Check for
Updates

Origins of the APT Language

for

Automatically Programmed Tools

Douglas T. Ross
SofTech, Inc.
Waltham, MA

1. INTRODUCTION
(From THE NEW YORKER)

Cambridge, Mass., Feb., 25 -~-

The Air Force announced today that it has a
machine that can receive instructions in
English, figure out how to make whatever
is wanted, and teach other machines how

to make it.

An Air Force general said it will enable
the United States to ""build a war machine
that nobody would want to tackle, "

Today it made an ashtray.

-- San Francisco Chronicle

... In a sulk, probably,

This quote from the New Yorker Magazine
of March 28, 1959 resulted from a newspaper
article, from a wire service story, covering a
press conference held at the Massachusetts
Institute of Technology, February 25, 1959,
(Souvenir aluminum ashtrays, milled in three
dimensions by the first APT System, were indeed
included in the press kit!) The press conference,
jointly sponsored by the Aircraft Industries
Associjation (AIA, now the Aerospace Industries
Association), the Massachusetts Institute of
Technology (MIT), and the Air Materiel Command
(AMC) of the United,States Air Force was attended
by over 60 members of the technical and popular
press and resulted in extensive -coverage through-
out the world for the next few months. The wide-
spread attention which this event received was
not misplaced, for it represented the true inaugu-
ration of the era of computer-aided manufacturing
which still is in the process of vigorous evolution
today, some two decades later,

The February 1959 press conference
[MIT 1959a] formally marked the completion of
the opening phase of APT System development
and roughly the midpoint of my own active involve-
ment in the creation and determination of the
basic structure of APT, APT stands for
"Automatically Programmed Tools', and the APT
language, in more elaborate form, is now an
international standard for the programming of
numerically controlled machine tools,

© 1978 Association for Computing Machinery, Inc. 61

Although I have been almost overwhelmed
by the amount of work involved, I am both honored
and pleased with this opportunity to present a
personal summary of those hectic and historic
times, When first invited to prepare this paper,

I envisioned a simple set of reminiscences which
would be fun and easy to do. But when confronted
with the almost 70 shelf feet of archival working
papers, reports, and records which I have re-
tained over the years, (two large file cabinets
worth of which concern APT), I realized I was
faced with a major undertaking. I have tried to
minimize my personal opinion as-much as possible
by referring back to the original source documents
which exist in such profusion. I hope I have done
this in a way that is both entertaining and
instructive. ’

I hope that I will not be accused of immod-
esty for writing this paper in the first person, but
quite frankly I am not an impartial historical
scholar and know of no other way than to provide
this personalized account. I hope to share with
you some of the excitement of discovery that
comes from the detective work needed to place
specific undated bits and pieces into what must
have been the actual sequence -- long since
forgotton -- as supported by evidence in the
source material itself. I have been surprised
many times by the evidence that discoveries and
observations were made years earlier than I
would have guessed or remembered, and I think
these provide a useful and enlightening commen-
tary on the historic roots of many concepts of
computer science and language design which
today are recognized as of central importance,

I will try to point these out when they occur in
the story.

1.1 An APT Theme for This Paper

There are many stories that could be
written about APT. By its very nature and timing,
APT simply had to be an exciting, dynamic,
driving, multi-threaded, and multi-faceted brew
of historic firsts -~ and it was, This means that
any story of APT must be complex, for the
historic truth of what happened from 1956 to 1960
was indeed complex, Conceptual, technical,
technological, organizational, and political prob-
lems, each of which could form the basis for a
historical paper, all were intertwined and all

ACM SIGPLAN Notices, Vol. 13, No. 8, August 1978

http://crossmark.crossref.org/dialog/?doi=10.1145%2F960118.808374&domain=pdf&date_stamp=1978-08-01

were influential on each other, Therefore, in
order to treat the subject of APT language
development as a separable component in a way
that will provide some useful perspective from
the present day, looking back in time, I have
tried to select a theme which will allow us to see
some pattern relevant to this one aspect, without
doing violence to the validity of the historical
record, I will try to state that theme briefly
here and to refer back to it with fair regularity
as my story unfolds, but I am sure that my effort
will only be partially successful. So many non-
language topics must be treated in order to chara
acterize the subjects and issues that are of
thematic importance that I am sure that the
theme itself will occasionally be swamped,
shortly to resurface like an intrepid white-water
canoeist.

My theme itself is a discovery, not an
invention, and is a direct result of my many
weeks of struggle through the mass of material
available to me. Although 20 years had com-
pletely blanked it from my memory, I found that
at the very beginning of the APT effort I had an
extremely clear and '""modern'' view of both the
nature and substance that the language should
have well before any real substantive progress
had been made. This surprised me. I was not,
however, surprised at the many high and low
points, that showed clearly in my reconstruction
of the activities of building the initial APT system
itself., Those parts I did recall, in flavor at least
(although again many of the actual timings sur-
prised me and intrigued me in my reconstruction
efforts). But when I finally got to examining the
first complete APT language presented in the
Phase I APT Part Programmer's Manual, of
early 1959 [Ross 1959a], lwas struck by the
observation that although the funny punctuation
made the language somewhat stilted, nonetheless
an amazing number of the original high-flown
objectives for the language had in fact been
achieved. Out of the white.water hurly~burly of
those two years of hectic project activity had
emerged a reasonably user~oriented, English-
like language. Again, the canoeist is a valid
analogy.

My attempt to understand this phenomenon
-~ how with no valid precedents to go on and with
the most chaotic possible working environment
(with essentially no time for research, but only
breakneck development) this desired end result
came about -~ supplied my theme. When I asked
myself why did the APT language turn out to be
"English like'" and well-suited to the needs of its
part-programmer users in spite of the fact that
there was no theoretical basis for language design
or implementation or management of large, dis-
persed, team programming efforts, I could see
only one pattern which emerged from the historic
record which I had reconstructed. That pattern,
or theme, seems to have four primary premises,
These premises, combined with the factual obser-
vation that our efforts were indeed successful,
yield a conclusion which seems to explain the
reason for that success, The four premises are:

62

1. The entire field of automatic program-
ming for numerical control was brand
new. Therefore, with respect to
language design, the semantics of the
language had to come first and the
syntax of the language had to derive
from the thinking or viewpoint engen-
dered by technical ability to have a
"systematized solution' to the general
problem area,

2. For many pressing reasons, the proj-
ect and the work to be done had to be
broken into many pieces to be worked
on by many people at different loca-
tions. This implied that even though
there were no guidelines to go by,
some form of viable modularity had
to be imposed on every aspect of the
solution. The system had to have a
structure mirroring the structure of
the systematized solution.

3. Lacking today's compiler-building
technology, both the syntactic (trans-
lation) and semantic (execution)
processes had to be cohesive modular
units within the system structure,

4, In order to satisfy the requirements
for the system and language as a
whole, both the syntactic and seman-
tic aspects of both the language and
the system had to be open-ended,
so that both the subject matter and
the linguistic treatment of it could
be extended as the underlying manu-
facturing technology evolved, In
particular, the system had to be
independent of geometric surface
types, and had to be able to support
any combination of machine tool and
control system.

These four premises, which I will cite
when they occur in the record and which were
religiously observed from the beginning, com-
bined with the fact that we were indeed able to get
the job done, seemed to (and this is the theme)
supply the equivalent of a theoretical framework
matching almost feature for feature the current
high-technology, theoretically-founded approach
to building advanced man-machine computer
application systems. In other words, even though
we stumbled frequently along the way, and at
times created rather awkward and juvenile ver-
sions of what we now accept as required, none-
theless we did manage to get all of the essential
pieces done in essentially the right way, 'in essen-
tially the right places so that even today some
twenty years later, the structure of both the
language and the system are essentially the same
and have been found to have stood the test of time
well. In effect we were forced by the nature of
our problem and the necessity of our approach to
it to anticipate much of the well.structured
methodology that from today's vantage point seems
essential and almost inevitable, As we will see,

however, the first time through, that inevitability
was not quite so obvious!

1.2 An Overview

Before commencing on the story itself, I
will present a brief overview of the rough chron-
ology of times, places, people, and events to
provide a bit of orientation., Much as different
periods of development can be observed, after

the fact, in the evolution of style in painters and
artists, the beginnings of APT also break naturally
into a number of overlapping but nonetheless dis-
tinctive periods during which the focus of atten-
tion highlighted first one and then another and

then another aspect of the overall subject,

The first major period covers roughly
September 1956 to January 1957, during which I
and my green staff at MIT came up with the first
overall formulation of the APT System concept and
documented it in the first Interim Report of the
project [Ross and Pople 1956], We laid out a
‘system structure distinguished by three styles of
three-dimensional programming (by points, by
space curves, and by regions) and a system
structuring technique based upon the simulation
of a specialized APT computer on a general pur-
pose computer, My coverage of this first period
here is preceded by historical background with
respect to numerical control and the MIT Milling
Machine Project, as well as of my Computer
Applications Group. Since some of the system
and language design objectives which formed the
starting point for my theme come from background
working papers generated during the preparation
of the Interim Report, a couple of side excursions
set the tone of my thinking as the project actually
got underway.

To me a very interesting pair of discover-
ies which I never would have guessed if I had not
found the evidence in my papers, is the fact that
my concepts of plex programming via "reversed
index registers' (and the modern equivalents of
beads, records, controlled storage classes, and
abstract data types) as well as the essential dif-
ference between "input' and "control" of my 1970's
formulation of plex ideas in the form of Structured
Analysis both were recognized as important and
documented by me way back then in the fall of

1956, These are among the events that form the
source for that first Interim Réport formulation
of APT,

The second period concerns our initial
activities in conjunction with the Aircraft Indus-
tries Association, -- a trade association of all
of the major companies involved in any way with
aircraft manufacturing. We first made contact
with them early in 1957 and the second period
stems from their interest in having MIT put on a
Special Course covering all aspects of numerical
control, Their interest stemmed from the fact
that a major Air Force "buy'" of $30 million (yes!
1957 dollars!) worth of numerically controlled
machine tools was scheduled to start, with instal-
lations in many of their plants beginning in the
summer of 1957. The companies had to figure
out how to put them into productive use, Although
there was as yet no APT language, I present here

63

my lecture about language design for numerical
control from that course, for it also forms a
cornerstone in my thinking about APT language
before it actually existed.

QOur APT research progress showed the
greatest promise for meeting the needs of the
aircraft industry in time to be of use, so that the
third period covers the AIA decision to form the
APT Joint Effort. This began with a kick.off
meeting at MIT the week of May 20, 1957, which
launched the world's first major cooperative prow
gramming venture, combining government, univ-
ersity, and industry, with the Air Force sponsor-
ing MIT leadership of a 14-company team effort.

Still there was no APT language. The
fourth period which I consider took place primarily
on two days of a weekend (May 25, 26, 1957),
followed by spot efforts over the next two weeks
as I generated the first memorandum definin
the initial APT language [Ross 1957c], intended
merely as a starting point and designed primarily
to permit the simplest possible translation
approach. The memo is brief and historically
interesting so I present it here in its entirety.

The {ifth period concerns most the struc-
turing of the APT System and the stages of evolu-
tion of how to treat the input translation, instruca-
tion preprocessing, and definition preprocessing
portions of that system which in modern terms
constitute the lexical analysis and parsing of APT
language expressions. Although I don't go into
detail here, I try to indicate a bit of the struggle
that led to modular program structuring which
from there on served the same role as the modern
high-technology approach to compiler construction.
I also cover progress in the computational aspects
of the geometric semantics of the language which
led to the first paring down of expections to a
Field Trial system appropriate for testing.

The sixth period concerns the construction
of the Field Trial APT language, with side excur-
sions into the preparation of the first two major
papers describing APT, one presented at the
Third Annual Contour Machining Conference [Ross
1957d], and the other at an ACM session of the
American Association for the Advancement of
Science (AAAS) Ross 1957f]. Extracts from
these papers once again provide a concise expresa-
sion of the kind of thinking that lay behind the
day-to-day work.

The Field Trial distribution marked the
end of MIT's official coordination of the APT
Joint Effort, which from then on passed into the
hands of a succession of leaders from industry,
The transition was not easy, however, and diffi-
culties continued to plague the project so that
the seventh period centers around a ""Post-
Coordinator's Report" in the fall of 1958 [Ross
1958f] which draws together many of the syntactic
and semantic problem areas and supplies solutions
which completed the specifications for the Phase I
APT system -~ the first really complete APT
system and language, which is the ending point for
this historic analysis.

The eighth period covers the actual Part
Programmer's Manual of the Phase I APT

language, citing how its features evolved from the
initial and Field Trial formulations, through the
evolutionary stages cited in the papers, into the
first complete formulation, I also point out how
the concommitent evolution of the syntactic and
semantic processing, as covered in the Project
Report and Coordinator Report descriptions, made
possible the various language features, and cite
how they match with many of the original high-
blown objectives of the first Interim Report and
the Special Numerical Control Course of the
spring of 1957.

