C., APL\360 Primer, IBM
Corporation (GH20-0689~69.

17. Hellerman, H., Experimental
Personalized Array Translator System,
Communications of the ACM, Vol.7, No.7,
July 1964, pages 433-438.

18. Wolontis, V.M., A Complete Floating
Point Decimal Interpretive System,
Technical Newsletter No. 11, IBM
Applied Science Divis~n, 1956.

19. Lathwell, R.H., APL Comparison
Tolerance, APL 76 Conference
Proceedings, Association for Computing
Machinery, 1976, pages 255-258.

20. Breed, L.M., Definitions for Fuzzy
Floor and Ceiling, Technical Report No.
TR03.024, IBM Corporation, Marc~7~.

21. Falkoff, A.D., and K.E. Iverson, The
APL\360 Terminal System, Symposium on
Interactive Systems for Experimental
Applied Mathematies,-~[s. M. Klerer and
J. Reinfelds, Academic Press, New York,
1968, pages 22-37.

22. Falkoff, A.D., and K.E. Iverson,
APL\360, IBM Corporation, November
9~6

23. Falkoff, A.D., and K.E. Iverson,
APL\360 User's Manual, IBM Corporation,
August I~.

24. Abrams, P.S., A_n ~nterpreter for
Iverson Notation, Technical Report
CS47, Computer Science Department,
Stanford University, 1966.

25. Breed, L.M., and R.H. Lathwell, The
Implementation of APL\360, Symposium o_n
Interactive Systems for Experimental
and Applied Mathemat~, eds. M. Klerer
a~ J. Reinfelds, Academic Press, New
York, 1968, pages 390-399.

56

26. Jenkins, M.A., The Solution of Linear
S[stems o_~ Equat-~ns and Linear Least
Squares Problems in APL, IBM Technical
Report No. 320-2989, 1970.

27. Sharp, Ian P., The Future of APL to
benefit from a new file system,
Canadian Data S[stems, March 1970.

28. Breed, L.M., The APL PLUS File System,
Proceedings of SHARE XXXV, August,
1970, page 3~.--

29. APL PLUS File Subsystem Instruction
M~ua~, Sc~tific Time STaring
Corporation, Washington, D.C., 1970.

30. Lathwell, R.H., System Formulation and
APL Shared Variables, IBM Journal of
Research and Development, Voi.17, ~.4,
July 1973, pages 353-359.

31. Falkoff, A.D., and K.E. Iverson, APLSV
User's Manual, IBM Corporation, 1973.

32. Falkoff, A.D., Some Implications of
Shared Variables, Formal Languages and
Programming, R. Agullar-~--~ ed., North
Holland Publishing Company, 1976, pages
65-75. Reprinted in APL 76 Conference
Proceedings, Association for Computing
Machinery, pages 141-148.

33. Beberman, M., and H.E. Vaughn, HiS
School Mathematics Course I, Heat~,
1964.

34. Cajori, F., A History of Mathematical
Notations, Vol. I, Not~io-ns in
Elementary Mathematics, The O~n Court
Publishing Co., La Salle, Illinois,
1928.

35. Iverson, K.E., Algebra: an algorithmic
treatment, Addison Wesley, 1972.

36. Falkoff, A.D., APL75 and APL76: an
overview of the Proceedings of the Pisa
and Ottawa Congresses, ACM Computing
Reviews, Vol. 18, No. 4j--April, 1977,
Pages 139-141.

37. Weidmann, Clark, APLUM Reference
Manual, University of Massachusetts,
~ t , Massachusetts, 1975.

38. Shar~ APL Technical Note No. 25, I.P.
Sharp Associates, Toronto, Canada.

APPENDIX A

Reprinted from APL\360 User's Manual [23]

ACKNOWLEDGEMENTS

The APL language was first defined by
K.E. Iverson in A Programming Language
(Wiley, 1962) any has since been developed
in collaboration with A.D. Falkoff. The
APL\360 Terminal System was designed with
the additional collaboration of L.M. Breed,
who with R.D. Moore*, also designed the
S/360 implementation. The system was
programmed for S/360 by Breed, Moore, and
R.H. Lathwell, with continuing assistance
from L.J. Woodrum e, and contributions by
C.H. Brenner, H.A. Driscoll**, and
S.E. Krueger**. The present implementation
also benefitted from experience with an
earlier version, designed and programmed
for the IBM 7090 by Breed and
P.S. Abrams ®e.

The development of the system has
also profited from ideas contributed by
many other users and colleagues, notably
E.E. McDonnell, who suggested the notation
for the signum and the circular functions.

In the preparation of the present
manual, the authors are indebted to
L.M. Breed for many discussions and
suggestions; to R.H. Lathwell,
E.E. McDonnell, and J.G. Arnold*e for
critical reading of successive drafts; and
to Mrs. G.K. Sedlmayer and Miss Valerie
Gilbert for superior clerical assistance.

A special acknowledgement is due to
John L. Lawrence, who provided important
support and encouragement during the early
development of APL implementation, and who
pioneered the application of APL in
computer-related instruction.

*I.P. Sharp Associates, Toronto, Canada.

®General Systems Architecture, IBM
Corporation, Poughkeepsie, N.Y.

**Science Research Associates, Chicago,
Illinois.

®®Computer Science Department, Stanford
University, Stanford, California.

*®Industry Development, IBM Corporation,
White Plains, N.Y.

57