The ninth period covers the public presen-
tation of these almost-working results in the
February 25, 1959 Press Conference at MIT, and
I also briefly outline some of the syntactic and
semantic language features which purposely were
left out of Phase I but which later came into sub-
sequent phases of APT evolution, in several cases
anticipating powerful language features (such as
macros and phrase substitution) found in today's
high level languages.

APT has undergone continuous evolution
and extension from the beginning up to the present
day and therefore I make no effort to extrapolate
or to provide a tutorial summary of modern-day
numerical control programming, computer
graphics, and computer-aided design -- all of
which are part of the same evolutionary develop-
ment. But I hope that my efforts to present an
organized analysis of these early developments
will be found to support the theme which I dis-~
covered threaded through the historic record --
that because we were forced to be modular and
open-ended, in a very difficult and brand new
application area, the fact that we succeeded
ensured that the resulting system and language
were ""modern" by today's standards, even though
done some twenty years ago,

Generalijty in Specialty

1.3

The fact that APT was the first and most
widely used of the special purpose application-
oriented languages counts for something, But
more importantly, it seems that APT is particu-
larly apt as a subject for study in the history of
programming languages. Being a language for a
specialized area -~ automatic programming of
numerically controlled machine tools -~ might
appear to make it inappropriate, because it would
appear to lack generality. But it turns out that,
because the application area was brand new and
never before had been attacked in any way at all,
the study of the origins of the APT language
necessarily involves much greater attention to
semantics than is the case with respect to more
general-purpose languages which obtained most
of their background ready-made from the fields
of mathematics and logic. There is no way to
separate the origins of the APT language from the
origins of numerical control itself, and of the
community of users of numerical control. Moreso
than for any other historic language, APT requires
a complete consideration of every aspect of rele-
vance to language design.

This perhaps surprising generality of
interest in a specialized language is further bol-
stered by the fact that, because it involved so

64

many firsts, including the first introduction of

the use of computers in large segments of the
manufacturing industry, we were forced at the

time to be very explicit about our thoughts, objec~
tives, and motivations in designing the APT lan-
guage and APT system, in terms addressed
directly to the intended users. Thus, among my
many source documents are specific writings con-~
cerned with the very subject of the motivations
behind the design of the APT language. It is not
necessary to speculate at all about what was in my
mind twenty years ago, for we can find it expressed
directly on paper, written at that time. To me,
this has been one of the most interesting discovery
aspects, for it shows that we were very much
aware of what we were doing and that we expressed
ourselves in surprisingly "modern' terms. I will
present verbatim extracts at appropriate points

in my story and let the modern reader be the judge.

1.4 Source Material

As to my source material itself, it is held
together and (meta-) commented on in an on-going,
continuing fashion by an extensive series of 'daily
resumes" [Ross 1956b-1963], which were a form
of professional diary which I kept with surprisingly
complete regularity from

October 30, 1956 through May 20, 1959,
December 15, 1959 through March 10, 1960,
December 4, 1961 through October 2, 1962,
February 1, 1963 through November 29, 1963,

finishing with a few bits and pieces in connection
with the IFIP Congress in 1965, Every day or so,
and often periodically during the day, I would
merely grab my dictating machine and say who I
had met with about what, or what I had read that
had interested me, what trips I had taken, etc.
and, in general, what I was thinking about. I
started this practice initially shortly after the
beginning of the APT Project at MIT when it be-
came apparent to me that I could not keep all my
activities straight without some help. I decided
that the time of my secretary in transcribing these
daily resume notes would be well invested in allow-
ing me to know what was going on. This blow-by-
blow description -~ all 833 pages of it -« is, of
course, invaluable reference material for historic
reconstruction,

In addition to the resumes, my files con-
tain the expected correspondence and reports,
extensive technical memoranda series, trip
reports, notes, and meeting handouts, as well as
many clumps of actual original working papers
and working drafts which led to published material,
sample computer runs, and the like, At the time,
the MIT Servomechanisms Laboratory supplied us
with pads of unlined yellow paper (yellow since it
was non-reproducible by the Ozalid process and
much of our work was classified). In my group
we attempted to retain working papers for con-
tinual back-checking, and we said "Find it fast in
the Yellow Pages', Only a few of them have sur-
vived, but those that have are interesting indeed.

To provide concise reference to these ma-
terials in my files (which ultimately will reside
in the MIT Archives) I have used the following
condensed notation: [R56123] means "resumes

1956 December 3'"; [C570123] means ''corre-
spondence 1957 January 23'; [N57223, p4] means
""page 4 of working paper notes 1957 February 23",
etc., and [p3] means ''page 3 of the most recently
cited reference', etc.

2. BACKGROUND

Because of the importance of the pragmatic
and semantic components of APT language design,
it is appropriate to begin with a brief overview
history of the events before, during, and after

the time period (from the fall of 1956 through the
spring of 1959) actually covered by the story of
this paper. I will interweave a bit of my own
history and that of my Computer Applications
Group at MIT with that of numerical control itself
in order to lay the proper foundation for the per-
sonalized account which follows.

I came to MIT in the fall of 1951 as a
Teaching Assistant in the Mathematics Department,
following my completion of an Honors Degree in
Mathematics at Oberlin College in June, I started
in the Servomechanisms Laboratory (now the
Electronic Systems Laboratory) with a summer
job in June 1952 and stayed with the lab until
departing to form SofTech in July 1969. As is
evidenced most accessibly by the excellent article
[Pease 1952] in the September 1952 issue of
Scientific American, 1952 also was the year of
completion of the first phase of the introduction
of numerical control to the world, with the opera-
tion of the MIT numerically controlled milling
machine at Servo Lab, [MIT 1952].

As is described more completely elsewhere
[Ward 1968], the development of numerical con-
trol, proper, began with a proposal by John T.
Parsons of the Parsons Corporation, Traverse
City, Michigan to the United States Air Force
that punched tape and servomechanism control be
applied to a milling machine to produce automati-
cally the templates required in the production of
helicopter rotor blades., Parsons received a
contract from the Air Force in July 1949, and
subcontracted the control work to the Servomech-
anisms Laboratory in 1949, In February 1951 the
Air Force contract was switched directly to Servo
Lab which was to receive continuing sponsorship
for numerical control hardware, software, and
adaptive control, followed by computer.aided
design, computer graphics hardware and software,
and software engineering and software technology,
for almost 20 years,

My entry to Servo Lab was in 1952 in the
field of airborne fire control system evaluation
and power density spectra analyses. (I later com-
pleted a Masters Thesis on Improved Computational
Techniques for Fourier Transformation [1954] as
well as all course requirements for the Ph, D, in
pure mathematics by taking courses throughout
this period as a part-time student. I never com-
pleted the doctorate program, since qualifying
examinations would have covered material in pure
mathematics that I had not studied for years and
there was, of course, no computer science doc-
torate program at that time,) The MIT Digital

65

Computer Laboratory with its Whirlwind I com-
puter [Everett 1951] had recently spun off from
Servo Lab and I taught myself to program it in the
summer of 1952, completing my fall teaching
schedule while also taking a full course load and
being a full-time staff member at Servo Lab,

From the fall of 1952 and for the next seven
years I was heavily involved in the application of
a new form of air mass ballistic tables to the
evaluation of airborne fire-control systems, espe-
cially for the B-58 bomber. A series of projects
eventually involved the installation of manual
intervention and Charactron display tube equipment
on the ERA1103 Computer (precursor to the Univac
1100 series of computers) at Eglin Air Force Base
in Florida. This work, which preceded and heavily
overlapped with the early APT developments, had
a very strong influence on my approach to the
numerical control programming and calculation
problem, The problems were of similar coma-
plexity and involved the same style of ''systema-
tized solution' using three-dimensional vector
calculations, intermixing a heavy use of logical
decisions with simple approximating calculations
in a complex network modeling the reality of the
situation [Ross and McAvinn 1958]. This also
was the source of the foundations of my plex
philosophy and approach to general problem
modeling and solution.

In the four years from the summer of 1952
to the summer of 1956, I was involved in a broad
range of small and large projects. I and my small
group of programmers had developed a Mistake
Diagnosis Routine for interruptive checking of
arbitrary programs, and various program debug-
ging and preparation aids. We commissioned
programmers of the Digital Computer Laboratory
to prepare a symbolic assembly system for pre-
paring ERA1103 computer programs on Whirlwind,
as well as a ""director tape'' program for Whirl-
wind, which probably was the first JCL-driven
operating system, We were the first to use the
then-classified manual intervention and multiple
scope equipment (developed for the Air Defense
System) for general interactive man-machine
problem solving. I wrote the first two-dimensional
freehand, graphic input program (1954) starting
computer graphics, and we installed the first
interactive on-line typewriter keyboard (1955).

All of these features including automatic logging
and playback of manual actions were included in
the Servo Lab Utility Routine Program (SLURP)
System [Ross 1958b), including a system called
"Group Control' [MIT 1959b, Vol. VII] for auto-
matic paging between core memory and drum
storage to allow large programs to operate in
limited memory.

Many of these activities were simultane-
ously underway in the summer of 1956, including
a multi-organization "Pre-B-58 Project" [MIT
1958b] for the evaluation of the tail turret of the
B-58 airplane, with programmers under my
direction in St, Louis, Eglin, and MIT shuttling
back and forth developing both hardware and soft-
ware for Whirlwind and the ERA1103, A number
of the important concepts behind this work were
summarized in my first professional paper on

Gestalt programming, presented that spring at
the 1956 Western Joint Computer Conference in
California [Ross 1956a]. I set aside an example
of push-button control of (pre-Sputnik) satellite
launching, and instead illustrated that paper with
an example of control of an automatic factory --
appropriately enough for APT.

2.1 The MIT Milling Machine Project

While these many activities were forming
the background of myself and my programming
group, the MIT Numerical Control Project was
also progressing full steam on several other
parallel paths from 1952 to 1956. Through numer-
ous contacts with machine tool builders and air-
craft companies, large numbers of test parts were
produced on the milling machine and were studied
for economic impact. Many parts were program-
med entirely by hand, but throughout this period
John Runyon developed a comprehensive subroutine
library on Whirlwind [Runyon 1953] for performing
many of the necessary calculations and automati-
cally producing the coded instructions for the
punched paper machine tool control tape. Many
parts were produced by a combination of manual
and subroutine means., Improvements also were
made to the hardware of the control system and
machine tool director during this period, along
with documented economic studies and much edu-
cational documentation and promotional material.

In 1953 the primary sponsorship support
for the engineering-based milling machine project
switched from the Air Force to the Giddings and
Lewis Machine Tool Co. which sponsored the
development of a new production tool director on a
commercial basis. During this period, the Air
Force-sponsored economic studies were com-
pleted [Gregory and Atwater 1956] and the Air
Force-sponsored engineering project commissioned
the development, by Arnold Siegel of the Digital
Computer Laboratory, of the first automatic pro-
gramming language and system for higher-level
language preparation of machine tool control tapes,

Arnie did a wonderfully elegant prototype demon-
stration system for two-dimensional parts con-
sisting of straight lines and circles called for
respectively by symbolic names beginning with S
or C and with mnemonic punctuation for indicating
near and far intersection points and controlling
the tool motion on the right or left side of the
specified curve, see Figure 4 (later), The result-
ing MIT report and Control Engineering article

[Siegel 1956a,b] stimulated a great deal of
interest,

Based upon this success and that of the
Runyon subroutine library, the engineering project
submitted a proposal to the Air Force that numer-
ical control work be continued at MIT with a con-
centration on automatic programming rather than
further engineering. Then in 1955 the entire
engineering project staff (except for Alfred
Susskind, who remained at MIT for teaching and
research) left the Laboratory to form Concord
Controls, Inc. with Giddings and Lewis backing,
to manufacture the Numericord director system
on a commercial basis [MIT 1956].

66

2,2 The Computer Applications Group

The Air Force accepted the Servo Lab pro-
posal, Beginning in June of 1956 the laboratory
was under contract to inaugurate a new program
in numerical control, this time emphasizing auto-
matic programming for three~dimensional parts
to be produced by 3- and 5-axis machine tool
director systems., Naturally enough, this work
was assigned to my group. In recognition of the
many projects which we already were serving in
addition to the milling machine project, we were
commissioned as the Computer Applications
Group, at that time, Since I was understaffed for
the work already underway, an entire new recruit-
ing effort was immediately instituted, John Waxrd,
then Executive Officer of the Laboratory was act-
ing Project Engineer, but technical responsibility
fell to me,

Late in the summer we hired our first
programmer trainee, Jerome Wenker, but actual
work on the project was forced to wait until the
arrival in September of three new Research Assis-
tants with engineering backgrounds. They were
Samuel M, Matsa, Harry E, Pople, Jr., and
George Zames. Thus the revitalized milling ma-
chine project got underway in September 1956,
three months late, with everybody including my-
self completely inexperienced in numerical con-
trol and, except for me, also inexperienced in
either programming or language design. Further-
more, the contract called for quarterly Interim
Engineering Reports, the first of which was to
report on our progress from the start of the con-
tract through September 30! Hardly an auspicious
beginning for so ambitious an undertaking,
especially since the Pre-B-.58 Project was begin-
ning to encounter the first of a long series of great
technical difficulties, so that that project forms
the bulk of my daily resumes for many months to
come, We were all bright, eager, and hardwork-
ing, however, and set to work immediately with
enlightened if somewhat naive vigor.

3. PERIOD 1: INITIAL APT FORMULATION
(September 1956 through January 1957)

Changes from the Siegel System

My date stamp on my own copy of Arnie
Siegel's MIT report reads '""September 28, 1956,
Arnie was a good friend and I'm sure I met sev~
eral times with him to go over his programs and
gather his thoughts on how we ought to proceed.
His system was based upon a simple character-
driven Input Translation Program like those used
elsewhere in the symbolic assemblers that had
been written at the Computer Lab., The translator
then selected from a library of closed subroutines
which analytically computed the required inter-
sections of straight lines and circles and employed
the same calculations as Runyon's cutter center
offset routines and punched-tape code-generation
(recorded on magnetic tape for offline punching).
His system also produced meaningful error diag.
nostics and was elegant and easy to use.

I saw immediately that although the input
and output portions of the Siegel system could be
extended, the language and calculating methods
would have to be completely different, for in order
to handle arbitrary 3-dimensional shapes the
calculation of curves and endpoints by closed-form
solutions would be impossible. Furthermore, the
"automatic programming language'' (it was still
several months before the term 'part programming
language' was introduced in APT, probably by
Boeing) would have to be considerably more elab-
orate than that used in Arnie's little prototype. I
was familiar with parametric methods, having
completed a course in differential geometry as
part of my mathematics training, but planes,
spheres, cones, cylinders, and quadric surfaces
were the primary building-block shapes which had
occurred in the parts that had been programmed
thus far, Airfoil sections and smooth faired sur-
faces described by arbitrary meshes of points in
space were also handled by special Whirlwind
routines [Bromfield 1956]. Therefore, the more
natural approach seemed to be to describe the
three~.dimensional motion of a cutter through
space by means of a space curve resulting from
the intersection between two three.dimensional
surfaces.

From the extensive use of vector methods
in the fire control system evaluation work, and
from the natural match between a rectilinear
coordinate system for calculation and the recti-
linear control directions of the machine tool, it
was quite natural to base all considerations on
a three-dimensional vector approach. As I recall,
Arnie was mildly disappointed to find that such
major surgery would be required on the framework
of his prototype system, but he agreed that, espe-
cially since the closed form mathematical solu-

tions were impossible, the changes were necessary.

Unfortunately, except for these few startup con-
tacts, Arnie had no involvement with our project
except for helping with the course the following
spring (Section 4}, and the Kick-Off Meeting
(Section 5. 3).

In any case, the earliest written record
about APT that I find in my files is a letter
[C561010] from me to Joseph Albert, then an
engineer in the Manufacturing Research Depart-
ment of Lockheed Aircraft Corporation, Marietta,
Georgia, in reply to his October 4 letter to the
Lab Director, Professor J. F. Reintjes inquiring
about our use of Whirlwind for preparing tapes
for our milling machine, After referring him to
the relevant reports (including Arnie's, but
suggesting that Runyon's report '"'would be of the
most immedjate interest to you'') I then describe
our new method ''which is now in its infancy [and]
is restricted to the case of planes and spheres,
although a direct extension to include cones,
cylinders, surfaces of revolution, and quadratic
[sic, not the correct ""quadric!] surfaces is plan-
ned. A report describing this work is scheduled
for publication.' -~ so we were well underway,

3.2 Project Start-up

The yellow page draft Interim Report ma-
terial appears to start with some notes spoken into
the dictaphone [N5697?] in the process of a kickoff

67

meeting of some sort, probably in late September
1956, The notes mention starting off with only
planes and spheres, using them to both define
curves and program with regions, and also
include the ideas of directed distance and normal
vectors ''to get somebody's surface in' [pl].

"We will put in only as much vocabulary into
the language as we presently need to moti-
vate the study and make it workable for
ourselves. The making of this thing into a
really useful system, since we have limited
manpower, we would like to have assistance
from other people in establishing a vocabu-
lary for the language, in other words, which
particular surfaces are to be used or how
surfaces are to be specified in particular,.,.
Now here is a problem - How do you work
out a way of talking about a part in terms

of regions? - What are the necessary

things are not self-explanatory and that's
where we will be working [p2]...

"First of all we want to establish that the
problem is one of language., Then, what
kind of language? Well, we want our
language to be just between the man and
his problem, independent of the particular
machine tool that is going to be used but,
... we do have to compromise somewhat
on this ideal language, In other words,
our language will be influenced by the
particular tool and by the particular com-
puters to some extent, but our goal is to
have it as nearly independent of these
quantities as possible,,." [p3],

Certainly not written or dictated English, but it is
a record of our early thinking and of the beginning
of the APT language. This establishes premise
number 4 of my theme (Section 1. 1).

3.3 System Structure and Semantics

Evidently starting from this initial group
meeting, sometime in September or October I
prepared four pages, single spaced, of typewritten
outline with corrections in ink [N5610?] starting
out:

"I. Introduction

"We now give breakdown of problem into
major areas as reference for all future
reports and work..."

The contents verify that from the beginning I had
the view that the (as yet unnamed) APT system
would be modeled on the structure of a computer,
with an input translation program preparing
pseudo instructions to be interpreted by a control
element program which in turn would select the
modes of beavhior of an arithmetic element pro-
gram producing a sequence of cut vectors to be
output in the language of a chosen machine tool
and machine tool director system. The arithmetic
element program (or ARELEM, as it is now
known) calculates cut vectors just as an ordinary
computer calculates numbers as answers. These
yellow-page outline notes are of historic interest

because they document the evolution of terminol-
The section

ogy to that still in use in APT today.
[p1] entitled "II, Progress' reads as follows:

"Have chosen to work on PD [part descrip-
tion] of simulated computer first because
all other parts hinge on its form,

Method of Part Description: At Computer
Level: by point moving in some pattern
over the surface of the part, i.e., view as
point cutter. Viewed as point moving in
steps by sequence of straight line cut vec-
tors, but need not imply that actual cutter
will use linear interpolation, This view
merely gives discrete points on the surface
and space between points may be treated in
many ways depending on particular director
used. Point by point calculation is required
for digital treatment of problem. The
sequence of cut vectors are [sic] made to
approximate an elementary segment of a
determined curve, defined as follows:

The point cutter is to move on some deter-
mining surface but staying [p2] in the
driving plane.

The intersection of the driving plane and the
determining surface is the determined curve.
The elementary segment of the determined
curve is determined by the intersection of
the determined curve with the check sur-
face, the end point being called an inter-
section point,

Thus an elementary segment is defined by

a DP, a DS and two CS's., as the section

of the determined curve between the two
intersection points. '

After a few more lines about the simulated
computer, we find [p2]

"Operation Code - the operations which the
simulated computer can do. For present,
simplified case

DS =

DP =

CS =

GO !
Tolerance =
END "

A very interesting point is that this paper has
black ink pen corrections which include changing
the first two instructions to '""PS ='" and "DS ="

and these corrections are carried through the

rest of the pages, This shows that the current
APT system and APT language terminology of
part surface, drive surface, and check surface,
see Figure 1, resulted in this fashion as an
improvement over the original idea sometime on
or before November 2, 1956 {for which my resume
says "The introductory part of the milling machine
report now seems to be in fairly good shape.
Progress on the body of the report is up to the
equations for part surface = sphere' [R56112],

so that the term '""part surface" was established
by then).

68

CHECK
SURFACE

Figure 1. Space Curve Determined by Surfaces

The remainder of the outline [N56107]
contains no further language features except for a
discussion of

"ways to automatically determine which
direction to take when there exists two
possibilities. .. Decided to use just
K1:K2 > 0 to define 'forward' and have
'go forward!' plus 'go reverse!' modes of
'GO!!, [If the dot product is zero] then
forward = right if think of standing on Kl
with head in direction of N1 and look in
direction of K1. This is easy to remem-
ber and can be used to treat arbitrarily
complex parts. " { p3, 4]

The meaning of forward, right, and left being
based upon orientation with respect to the surface
normal still is true of APT language, but later
underwent several versions of implementation
after this initial definition, as we will see, In
any case, the outline pages show that although the
problem was averred to be one primarily of lan-
guage, it is clear that we approached the problem
from the semantics of that language, not its syntax,
from the beginning. This establishes premise
number 1, of my theme (Section 1. 1).

3.4 Generalized ARELEM

The heart of APT semantics is the Arith«
metic Element program, ARELEM. We did not
stay very long with the very simple plane-and-
sphere case. The November 9 resume states
"Jerry Wenker started thinking about a general
design for part description. It involves an itera-
tive technique for using normals to surfaces as
well as programs for directed distance to surfaces
to handle arbitrary situations., I talked with him
about this and we developed several improvements
on the technique and I pointed out that it was very
similar to what we were now doing in the [Pre-
B-58] evaluation program..."[R56119]. This is
an important date for it marks the beginning of
ARELEM developments that were not to receive
really satisfactory resolution until our Second-
Order MIT ARELEM was finally developed in
1961 -~ well after the end of the story I tell here,
But by November 19, I ''wrote section on the new

elementary calculation for milling machine report"
[R561119], so by this date we knew the complete
structure of the intended new system.

3.5 Glimmerings of Plex

Two weeks later '"most of the day was spent
in milling machine conference considering prima-
rily the use of index registers. The results are
summarized in Milling Machine Conference Num-
ber 1'"[R561129,30], When I first saw that in the
resume,] made the side note 'l don't know wheth-
er those notes are still available. I wonder if
even this early I had the idea of 'reverse index
registers' or Plex programming [Ross 1961], If
so, it predates my even hearing of McCarthy's
LISP system (in 1959)" [Ross 1977b]. This note
was written in October 1977 before discovering
that I did indeed still have the yellow-page minutes
of that conference with my crew, from which the
following extract is pertinent [Ross 1956c]:

"It is desirable to be able to program by
areas instead of by curves as we now do.
This we feel may be accomplished by
allowing an arbitrary number of surface
registers, i.e., the locations for part
surfaces, check surfaces, and driving
surfaces, The motion over the surface of
a part, whether by zig-zag or by spiral
motion, will be called facing. The use
of many surface registers allows a facing
to have an arbitrary boundary [pl] and
contain an arbitrary number of inter-
mediate part surfaces. In order to have
compact representations of complicated
facing motions, we need to have indexing
capabilities.

"Indexing may be done on many levels and
in many ways, The quantities which may
be indexed are program addresses, data
addresses, or data, When an instruction
is tagged for indexing it is tagged whether
the index is to be modified or not modi-
fied before the indexing operation, and
modification always applies a check
against an associated criterion. The
instruction is also tagged whether the
check with the criterion- should cycle,
terminate, or start. If cycled, then the
index is reset and the instruction remains
active. If terminate, the index is not
reset and that instruction is ignored until
the index is reset by some other means,
If start, the instruction is not executed
until the criterion is reached,

"All indexable quantities (which are all
quantities) have stored with them an
increment in their appropriate units. ',

[p2]

The notes go on to describe the grouping of surface
data together for such accessing so it does seem
that what later was to become the 'n-component
element' and '"bead' programming with pointers

of AED [Ross, Rodriguez, and Feldman 1970], the
"records' [Wirth and Hoare 1966] and '"abstract
data types' in other languages [Liskov, Wulf],

and even the "controlled storage classes' of PL/1

69

[ANSI 1976] were recognized by us as useful in
1956. In fact, the incorporation of the logical
control information in a complete cross reference
network for problem solution (which is further
born out by the subsequent four sides of yellow-
page working papers [N56121, 2] which I generated
on December 1 and 2, 1956 over the weekend,
leading to a ''new method of language and driving
surface derivation' [R56123] is still my under.
standing of how the '"guarded commands!'' of
Dijkstra [1975] should be thought of and used.
Thus twenty years is both a long time and a short
time in the history of programming.

3.6 Language Intentions

While these semantic-oriented ARELEM
developments were going on, work on the Interim
Report continued. In a November 7, 8 visit, our
Air Force contract monitor, Bill Webster,
requested that the Interim Report '"'should be as
up to date as possible and not terminate at the
September 30 date, This will entail an appreciable
amount of additional writing"” [R56119]. I have a
yellow.page handwritten pencil draft [N561215, 16]
written over the weekend on December 15 and 16,
1956 addressed specifically to the "point of view
of language being the most important item and the
system reflects the structure of the language'
[R561214+17]. The draft itself was never used,
but for our purposes here, of understanding the
state of mind with regard to language design at
that time, a few excerpts are illuminating,

"The objective is to instruct the machine
tool to perform some specific operation,
so that sentences similar to the imperative
sentence form of English are required...
Declarative statements are also necessary.
Examples of declarative sentences used to
program a numerically controlled machine
tool might then be of the form:

'‘Sphere No. 1 has center at (1, 2, 3)
and radius 4!

tAirfoil No., 5 is given by equation...'

'‘Surface No. 16 is a third order
fairing of surface 4 into surface 7
with boundaries...'

An imperative sentence might have the
form:

'Cut the region of Sphere No. 1
bounded by planes 1, 2, and 3 by

a clockwise spiral cut to a tolerance
of 0,005 inch.'

These sample sentences, although written
here in full English text for clarity, are
indeed representative of the type of lan-
guage toward which the present study is
aimed' [N561215, 16, p2].

The draft continues to discuss the vocabu-
lary and "syntactical rules for combining words
to express and communicate ideas, In general
terms, the syntactical rules determine the struc-
ture of the language, while the vocabulary

RESULTS AND ERROR REPORTS IN APT LANGUAGE

1 [}
1]
] i
i FUTURE ' H
P DEVELOPMENTS i R
' ek 1
[}] 1 |
K ST - Fed o
{: Lonmpmad .: i
|-l---—’--------------—"é--—-"r-ll
s

: APT #3 SYSTEM :
{ KPROGRAMMED BY REGIONS | pROGRAMS i
1 i
3 Fd
: APT #2 svg‘{_EM -]
: [PROGRAMMED BY CURVES |pROGRAMS }
1 |
b -d
1]
1
| SUBROUTINE I
| LIBRARY §

i

INSTRUCTIONS | :'NST"UCT"’NS
IN APT 1 g 'N CONTROL
HUMAN | LANGUAGE | APT #1 DIRECTOR) LANGUAGE | yacHiNE
OPERATOR i PROGRAMMED BY | TooL

1 POINTS !
1 |
1 DESK y!
1 CALCULATOR 1
) i
1 1
! APT COMPUTER !
| O e ———— - —fed

Figure 2,

determines the substance of the language [p3]. ...
All of the elements of syntactical structure and
each word in the vocabulary of the language must
be matched by an appropriate computer program,
Therefore the structure and substance of the lan-
guage influence directly the system of computer
programs' [p4]. This establishes premise num-
ber 3 of my theme (Section 1,1).

3.7 The Name "APT'" and Glimmerings of
Structured Analysis

The last portion of this December 15, 16
draft shows that it was at this time that I first
came up with the acronym "APT", The pages I
have end with "The APT System Concept', as
foliows:

"The preceding sections have introduced the
basic approach to the problem of program-a
ming of machine tools, from an abstract
and ideal point of view, It was mentioned
above that the ideal language must be modi-
fied in practice to suit the particular
machine to a computer, as well as to suit
the human and his problem. A very in-
structive and helpful visualization of these
influences may be gained by considering

the practical problem from a system point
of view, The general structure of an Auto-
matic system for the Programming of
machine Tools (abbreviated APT system)
is shown in Fig. "l. The 'variable
parameters' for APT system design are
shown as vertical inputs to the principal
system components -- the human and the
computer " [N561215, 16 p5, 6].

APT SYSTEM

70

The APT System Concept

Thus was the APT system christened, althou,a in
the final December 27 [R561227] rewriting of the
report I say'",.. called APT systems (an abbrevi-
ation of Automatically Programmed Tool systems)'
[Ross and Pople 1956, p4] which holds to this day,

I actually do not have the original "Figure
1", but instead have the new figure (shown here
as Figure 2) which was used in the final Interim
Report [p5] and elsewhere. I do, however, have
a yellow typed page, with carbon [R5612?], which
talks about the original Figure 1 and which I
clearly wrote in the intervening ten days. It is
of interest in its own right because it shows that
the '"'variable parameters' of the original Figure
1 {which was closely related to Figure 2) were
in fact the all-important '"control' of my latest
creation -- Structured Analysis (circa 1973)
[Ross 1977a].

"The characteristics of any particular APT
system will depend upon the vertical 'inputs!
shown -- the experience, design practice,
and APT system capabilities which influ-
ence the human, and the various programs
which control the computer. Conversely
the development of a particular system with
certain prescribed characteristics is cen-
tered in the study or design of these
'inputs', Thus, the overall task can be
broken into convenient sections by con-
sidering each of these 'inputs' as a
separate problem. The solution of any

of these problems will of course be influ-
enced by the interdependence imposed by
the overall system' [R5612°7],

This establishes premise number 2 of my theme
(Section 1. 1), so all four premises were, as I
said, observed from the beginning.

The historically interesting fact is that I
clearly understood that there was a profound dif-
ference between "inputs" (without quotes) and
"tinputs'" (with quotes), including their vertical
placement, and that they led to hierarchic modu-
lar design., The December 14 resume says "Spent
all day hashing over the Milling Machine Report
trying a number of new introductory sections. A
number of good ideas were brought up but were
too difficult to whip into shape, such things as a
hierarchy of programmable systems, etc."
[R561214]. This was immediately preceding my
preparation of the above.mentioned handwritten
draft [N561215, 16], that weekend.

Although I have stated in my writings about
Structured Analysis that it had its roots in my
early plex thinking, I have attributed the four-
sided box notation (with its input, control, output,
and mechanism meanings for the four sides) to the
cell-modeling'* notation of Shizuo Hori [Hori 1972]
(who headed the APT Long Range Program follow-
on to our early work for many years [Dobe 1969]).
Although I am sure that neither Shiz nor I were
aware of it, it might be that he was influenced by
my Figure 2 and the way I talked about APT, for
I did indeed talk with him during his own early
developments of his ideas. But in any case it is
clear why in the 1970s I found the four-sided box
notation so attractive and so natural as an expres-
sive medium for my own plex notions when I came
to formalize them as Structured Analysis. I have
always claimed that all of my work merely tries
to solve the same philosophical problem in work-
ing form -- the problem of plex [Ross 1961 and
1975] -~ which really started to form in my mind
in the early nineteen fifties and was quite impor-
tant in my thinking during this formative APT
period.

So by the end of December 1956, the name,
nature of language, method of semantic calculatior
and the general system structure of APT was
available, In the report we even said

"The above sequence [of APT systems
programmed by points, curves, and
regions] has not been terminated since
there is not necessarily an end to the
growth potential of the APT computer.
Conceivably it can grow until all design
and analysis for machined parts is in-
cluded in the automatic programming
system, and the APT computer is pro-
grammed simply by describing the func-
tion which a machined part is to perform"
[Ross and Pople 1956, p 4].

--a clear call for what later became computer-
aided design [Ross 1960; Coons and Mann 1960].
APT I, programmed by points, never existed, but
at MIT we did proceed to make both APT II,
programrhed by space curves, and APT III, pro-
grammed by surface regions, on the Whirlwind I
computer [Ward 1960], see Fig. 2.

71

4, PERIOD 2: SPECIAL N/C COURSE FOR
THE AIA
{December 1956 through April 1957)

The publication of the first Interim Report
marks the end of the first, primarily background,
phase of APT language development, The next
phase, our first contact with the Subcommittee
for Numerical Control (SNC) of the AIA, over-
lapped and coincided, for the Interim Report came
back from the printer while Don Clements and I
were in Dallas meeting with the AIA, January
21-25, 1957 [R570121-25, p3]. (On December 6,
Don Clements had been appointed Project Engineer
[R56126]. He had been working on other projects
in the laboratory previously.) On November 7 and
8, Bill Webster, the Air Force Contract Monitor,
and his boss Colonel Dick visited with us and Bill
suggested that we contact Bernard Gaiennie of
Northrop, Los Angeles, Chairman of the Sub-
committee for Numerical Control of the Aircraft
Industries Association, andalsothat we should get
in touch with Kenneth Wood of Boeing, Seattle, to
ask him about a report on Boeing preparations for
numerical control | R56117,8]. Numerous phone
calls, letters, and meetings at MIT document not
only our going to the Dallas meeting, but also
AlA's request that MIT present a Special Course
on Numerical Control [R56124].

During the Dallas AIA meeting, my resume
says, "Frank Reintjes [Servo Lab Director] called
Vic Benetar of Lockheed there in Dallas and in-
formed them that we were now considering giving
a one week course at the end of March during
vacation. Frank feels that he should pick up the
ball as far as organizing the course and that with
a one week thing we should be able to handle it
all right" [R570121-25, p2]. There follow some
other items concerning the content of the course
and how it would be funded, but these are only of
interest to historians of numerical control as such,
The course itself did indeed take place with fancy
printed brochure, tuition of $275,00, etc., from
Monday March 25 to Wednesday April 3, 1957
[MIT 1957b, R57218].

For the purpose of APT history proper,
one interesting component of the course is the
series of lectures presented by myself and Arnie
Siegel in the middle four days of the course, We
covered the computer programming process, using
as examples a mouse solving 2 maze to emphasize
logical programming, and finding the intersection
of a circle and a parabola to illustrate systema-
tized solution iterative calculation methods [also
used in my 1958 AAAS paper, described later].
Programming principles were covered from com-
puter architecture and binary number systems
through actual programs coded in IBM 704 assem-
bly language. Arnie described his automatic pro-
gramming system and I presented APT, including
curve and region programming.

The most important item for APT language
background, however, was the lecture which I
presented, on Friday, March 29, on ""Design of
Special Language for Machine Tool Programming"
[Ross 1957a], which I reproduce here in its

entirety from the handout notes from the course
[MIT 1957c]. Not only are most of the principles
still valid today, but it shows very precisely the
nature and trend of my thinking just prior to the
first creation of APT language proper. In the
oral lecture, itself, I illustrated the principles

in geometric terms by means of a number of
styrofoam models which I had made up in our
shop from $6. 86 worth (I still have the March 6th,
1957 purchase requisition) of styrofoam balls,
dowels, and blocks, as used in Christmas store
decoration [N5736]. These geometric shape des-
cription principles, describing objects as joins and
intersections of simpler objects, have only come
into practical use in the mid-1970's through the
work of Braid and Voelker [Braid 1975; Voelcker
and Requicha 1977].

As we will see, I was forced to make many
compromises with these design principles when
APT language design actually got underway. But
I feel that even today the points made in this brief
lecture still are valid for user-oriented applica-
tion language design. In any case, the special
course was a success in completing the technical
background for APT language development, so now
it is time to take up the story of the physical en-
vironment in which that development took place,

Friday, March 29 - Afternoon Session

Design of Special Language for Machine-Tool
Programming
Douglas T. Ross

A, Need for Human Convenience

1. Previous lecture has shown that
computers can be used to perform most of the
repetitious tasks of programming machine tools,
and that, using automatic assembly techniques,
detailed computer coding is not necessary.

It still is necessary, however, for
the human to consider masses of detail, in
order to express his wishes in a form which
the Subroutine Library can handle. The way
he thinks about the problem is governed by
the Subroutine Library.

For complicated parts the amount of
detailed information required of the human can
be very great. This situation is dangerous be-
cause humans cannot handle quantities of de-
tailed work reliably.

2, It is necessary to find a more natural,
less detailed way for the human to express
himself,

B. Language Design
1. In order to have a truly convenient
way for humans to program machine tools to

make parts, we must first determine what are
the important properties of parts in general.

The Ox, Oy, Az and feedrate infor-
mation required by a numerically controlled
machine tool are certainly a complete set of

72

properties for arbitrary parts, but, as we have
seen, these properties are far from convenient
for humans.

We must find properties which are
much more general, more similar to the way
humans think,

This is not an easy task, however,
because the properties still must be very
explicit so that the computer will be able to
fill in all of the necessary details which are
implied.

2. Once the properties have been found,
then we can assign English-like words to them
so that they are easy for people to remember
and use,

There must also be very explicit
rules for combining these words to make
meaningful statements about parts.

These rules should also be similar
to the rules of English grammar so that it is
easy and natural for the human to express
himself,

3. The effect of choosing properties,
assigning words to them, and establishing
rules for combining these words, is thata
special-purpose language with very explicit
meanings and capabilities has been designed
for ''talking' to the computer about parts to be
machined, It is important, for human conven-
ience, to allow for redundancy in this language,
so that the human can express himself in what-
ever way is natural at the moment.

C. Suggestions For Language Design
1. At the present time, language design
is an art, No scientific procedures are known

and each problem area requires its own special
treatment.

A number of helpful steps can be out-
lined, however, which appear to be applicable
to most problem areas.

2. The kind of statements which are to
be made about a problem area are generally of
two kinds:

Declarative or descriptive statements
("say" - type statements) which establish defi-
nitions and basic relationships among the things
which are to be discussed.

Instruction statements (''do' - type
statements) which use the relationships and
definitions, and tell what action is to be carried
out.

The distinction between ''say' - type
statements and ''do" - type statements is help-
ful in deciding what kinds of words and rules
are needed in the language.

3. It is not necessary (indeed impossible)
to consider all possible statements which will

be made in the language, since we can consider
only the kinds of things we wish to say and do.

At this stage we need to know only a
few representative things to say things about,
and things to do.

Examples of '"'say' statements

The is on the
The is the same size as the .
A with a will be called a

Examples of '""do' statements

the to .

ing followed by ing will be
called ing.
If you have ed, the

4. It is also possible to establish a wide
variety of modifiers for the language, knowing
only a few representative things to be modified,

Well-chosen modifiers can be very
important to the language since they allow com-
plicated ideas to be expressed by simple state-
ments, They allow variations of meaning with-
out drastically changing the form of the
statements.

Things which we say things about can
be modified according to size, quantity, re-
lationship to other things, etc. "Say'" . things
may also be modified by other "'say'" - things.

s on the

Example: There are
of the .

Things which we say to do can be
modified according to how quickly, how care-
fully, and in what mode or version they are
to be done, etc,
Example:

ly to the and then

ly.

5. With the kinds of ''say" - and "do" -
statements determined and modifiers estab-
lished, the main features of the language are
set,

The next step is to 'flesh out" the
skeleton of the language with the necessary
thing vocabulary,

Usually there will be many more
"'say' - things than there are ''do' - things,
since problem areas are usually quite res-
tricted in scope.

D. Results of Language Design
1. The primary purpose of a language is

to provide a means for a human to express him.
self in a given problem area,

73

If the language design process has
been successful, the vocabulary and rules for
modifying and making statements will be easy
to learn and natural to use.

2. The language also serves another
very important function which is not as easily
recognized. It helps the human to organize his
thinking about the problem area.

Since the important features of the
problem area are represented by the various
parts of the language, thoughts about a particu-
lar problem are automatically directed and
channeled to the essentials of the problem by
attempts to make statements in the language.

3. A language will usually be in a con-
stant state of growth and revision,

As more and more particular prob-
lems are encountered, additions to the ''say" -
thing vocabulary will frequently be necessary
to introduce new objects, etc., into the
language.

If it is found that an expression in
the language occurs very frequently, the ex-
pression itself can be given a name to be added
to the vocabulary.

Occasionally new modifiers will also
be required for a particular problem. These
new modifiers can be used with many of the
old words in the vocabulary so that a whole
new class of expressions are made possible,

Finally, the whole problem area will
tend to expand with usage so that additions of
""do'" - things to the vocabulary, and even revi-
sion of the rules for making statements may be
made,

E, Practical Aspects of Language Design

1. Although ideally language design
should be influenced only by the problem area
and the characteristics of humans, since the
language is to be used to accomplish some task
involving a computer and other machines as
well, a number of other factors necessarily
influence the design.

A universal factor throughout the
design process is the economics involved. The
advantage to be derived from a given aspect of
the language must be balanced against the diffi-
culties in incorporating that aspect into a com-
plete and working system.

2. A written form of the language must
be designed which is not too cryptic to be easily
remembered and used by the human, but which
is relatively easy for a computer program to
translate.

The written language should also lend
itself readily to transcription from hand-
written copy to the input medium of the
computer,

The language should be sufficiently
readable and understandable that untrained per-
sonnel can process the statements reliably.

3. Translation programs must be written
to recognize the meaning of statements in the
language and initiate appropriate computer
behavior.

Since the language is likely to be in a
continual state of flux and improvement, it
should be relatively easy to make the corre-

sponding changes in the translation programs.

F, Computer-to-Human Languages

1. Whenever a language must be de-
signed (as above) for humans to make state-
ments to computers it is also necessary, to a
greater or lesser extent, for the computer to
make statements back to the human.

2. It is always necessary for the com-
puter to inform the human of any errors which
the human has made, and which the computer
can detect.

These statements should be made
in the same language the human uses, so that
they can be easily understood,

3, Often it is desirable for the computer
to report back to the human, its progress in
solving the problem,

These statements may be made either
in the form of written statements or pictures,

In the case of machine tool program-
ming the computer might draw a picture on an
output oscilloscope of the part being made,
and give written statements about crucial
points of intersection, etc., to greater pre-
cision than could be drawn.

This information allows the human
to check that he has instructed the computer
properly.

4. Most of the points made above about
language design apply equally well to computer-
to~-human languages,

G. Computer-to-Machine Languages

1. Computer-to-Machine languages are
influenced by a different set of conditions than
languages which involve humans.

2. The primary condition is to match
input and output media so that additional trans-
cription and processing is not required.

Because of the large investment in
equipment there are a great many practical
problems involved, and several groups are now
working on suitable standards.

3, It is permissible to have limited flexi-
bility in computer-to-machine languages, since

74

the required flexibility can be achieved by com-
puter programming.

4, As a backlog of experience is built up
it may prove best to make specially designed
computers for machine-tool problems,

At the present time, however, not
enough is known about the field so that pro-
gramming of general purpose computers is
probably better than attempting special hardware
design.

5. PERIOD 3: THE APT JOINT EFFORT
(January 1957 through May 1957)

5.1 Initial Meetings

As I have already stated, the original
suggestion that we get in touch with the Subcom-
mittee for Numerical Control (SNC) of the Air-
craft Industries Association (AIA) came during
a November 7, 1956, visit of Bill Webster, our
Air Force sponsor, to MIT. I first made con-
tact with the SNC Chairman, '"Barney' Gaiennie
on December 4th [R56123+4], and by the 18th had
received an invitation to the January 21 and 22
meeting in Dallas Texas [R561218,19]. In my
reply of December 26, I suggested that ''20 to 30
minutes toward the end of the meeting [be allotted
to] a short oral presentation of our goals"
[C561226],

Don Clements and I both attended the Dallas
meeting, and although I seem not to have received
the official AIA minutes, my resume [R570121-25]
on returning states, "I gave them a brief descrip-
tion of what we were trying to do, and everybody
seemed to be quite excited about the prospects,
although I tried to make it clear that these things
were probably a little bit in the future,' A sub-
group under Jerry Jacob of Sperry Rand was
responsible for ''the computer end of things, and
a meeting is planned ... at the end of February
at which Lockheed, Boeing, North American, and
Chance Vought will be represented. I will plan to
attend this meeting and we will try to make defi-
nite assignments for working areas at that time."
In the discussion, 14 companies planned to use
IBM 704 computers, and my single yellow page
of notes from the meeting [N570121] has a box
drawn around the phrase, "Package APT #2 with
language!' -- evidently my first decision to speed
up our work to help out the industry, There also
was considerable discussion of the desire for a
special course, as we have already considered.

The Computer Programmer's Meeting
actually took place March lst in Los Angeles,
immediately following the Western Joint Computer
Conference. The AIA minutes [AIA 1957a] state
"Mr. Ross explained that these charts indicate a
proposed program to handle the general case of
automatic machine tool control programming. He
invited companies interested in this effort to send
experienced programmers to MIT and offered to
provide guidance aimed at coding this program in
an acceptable form for a particular general pur-
pose computer. [I had first broached this idea to
some Lockheed visitors at MIT on February 7

[R5727]]. While the offer was gratefully acknow-
ledged, it was determined that most aircraft plants
are presently utilizing their computing staff man-
power to the fullest extent on current problems.
Most companies indicated that they will closely
follow the work done at M.I. T. and several may
ultimately accept M.I, T, 's offer'[p3]. So the
seed was sown, but the time was not yet ripe.

My own resume notes of March 4 reporting
on the meeting lend a bit more color.

"I described to them the work we have done
here at MIT including region program-
ming, and as discussion developed I pro-
posed our generalized programming by
curves system and passed around several
copies of the diagram that Jerry [Wenker]
had made. I finally was able to show them
the distinction between a subroutine library
approach to this problem and the system
approach which we follow. And they all
were quite happy about the system approach
but could not get over the idea that it was
more difficult than a subroutine library. I
battled with them quite strenuously on this
point urging them to pool their programmers
and at least do a programming by curves
system for 704s, Boeing is mostly com-
pleted with their subroutine library, how-
ever, so they are quite firmly entrenched
in this way of doing things, and the feeling
of the group seems in general to be that
they were somehow afraid of the system
approach in spite of my statements that I
expected Jerry to have the system all pro-
grammed in a month on Whirlwind [for
planes and spheres -- which still was very
optimistic]. The net results [sic] was that
several subgroups were formed, one of
which will be a planning group to consider
the overall problem of input translation -
output translation and calculations. MIT

is a member of this group along with 4 of
the aircraft companies ... Am hoping for
another go around in this group to convince
them that the system approach is really no
more difficult than the subroutine library
approach and much cleaner" [R5734],

5.2 The Fateful Decision

There are almost eight weeks between the
March 1 Los Angeles Programmer's Meeting
and the April 23, 24 Los Angeles Programmer!'s
Meeting, followed immediately by the April 25,
26 SNC Meeting. These are significant meetings,
for on April 26, the SNC gave official approval to
the idea of having MIT lead the construction of the
first APT system based upon our research, begin-
ning with a kickoff meeting the week of May 20,
1957 at MIT. In the eight weeks leading up to
these meetings were 1) the preparation for and
presentation of the ten calendar day Special Course
at MIT, 2) the preparation for and execution of
two debugging trips to Florida on the Pre B-58
fire control system evaluation project of five days
and ten days respectively, 3) continual work with
the programmers on the Editor Generator and
Logging features of SLURP, 4) work on the APTII
and APT III Whirlwind programs, and 5) the start

75

of writing of the third Interim Report. Personnel
problems were acute. On February 25, George
Zames left the project to transfer to the Research
Lab of Electronics at MIT, on April 15 Harry
Pople left for six months of Air Force duty, and
on February 25 we learned that Same Matsa would
leave the project in June, at the end of the semes-
ter (he actually left in November) [R571127] .
Therefore, during this period I had extensive
meetings with both Mathematics and Electric
Engineering Departments attempting to line up
replacement research assistants as quickly as
possible [R57225-57418].

I have no resume notes for the April Los
Angeles meetings, but I do have five pages of
penciled notes on lined yellow paper taken at
those meetings [N57423-26], as well as the
handouts. I don't seem to have a copy of the
official ATA minutes of the SNC meeting for
reference, but my recollection is quite clear
regarding an anecdote which in any case is the
most interesting aspect of the meeting, in my
mind. On the afternoon of April 25 the TruTrace
Corporation gave a demonstration of their new
numerical control system to the subcommittee
and invited us to a dinner at a local restaurant
following the demonstration. By way of hospi-
tality they arranged an open bar at the restaurant
until the private dining room to which we had been
assigned could be made ready. Unfortunately,
some local group such as Rotary or Toastmaster
was already occupying the room and it was not
until late in the evening that our dinner was
ready. In addition to the several hours of open
bar (always with the continuing understanding
that our room would shortly be available so ''you
better get your last drink while you can'') the
restaurant management included copious wine
with the meal to compensate for the delay.

As I recall it, the first thing on the agenda
the following morning was the vote to approve the
launching of the APT Joint Effort! I have often
wondered whether the result might have been
different had the TruTrace open bar been of
normal spigot rather than firehose proportions.
We will never know for indeed the SNC vote was
favorable and APT was officially launched, (Later
in a May 10th letter to attendees at the Tru Trace
demonstration [C57514], Mr, George Fry,
President of TruTrace, states "I want to per-
sonally apologize to you for the unexpected delay
encountered before dinner, and we hope that it
did not cause you any severe problem in main-
taining your schedules. ') (!} It didn't. Our sche-
dule problems were to come later!

The minutes of the Programmer's Meeting

(which I do have) [AIA 1957b] summarize the main
structure that I proposed for the APT simulated
computer and then contained the following:

"2. Information made available and views
expressed:
a) The various individual computer
programming approaches of North
American Aviation Co., Lockheed
(Marietta), and Boeing, were
examined and compared. The M,I.T.

programming concept was reviewed
and it was the concensus of opinion
that this approach is more efficient
in the long view due to its capability
to expand and take into considera-
tion future more sophisticated time
saving programming procedures.
However, many points of similarity
and/or compatibility were dis-
covered among all the approaches.
b) Much of the work in programming
already accomplished by individual
plants is applicable, with modifica-
tion, to a2 new superior common
approach .,

With early and effective work by
each assignee, it should be
possible to complete the project
by October 1957.

f) M. 1. T. was considered to be in the
best position to coordinate the
efforts of all plants in this joint
programming effort. Such coordi-
nation would include any necessary
instruction in the system concepts,
determination of information on
progress and results, assistance
with technical problems insuring
common philosophies and compati-
bilities, maintaining surveillance
over individual progress, and coor-
dinating the final results for
distribution..." [p3]

An attachment to the minutes '"First group of
common manuscript and computer language terms
defined by the Numerical Control Data Processing
Group during the meeting held on 23-24 April at
AIA Los Angeles' lists meanings for 10 basic
words still found in the APT language. My second
page of notes from the meeting shows that clock-
wise (CW) and counterclockwise (CCW) circle
definitions of motion (as in Siegel's system) also
were discussed, but were not included in the list.
My notes also show that 56 man-months were
estimated for the October 1957 target date for the
first system, excluding project coordination by
MIT and parallel efforts for the IBM 650 computer.
Ultimately AFML did partially sponsor IBM to
develop a pared-down version APT, called ADAPT,
for the 650 [IBM 1963]).

Upon returning to MIT from the meetings,
I was greeted by a letter from J. B, (Bill) Rankin
of Convair, Forth Worth stating '"Since we returned
from the course at M.I. T., Numerical Control
activity has intensified at Convair, Ft. Worth, to
such an extent that I had to miss the AIA meeting
in Los Angeles. The purpose of this letter is to
tell you that we have generated an acute interest
in your APT program. However, we do not want
to be the only participant ..." [C57429], to which
I replied post haste that they had been assigned to
work on the "Preprocessing portion of the A, I. A,
APT II system, with counsel from MIT" and that I
thought the October date was "realistic' although

76

"It will not be easy to coordinate the efforts of so
many different organizations, but with the fine
spirit shown by all concerned I think we should be
able to succeed quite nicely' [C57429]. Program-
mers are perennially optimistic.

5.3 The Kickoff Meeting

My May 1, 1957 memorandum "Prepara-
tions for Joint Programming of AIA APT IISystem"
invitation to the Kickoff Meeting described the
nature of the system, mentioned that the project
would operate under '"a semi-democratic proce-
dure'', and laid out an agenda for the May 20
through May 24 meeting, covering both technical
topics as well as details of how the project itself
would be organization [Ross 1957b]. At the meet-
ing itself, I explained that '"semi-democratic'
meant that we would have full democratic discus-
sions as long as I felt progress was being made
adequately and we were on track, but when I didn't
think so, I would invoke my semi-democratic
authority and we would do things my way -- we
had a job to do. I don't think I abused this au-
thority but I did indeed invoke it at various times
even during the Kickoff Meeting itself [R57520-
24, p2]. Throughout its long history, the APT
Project had a strong sense of mission and a high
esprit de corps. The people involved were eager,
talented, and very good to work with,

My own files actually contain very little
information on the Kickoff Meeting itself, I have
only one page of resume summarizing the meet-
ing and some notes titled ""Working Group -
Translation Meeting, Thursday AM Session May
23, 1952' which is a very rough transcript
(evidently) of a Dictabelt copy of a tape recording
made during the session [N57523]. My resume
states

"We had a good turnout for the joint pro-
gramming effort for the A.I, A. APT II.
One difficulty, however, was I was plagued
and beseiged by intestinal and digestive
difficulties for the whole week but Don

[Clements] and Arnie Siegel and Dale
Smith of North American did very nicely

in running both parts of the meeting when

I was incapacitated. We made excellent
progress in defining all of the various tasks
in [sic] barring any difficulties within
individual plants about getting men and
money assigned to this work, Had a tape
recorder at the meetings and we got most
all of the important parts of the discussion
on tape. It turned out the translation pro-
gram actually could be made quite straight
forward by stealing the symbolic section
out of the SHARE assembly program and
making the language entirely a function of
punctuation. Convair, San Diego feels

they can handle the job in its present form.
M.I.T. will handle preprocessing for the
control element, since that involves making
up the pseudo instructions for control
element which we must design anyhow. The
other portions of the system appear to be in
good hands and will be handled adequately.
We established a system of semi-monthly
reports to M. I, T. and to coordinating
sponsors of the various tasks and M. L. T,

will issue monthly reports to the entire
group and the A, I. A, as well, The first
one is to be due for the Denver meeting.
During the meeting we revised the radius

of curvature calculation for the APT II
system to correspond to that of APT III

and also decided that a more sophisticated
check service calculation is required. I
have just developed a check surface calcula-
tion ..." And regarding the language itself:
"Since we also left the Translation Program
completely independent of spelling of words
etc. we can throw the problem of machine
tool programming language back into the
laps of Benetar and Carlberg. I should do
so in a letter describing the structure of
the translation program" [R57520-24].

Since this paper concerns the history of the
APT Language rather than of APT itself, I will not
go into the structuring of the project or how the
system and work was organized except when they
influenced the syntax or semantics of the language.
(Each company assigned six.character symbols
beginning with their unique company letter, for
interfaces, and each programmer specified his
required inputs etc, [R574(sic)29, p3]). Starting
with June 14, 1957, a series of '2D APT II"
memoranda summarized both technical and proj-
ect coordination matters in a series ending with
my "Post Coordinators Report re Phase I System"
of July 25, 1958.

6. PERIOD 4: THE ORIGINS OF APT
LANGUAGE
(May 24, 1957 to June 14, 1957)

I did the basic design of the APT language
literally over one weekend ~- not by design, but
out of necessity., How that came about is as
follows.

6.1 Prior Language Suggestions

I had, of course, the influence of Siegel's
language, and our Special Course preparation
discussions. But also, at the March 1 Program-
mer's Meeting, Boeing handed out a slightly up-
dated description of their "Numerical Control
Library Routines' [Boeing 1957b] (also presented
in the Dallas Meeting) and also a one page '"Part
Programming Language Numerical Control Pro-
gram - Tentative' (February 27, 1957)[Boeing
1957a]. Several of the APT words such as
SETPT (set point), TRACO (Transform coordi-
nates), ONKUL, OFKUL (coolant on and off), as
well as XLARG, XSMAL (large and small X coor-
dinates for multiple intersections) seem to have
come from this list, for I do not remember these
five-letter spellings being bandied about at MIT
earlier. Also in preparation for the April 23-24
Programmer Meeting, I received a March 27
letter with attachments A through F from Ed
Carlberg of Boeing [Carlberg 1957] stating "It
should be our goal to present to the SNC on April
25 a united Steering Committee opinion and/or
recommendation in the field of data processing
compatibility, with the further goal of obtaining
industry concurrence at the next Study Group
meeting in May." Attachment A is a ten page

77

paper on '"Numerical Control Compatibility'' in
which Ed stresses compatibility with 2 minimum
of standardization. He outlines 13 steps going
from the engineering drawing to the machine tool
and finds that the '""manuscripts [will] allow the
greatest flexibility in compatibility and will be the
easiest item to exchange of any of the possible
points' [p5]. He goes on:

"Standardizing on the definitions is of much
greater importance than on the actual word
itself, If one plant calls it a 'curve'! and
another a 'circle', this means only minor
re.programming or manual revisions to the
manuscript in order to trade manuscripts.
But if the definition is not standard, then a
complete new manuscript starting from the
part drawing is required. The number of
words in a language will vary from plant to
plant... Certainly all the SNC can do at this

oint is to establish a minimum language...
pr] . The other possible compatibility points
(except the subroutine library) [have] un-
necessary restrictions in the data processing
without compensating benefits... [p7]. Thus
there would seem to be no point in pursuing
the study of compatibility points beyond the
manuscripts" [p8].

He then goes on to emphasize also the need for
subroutine "entry-exit (or front end)" compatibility
so that '"plants can interchange these detail sub-
routines, with only main control modifications
required" [p9]. Interestingly enough, he finished
"Of the two, the trading of parts is much more
important from a long range, national defense
standpoint, This compatibility should receive the
bulk of our attention" [pl0]. To this date, how-
ever, part program portability is just as difficult
and rare as computer program portability. But as
this shows, initially the industry did not desire
the constraint of a standard language but wanted
to achieve compatibility while retaining freedom
to choose the words.

Attachments B and C provided definitions
for the list of'words referenced previously in the
March 1 Programmer's Meeting, showing that the
Boeing language was fixed-column card format,
invoking program selection from the subroutine
library approach, Items D and E then apply this
to the preparation of a "manuscript' for the AIA
Test Piece, an aluminum part with curves and
pocketing which had earlier been established by
the SNC, Attachment F presented Boeing sub-
routine standards for the IBM 704.

Among the assignments made at the Los
Angeles meetings in April had been one to Vic
Benetar of Lockheed, Georgia to propose the
"standard manuscript language,' On May 15, I
received his initial recommendations for use in the
meeting [Benetar 1957]. The list of 10 words had
now grown to 17 including some which may have
come from the Boeing list mentioned earlier. Vic
also recommended 7 forms of circle definition, 10
forms of lines, 8 forms of points, and a general
curve given by a list of points. The list of words
is more closely related to Siegel's language than
APT, however, for LINE and CIRCC were recoma=
mended for moving along a line or counterclockwise

around a circle, and as in Siegel's system all

the symbolic names for circles began with C, lines
began with S, and points began with P, Although I
am sure this proposal must have been discussed
somewhat, I cannot recall being influenced by it in
my initial design of the APT language. I remember
feeling that since Benetar's suggestions' carried
none of the flavor of our three-dimensional, more

Because of its historical importance, the
6-page initial language definition memorandum is
included here in its entirety. The general types
of APT language statements still apply today, with
the use of modifier words separated from param-
eters by a slash and the incorporation of useful
default cases, (which we always have preferred to
call "mormal' cases!)

generalized work, I would have to suggest the basic
language form myself if things were to match up
right in the long run. Although I said in my Friday,
May 24 resume ''we can throw the problem of ma-
chine tool programming language back in the laps

of Benetar and Carlberg. I should do so in a letter
describing the structure of the translation program"
[R57524], over the weekend I instead wrote my own
language, on May 25 and 26, 1957,

6.2 The First Language Memo

Memorandum 2D APT II-2, dated June 14,
1957, is the first APT language definition. The
memo is titled "A Proposed APT Language for the
2D APT II" by Douglas T. Ross, [signifying a two-
dimensional, curve programming, APT system
language][Ross 1957e]. My resumes indicate that
it actually was primarily written over the weekend
of May 25 and 26 (as I have described many times
from memory over the intervening years). The
resume for May 27 says

"Started working out a language for the
ATA APT II to suggest to Benetar on the
basis of the results of our [kickoff]
meeting. I have decided that we probably
should have multiple words in the major
word portion of the instructions and these
sections will be separated by commas, In
this way all of the instructions modifying
the main instruction will appear on the
same card, If not stated, they will remain
the same as before. This can easily be
programmed by having indicators set
whenever a word occurs and each program
will check with these indicators when
appropriate, I have also decided not to
store inside-outside information with
surfaces for this system, since it is
easier to merely say where the tool
should go, In our final system we should
have both possibilities. In a place where
questions arise such as planes where it is
not really sure which is the inside or the
outside in the canonical form [this] can

be handled again in terms of the normal.

I suppose it could be handled, however, by
saying whether you go through the surface
or just up to the surface when you reach it.
I will summarize these considerations in a
letter and send it to Vic and suggest that
the completion of the language be a function
of the subcommittee and he with the help
of Carlberg might consider themselves a
project group for this task'" [R57527].

I never followed through with the letter, since I
did the memo instead. The reference to going
"through the surface or just up to the surface"
later became GO PAST and GO TO (along with
GO ON) to control the check surface calculation,

78

MASSACHUSETTS INSTITUTE OF
TECHNOLOGY
Servomechanisms Laboratory
Cambridge 39, Massachusetts

Memorandum 2D APT II-2

SUBJECT: A Proposed Basic L.anguage For
The 2D APT II

FROM:
DATE:

Douglas T. Ross
June 14, 1957

The following pages present the
format and vocabulary of a proposal language
for the 2D APT 1II System. The format is
defined by the types of statements which can
be made in the language. Notice that the
character space is completely ignored and
that use is made of space in the vocabulary
to provide easy readability. Since card
format is to be variable field, the double
dollar sign indicates the termination of a
statement, and a complete statement need
not appear on a single card. The form of
instructions have been chosen for generality
and for ease in converting into the coded form
required for the initial control element pro-
gram. Notice that the type of curve which is
to be followed is derived from the definitions
of the symbols used. The modifiers DNT CT
and TERM permit symbolic positioning of a
tool and establish meanings of later modifiers,
For the initial system at least it will not be
possible to use NEAR and FAR in definitions
since the preprocessing programs will not
have any means for determining the current
output position so that the words NEAR and
FAR would have no meaning. Note that it is
possible to include a number which specifies
feedrate in any statement immediately pre-
ceding the double dollar sign. In order to
simplify the examination of the number of
parameters for automatic selection of pre-
processing routines it may be desirable to
proceed feedrate by an additional '"/" so that
feedrate is uniquely shown. To assist in the
interpretation of the language an example is
given on the last page. The programming for
the example would read in English as follows:

"Execute the following instructions at a
feedrate of 80 inches per minute. From point
P, don't record cutter coordinates, but go to
point Q. With the tool on the left, don't record
cutter coordinates, but go left on A to the near
intersection of A and B. Then go left on B to
C, go right on C to D, go left on D to E",
(Notice that the near interesection has been
used in all cases because if no specification of

NEAR or FAR is given, NEAR is assumed by
definition), '"Cross curve E and go along F to
the far intersection of G, Then go clockwise
on G to the near intersection of G and H, and
counterclockwise on H to the (NEAR) inter-
section of H and I. Considering the tool to be
on the right, terminate as though you were to
go left on I, then stop. This is the end of the
program'',

LANGUAGE FORMAT

A, TYPES OF STATEMENTS

Definition
Symbol = Modifier,..., Modifier,

Name /Parameter,...,
Parameter $$

= r ? ’ H / ? ’ ’ ? $$
Non-Definition

Symbol) Modifier, ..., Modifier,

Instruction / Parameter,..., Parameter

$$
) ? H] ? 2 / A ’ s $$

Parameter Definition

Symbol) Modifier,..., Modifier,
Parameter Name = Parameter,...,
Parameter $$

=:)”$$

) ’ ? ’ s
Special Words

Symbol) Modifier,..., Modifier, Word

$$
DI 1

Synonyms

Symbol = Parameter or Symbol $$
= $$

B. INSTRUCTIONS

Terminated by ", " or "/"

FROM S

Defines current cutter location S. S must

be a point

GO TO S
Move cutter center to S, S must be a

point
GO LFT S1,S2 ———; :\ ——)?//

GO RGT 51,852
Go left or Right on curve S1 until S2 is
reached,

orbsy ‘: t33
GOFWD.eROSS S1,S2 —;HI
Go BAK BAGCK

(These instructions are usually used to
go from one curve to the next. If only
one symbol is given, it is interpreted
as the new S2, and Sl is taken to be
the previous S2.)

s2 A

S1,s2 (o oo

[in original]Cross onto S1 and go forward until S2 is

79

reached. Back up onto Sl and go in
reverse direction until S2 is reached.
(These instructions are used when curves
are tangent or intersect at small angles.
Two symbols are always required.)

GO CLW S1,82

GO CCW S1,82

Go clockwise or counterclockwise on S1
until S2 is reached., (These instructions
are treated as the appropriate one of the
previous four instructions.) If only one
symbol is given it is interpreted as the
new S2, and Sl is taken to be the previous
S2 if GO LFT or GO RGT are appropriate;
an alarm is given if CROSS or BACK are
appropriate.)

PS IS S1
DS 1S S1
CS IS S1

Part, driving, or check surface is Sl
MODIFIERS

Terminated by ", ' or "/"

TL RGT —o?
TL LFT —Qp

Cutter (tool) to right or left of curve
when looking in direction of movement.
These words also modify all following
instructions.

DNT CT

Don't cut for this instruction only.

{This modifier is used to prevent storage
of cutter coordinates, etc., for the in-
struction which it modifies. The instruc-
tion, therefore, has the sole function of
establishing cutter position and direction
for later left, right, etc., instructions.)

TERM

Terminate the sequence of cutter motions
as though this instruction were to be
executed next. Applies only to this
instruction. (This modifier is the con-
verse to DNT CT since it defines the end
position of the cutter, If only one symbol
is used in the instruction being modified
the modifier TERM causes it to be inter-
preted as Sl not as S2 as in the usual
case,)

NEAR

FAR

Go on S1 until the near or far intersection
of S1 and S2 is reached, with respect to

the specified direction of motion. "NEAR"
will give the first intersection, "FAR"
will give the second intersection, "FAR,
FAR" will give the third intersection, etc.
(If no specification of NEAR or FAR is
given, NEAR is assumed. ''NEAR,FAR"
or "NEAR, NEAR" will give a translation
alarm, but will be treated as NEAR alone.)

DEFINITION NAMES

Terminated by ", or "/"

CIRCL Circle

ELIPS Ellipse

PARAB Parabola

HYPRB Hyperbola

LINE Line

POINT Point

CURVE Curve

INT OF Intersection of
TAN TO Tangent to

SPHER Sphere

PLANE Plane

QDRC Quadric

SURFC Surface

ZFNXY Z=F(X,Y)

YENX Y = F(X)

CONE Right circular cone
CYLNR Right circular cylinder
CTR OF Center of

Note: Each of these names has an

- associated canonical form,
but preprocessing allows data
to be given in other forms in
many cases,

DEFINITION MODIFIERS

Terminated by ", " or /"
1
z

Integers tell which of several preprocess-
ing programs to use with the name being
modified. Not needed if data format
distinguishes cases,

LARG X (or Yor Z)

SMAL X (or Y or Z)

POS X (or Y or Z)

NEG X (or Y or Z)

These modifiers are used with INT OF or
TAN TO to tell which of multiple inter-
sections or tangents to use., As many
may be used as necessary.

PARAMETER NAMES

Terminated by "="
TOL N

Maximum allowable deviation from the
defined curve = N

80

TL DIA N

TIL, RAD N

Diameter or radius of cutter. (For ball,
or face or end mill)

CR RAD N
Corner radius of cutter

TL 1 (or 2 or...)N1, N2,
N1, N2, ... are the parameters for a tool
of type 1 (or 2 or ...)

FEDRT N
Feedrate = N inches per minute,

SPECIAIL WORDS

Terminated by "$$"

DNT CT
Don't cut any of the following instructions.

CuT
Cut all of the following instructions,
(Used only to over-ride a previous
DNT CT Special Word)

TL RGT

TL LFT

NEAR

FAR

Same as Modifiers, but apply to all
following instructions (NEAR assumed if
not specified)

STOP

Planned machine stop where all pro-
grammed motions are stopped, including
the tape transport,

END
End of program or tape.

OTHER WORDS which depend on auxiliary
functions of the particular machine tool
being used,

EXAMPLE

FED RT = +80. $$ NOTE: ANY INSTRUCTION
FROM / P $§ HERE CAN HAVE FEEDRATE
GIVEN BEFORE "$$"

IF ONLY ONE SYMBOL IS

DNT CT, GO TO / Q $$
TL LFT, DNT CT, GO LFT, NEAR / A,B $$ UGED IT IS THE DESTINATION

GO LFT / B,C $$ CURVE (EXCEPT FOR "TERM")
L. E. COULD HAVE
GO RGT / C,D $$ B o e e e .
GO LFT /D, E $$ GO LFT / B, C $$
FAR, CROSS / F,G, $$ GO RGT / D $$.
NEAR,GOCLW /G,H$$ ~~~~-"~-"°"°°7°°°°°7
INSTEAD OF
GO CCW / H,I$$ N o e e e e e e
TL RGT, TERM,GO LFT /1 $$ GO LFT / B,C $$
STOP $$ GO RGT / C,D $%
________________ "
END $$

DATA PROCESSING IN 2D - APT T SYSTEM

PHASE I PROJECT COORDINATION=- M. I T.*
PHASE I PROJECT COORDINATION - NORTH AMERICAN AVIATION

NUMERICAL CONTROL MANUSCRIPT

(HUMAN APT‘LANGUAGE)

]

INPUT TRANSLATION
CONVAIR - SAN DIEGO*

T
RAW DATA

e

(AUXILIARY TOOL FUNCTIONS) ———-#

(FEED RATES, ET C) ——

(INSTRUCTIONS)j

PRE-PROCESSING
CONTROL SURFACE
ELEMENT SOLUTIONS

R CONVAIR F.w.*ﬂ
D Al CHANCE VOUGH
UNITED AIRCRAFT CAERICE Moo

DIAGNOSTIC
BOEING-

¥
TRANSLATED I‘NSTRUCTIONS

ERROR

CONTROL ELEMENT
M T
UNITED AIRCRAFT

DESCRIPTION
a

CONTROL
14

-
|
i
1
1
_J
SEATTLE® '"'—'}
|
i
{
|
i
i
L

SUMMARY
RESULTS
(HUMAN APT

ARITHMETIC ELEMENT

OOUGLAS-LONG SEACH™
MARTIN- BALTIMORE®
|- SETUP.

1
CANONI%AL DATA

LIBRARY OF
SURFACE SOLUTIONS
NORTH AMERICAN- L A%

CHANCE VOUGHT*
NORTHROP®

NORMAL VECTORS

NORTH AMERICAN - L. A¥
MARTIN - BALTIMORE

LANGUAGE)

T
TOOL CENTER COORDINATES

L-_] " TooL cENTER DUMP e

DIRECTED DISTANCES

I

FINAL TOO‘L DATA

POST PROCESSING & QUTPUT

CONCORD CONTROLS
BOEING - SEATTLE™

€.C.S.
CONVAIR-S.DX
ROHR™

CINCINNATI BENDIX -
NORTH AMERICAN-COL.

LOCKHEED- MAR®

)
TOOL CONTROL TAPE
(MACHINE TOOL LANGUAGE)

INDICATES ORIGINAL
ASSIGNMENTS

OTHER CARD DECK HOLDERS

MC DONNELL - ST.LOUIS
1BM - WHITE PLAINS*
BELL- BUFFALO
LOCKHEED - BURBANK
UNION CARBIDE - OAK RIDGE

GOODYEAR - AKRON
MARQUARDT-VAN NUYS
REPUBLIC~LONG ISLAND
GRUMMAN-LONG ISLAND
NORTH AMERICAN - ROCKET DYNE

Figure 3 The 2D-APT II Joint Programming Effort

So it literally is true that I designed the
APT language over a weekend and that its princi-
pal syntactic features were determined by the
requirement that its translation be controlled
entirely by the statement format punctuation. The
basic simplicity of the core of the language has
made it easy for part programmers to learn, As
we will see, later difficulties with the calculating
portions of ARELEM, as well as the more sophis-
ticated requirements of elaborate geometric
definitions and transformations, enriched the
language considerably (and made certain portions
more of a challenge to use correctly) but the
basic sense of the language has stood the test of
time well,

7. PERIOD 5; EVOLUTION OF THE SYSTEM
(May 1957 through May 1958)

7.1 Project Organization

The Language Memo was written immedi-
ately following the Kickoff Meeting as the project
was just getting underway. The first MIT Coor-
dinator's Report was issued by Clements June 21,
1957 [Clements 1957], and reports progress in
some areas, and not in others. There is neither
time nor space to go into details here, but Figure
3, the Press Conference version of a diagram
extracted from the first paper on APT [Ross
1957d] (written between September 13 and 27, and
presented October 24, 1957, at the Third Annual
Contour Machining Conference in Los Angeles)

81

shows both the system structure and the company
assignments, originally and in February 1959.

The key elements to note concerning the language
aspects are that Input Translation (INTRAN),
Definition Preprocessing (DEFPRE), and Instruc-
tion Preprocessing (INSPRE) constitute the trans-
lator proper. They served to compile interpretive
code for CONTROL and ARELEM, in which resided
the real semantics of the language. ARELEM
turned out 2 cutter location tape (CLTAPE) format
to a changeable Postprocessing and Output program.
Machine-tool-dependent vocabulary was passed
directly through, in sequence, for handling by the
chosen postprocessor. A library of Unit Normal
and Directed Distance subroutines, with one
canonical form for the data of each surface type,
and the Diagnostic system completed the system
architecture still followed pretty much today.
These company assignments realized the modu-
larity ¢ited in premises 2 and 3 of my theme
(Section 1. 1).

7.2 Systematized Solutions

The basic idea that a systematized solution
provides the semantic framework for a specialized
application language, therebypermitting an inte-
grated, cohesive approach still seems not to be
widely recognized even in the nineteen seventies,
although it is in many ways the essence of any
strong argumentation based on abstract data types.
Twenty years ago the concept really was difficult
for people to grasp, even with our simulated com-
puter analogy.

The question of systematized solution was con-
sidered of such importance that the majority of
Chapter 1 in Interim Report Number Three,
covering the period from January 1 to March 31,
1957 [MIT 1957a], is devoted to illustrating the
principle by generalizing a program to find the
intersection of a parabola witha circle (from the
Special Course) to a program to find the inter-
section between two arbitrary plane curves.

"Just as the example of the previous section
solved for the intersection of any two curves
providing the defining functions were known,
the two systems to be described [for APT II
and APT III] move a cutter along a space
curve or over an entire region, providing
the analagous defining quantities are
available ... As [is] described more fully
in the last chapter of this report, it is
planned to attempt the same type of sys-
tematized solution to the problem of trans-
lation of languages, so that the translation
portions of the APT computer can have the
same generality and flexibility as the calcu-
lating portions of the computer. The result-
ing systematized approach to the problems
of APT system design will, it is hoped,,
result in a basic structure and an accom-
panying methodology which will allow APT
systems to continue to grow and change to
meet the varying needs of their users! [pl13],

In fact, the last chapter of that report con-
cludes with "At the present time, it seems
possible that the two research efforts out-
lined above -- determining the principles

of language design and language translation --
may provide sufficient cross fertilization to
make it possible to devise a special meta-
language which can be used to describe
special-purpose languages of the type under
consideration. If this is indeed possible,
then it may prove feasible and desirable to
devise a program to write translation pro-
grams based upon a description in the meta-
language, of the rules and vocabulary of the
subject language. Such a program would
represent an important advance in APT
system design, since the individual pro-
grammer could add to the language of the
system at will" [p52],

According to my resume that was probably
written May 15, 1957, a good four years before I
developed my Algorithmic Theory of Language
[Ross 1962], and seven years before the initial
version of my AED JR system, [Ross 1964] which
actually did what was suggested here. The pros-
pect was very real to me at the time, however,
and I suspect that it was this initial connection
between systematized solution and meta-language
which caused me to emphasize in the Algorithmic
Theory of Language that language design was
primarily semantic rather than syntactic. This
also was the reason why when we finally did de-
velop the AED language we did not go beyond
AED-0 [Ross, Rodriguez, and Feldmann 1970],
and instead extended the language by !integrated
packages' of functions (corresponding to the
abstract data types of today) so that the language
was extended semantically without syntactic ex-
tensions. This enabled AED to possess in the

82

middle 1960s, features that other high level lan-
guages only achieved many years later.

As we will see, even though the tremen-
dous turmoil of practicalities of APT system
development caused many of these rich concepts
to be set aside initially, some of them did come
to the surface and had an effect later in the
Definition Preprocessing and Macro features,
which were my last contributions to APT lan-
guage development in 1960, predating similar
features in other high level languages.

7.3 Evolution of the Translator

As I have mentioned, the starting idea for
the Input Translator (including the funny punctua-
tion) came out of the May 23, 1957 session of the
Kickoff Meeting, '"The translation program
actually could be made quite straight forward by
stealing the symbolic section out of the Share
assembly program and making the language
entirely a function of punctuation. Convair, San
Diego feels they can handle the job in its present
form" [R57520-.24]., But by June 10 Convair
dropped out of the project [Kinney 1957], and not
until a month later were they cajoled to return.
Finally, Charlie Swift did visit with me at MIT
for the whole day of August 14 [R57814] at which
time we worked out the basic translation scheme
involving a data table filled from card reading, a
syllable table for words, a symbol table, and
communication to the preprocessing programs --
all controlled by the statement punctuation.

Things were progressing very erratically
in the widely dispersed project, so by August 30
I joined Don Clements in preparing the Coordina-
tor's Reports. The '"'new style' (i.e., no-~holds-
barred commentary on any and all aspects of the
project) Coordinator's Report [Ross and Clements
1957] begins to show further evolution of the lan-
guage ideas, The discussion of the input trans-
lation process shows that it was what would today
be called a 'lexical scanner',

The fact that the APT language at this
point in time had only four statement types which
were determined entirely by their punctuation had
a profound influence on the evolution of the lan-
guage at this early stage. The September 27
Coordinator's Report discusses various modifica-
tions to the input translation process to allow
transient modifiers to both precede and follow
words which they modify, and in the next Coor-
dinator's Report, October 22nd, I made what
became the final design evolution for this early
stage of INTRAN by suggesting that a table for
modifiers similar to that for parameters should
be used so that the sequence of words would be
passed along intact to INSPRE and DEFPRE. This,
in effect made the input translation program into a
proper lexical scanner which merely recognized,
translated into internal form, and type-classified
the words in the sequence they were encountered
in the input string. This greatly simplified the
scheme and I said "This rather major change [may
make Convair] feel that their task is becoming too
simple and that their talent is not being made use
of" [Ross and Clements - 1957 October 22],
Interestingly enough, on October 31 (after the
above simplifications) I received a copy of an

October 24th letter from Charlie Swift to Ed
Carlberg [Swift 1957] saying that it was useless
for the Convair programmers to attempt to con-
tinue their task until the language was more pinned
down. Therefore, the suggestion when it was
received, was well received.

The final change to the translator struc-
ture which formed the framework for further
language design developments also was recom-
mended in the October 22 Coordinator's Report.
This consisted of the specification that INSPRE
should be allowed to call DEFPRE as a sub-
routine. The Instruction Preprocessor handled
all words to the left of the slash (/) while the
Definition Preprocessor was invoked only when-
ever there was an equal sign (=) in column seven.
By allowing INSPRE to call DEFPRE, the lan-
guage was considerably enriched and made much
closer to my original desires for the language
because the programmer now could write, for
example, "TL LFT, GO RGT, LINE/P1, P2 $$",
i.e., geometric definitions did not have to be
given separate symbolic names but could be
nested in the motion instruction itself.

The final clincher to the translation
scheme is contained in the following letter of
November 27th [Ross 1957e] to B. J. McWhorter
of Convair which I quote in its entirety to give a
first hand feel for both the methods we were using
and the flavor of the informal communication
which, in those days, took the place of '"formal
specifications'':

""We just received your progress report of
October 20 and although I have not given it
very careful perusal, there are a couple of
things I thought I would bring to your atten-
tion and see if you can get them into the
deck that you will send us by December 1,
The change is slight and comes about
because of the fact that we plan to handle
surface definitions as instructions in Phase
I, and also since your progress report does
not seem to have quite as much flexibility
as you said you needed when you were here,
The change is, therefore, that the modifiers
on page 7 of your report, XLRG, etc.,
should go to the right of the major punctua-
tion, /, as well as the TAN TO etc.,
modifiers on page 8. In other words, all
of your important modifiers will appear in
the translated parameter table. I would
suggest that the coded form for TAN TO etc.,
be changed to read (1, 0, 2) etc., when
coded in SAP, Or if you do not need to
distinguish the two classes of modifiers,
then just number those on page 8 from 9
through 14, These coded forms will then
all appear in the symbol table and not in the
syllable table which is reserved for words
to the left of the major punctuation. Your
example, then, would be changed to read

as follows:

LIN 1 = LINE, 3/ LARGE Y, TAN TO,
CIR 1, SMALL Y, TAN TO,
CIR 2 $$

83

"I should also point out to you that the
geometric type of the figure which appears
in the decrement of symbol table entries

as you give them on page 7 will only use

the right hand 6 bits of the decrement. You
should mask out these 6 bits since we may
very soon have junk in the left hand half of
the decrement, If you can describe any of
the special cases for which you want addi-
tional information in the decrement in a
rough way, please let us know since we are
at present planning to assign these additional
positions on the basis of control element
requirements.

"One further thing, is that type 1 modifiers,
i.e., numbers, still may appear in the
translated modifier table as modifiers

to the principal word, in case you need
this information for selecting among pre-
processing routines. If control is passed
to your program by the instruction pre-
processor, then we would prefer to have
the numerical modifier follow the principal
word, i.e., line, 3 instead of 3, line in
your example. Since we will have recog-
nized the word LINE as calling for your
preprocessor, we can still pass that along
to you as the principal word in which case
the 3 will be the last entry in the trans-
lated modifier table.

"I hope this letter is not too hastily written
and that you can make sense out of it. The
new language memo is almost completed
and so far I plan to put in only canonical
forms for surface definitions but if you
have any additional suggestions to pass
along at this time please do so immediately.
We are looking forward to getting a deck of
cards from you soon for Phase I. Hope

you had a happy Thanksgiving."

With these changes, the evolutionary path-
way for the language enrichment was established.
From this point on, the interactions of the seman-
tics of the language, in terms of our ability to
carry out the geometric computations, could be
reflected directly in a simple choice of a new
syntactic word and the corresponding control
element action. Even though there was no formal
meta-language definition, the (now) well-
understood relationship between the Input Trans-
lation lexical scanner, INSPRE, and DEFPRE,
and the Control Element program and ARELEM
provided, in an informal way, the mechanism for
a fairly clean enrichment of the language (taking
the place of a formal language theory). The next
stages of evolution had to do with the semantic
vocabulary areas .- a process that, due to the
complexity of both the subject matter and the
project organization, was to continue for another
three years,

7.4 The ARELEM Problem

My primary contention in this paper is
that it is orders of magnitude more difficult to
create truly new, deep, application-oriented

languages such as APT. In order to be successful,
they must be based upon a world view that both
matches the thought processes of the intended end
users and also is amenable to efficient, reliable,
and comprehensive computations, Only if the
coverage of the world view is complete, compre-
hensive, and reliable can the user himself think
completely, comprehensively, and reliably in
terms of the language. This is why throughout the
actual historical development of APT as well as
throughout this paper, I have repeatedly returned
to the theme of the ''systematized solution", for it
embodies this abstraction of the essence of the
entire problem area in generic form so that each
specific problem that is posed in the language in
fact has a workable solution. In the case of APT,
this required the establishment of a methodology
for solving the dynamic three-dimensional geo-
metric problem of approximating arbitrarily
closely, the sculpturing of arbitrary three dimen-
sional parts composed of arbitrary surfaces by
means of broken-line motions of rotating tools,
described by arbitrary surfaces of revolution,
with five degrees of freedom -- three of position
and two of tilt.

To appreciate the intellectual difficulty of
the task you must realize that the '"mind's eye
view' of ARELEM is completely different from
that of a person considering the problem. A per-
son can appreciate the fact that the task is difficult
if he is told that the problem is to consider an
arbitrary-shaped tool (a surface of revolution)
which can be steered through space, and his prob-
lem is to do that steering in such a way as to cut
an arbitrary-shaped part out of a chunk of ma-
terial. Both the speed and direction of approach,
as well as the actual point of contact, must be
very precise so that there is no chatter or gouging,
etc. Clearly the problem is non-trivial.

With the concept of arbitrary shapes some-
how floating and moving in space in a precise and
coordinated fashion firmly in mind, now consider
the problem once again from the ""mind's eye view"
of the actual ARELEM computation. In this case,
there is no direct concept of shapes, surfaces,
and smoothness of surfaces and motions. Instead,
there are only sets of three-dimensional coor-
dinates making sharp angular constructions of
vectors, vectors, and more vectors. Everything
is extremely discrete, jumpy, and disjointed.
There is only a staggeringly complex construction
of points and straight lines connecting those
points. Even such a simple concept as curvature
(a small segment of a circular arc in some
oriented plane, with a point in the center of that
arc) is not directly known but must be approxi-
mated by an appropriate construction which
includes

1) the selection of the orientation of
the plane specifying the direction
in which curvature is to be measured,

2) the selection of some appropriate
base point from which two directions
can somehow be selected

3) from which two applications of the

directed distance subroutine for the
surface can be invoked to provide

84

4) two points exactly on the surface in
question

5) at which the unit surface normal
vectors can exactly be calculated

6) from which suitable projections into
the plane can be made to allow

7) the construction of two circle radii
and the chord between them so that

8) the curvature can be estimated,

(And throughout the process, remember that the
directions for the directed distances must yield
points on the curve of intersection between the
plane and the unknown surface, if the whole
approximation process itself is to have any
validity.) So it takes all that merely to approxi-
mate a single curvature in a single direction,
From this horrible description of the simplest of
all ARELEM operations you can perhaps appreci-
ate the difference between the human and
ARELEM viewpoints, Points and vectors between
points (relations between points) -~ that is all
ARELEM has to go on. That is all that unit
normals and directed distances supply. There
are no analytic functions known to ARELEM, for
whatever their form, they would limit its gener-
ality and applicability at its most basic level,

The APT world is primitive indeed.

This paper is about language design, and
this brief belaboring of the computational diffi.
culties is included only to pin down the fact that
ultimately every aspect of the APT language must
be reduced to these same, very primitive terms.
Furthermore, when, because of the mathematical
vector constructions within ARELEM, multiple
cases must be selected from, words with mean-
ings suitable to the mind of the part programmer
must be included within the language so that he
can supply the appropriate constraint to the
degrees of freedom of the vector computation.
Several APT words arose from this source,

7.5 Evolution of ARELEM

It should not be surprising that the solu-
tion to this problem required several years, and
that the viewpoint and terminology of the APT
language went through an evolutionary develop-
ment during this period, corresponding to the
successes and numerous failures of ARELEM
calculations,

Throughout the early period from 1957 to
1959, the primary difficulties driving this evolu-
tion hinged on the gradual weaning from the hold-
overs of the methods that were successful in the
much simpler two-dimensional case in which tool
center offsets are applied separately after the
approximation to the desired curve has been
established. In the case of two dimensions, even
for arbitrary curves, tool center offset requires
merely the expansion of the curve in the direction
of the surface normal the fixed amount of a tool
radius, To be sure, such addition of a normal
direction thickness to a convex curve can lead to
cusps and other difficulties, but except for the de-
tection of these anomalies (and the corresponding

problem that, of course, an inside curve can
have no sharper radius than the tool radius) the
problem is quite tractable. Therefore, a com-
pletely workable, comprehensive, and reliable
two-dimensional system can be created with this
underlying viewpoint of a zero-radius ''point
cutter' followed by a separate ''tool center offset'
computation.

Even though the initial AIA joint effort
APT system was to be "2D APT II" this always
was recognized as a mere waystop, and from the
beginning ARELEM was to be three-dimensional
[Ross 1957b]. The difficulty was that we did not
realize at that time that the concept of a separate
tool center offset for three dimensions is essen-
tially unworkable. Furthermore, the urge to
creativity, coupled with the fact that we had only
incomplete documentation on our Whirlwind APT
I programs [MIT 1957a, R57122, 3] then being
debugged, caused O, Dale Smith, of North .
American Aviation (NAA) to make the first IBM
704 ARELEM with a new and different set of equa-
tions [Smith and Corley]. This both introduced
new problems and made it impossible to exchange
results between the two efforts -- both of which
suffered from the deadly '"point cutter with cutter
center offset' syndrome! Thus there was a long
period of "improvements' in the basic ARELEM
computation in which case after case of anomalous
behavior was corrected for by the application of
special treatments [R580114, AIA 1959]. Interest-
ingly enough, most of the linguistic aspects of
these problems were of a general enough nature
to last., Even when I finally devised the successful
MIT ARELEM (with the assistance of Clarence
Feldmann, see Section 12, from late 1959 through
1961), both the situations and viewpoints for the
proper application of the words FROM, INDIR,
MAXDP, and TNCKPT remained valid. Quite
probably most current users of the language are
unaware that those terms entered the thought
framework of APT at such an early and rudimen-
tary stage.

7.6 Evolution of Semantics

My voluminous records would permit al-
most a blow by blow account of the evolution of
the meanings of almost every APT language word
and construct., But suffice it to say that with much
travail, and many Coordinator's Report exhorta-
tions, progress was laboriously made on all fronts
during the summer and fall of 1957 [Ross and
Clements 1957]. At the October 3 and 4 meeting
of the AIA Subcommittee for Numerical Control I
requested that the cooperating companies ''take a
relatively simple part that they plan to produce by
numerically controlled machines and try to pro-
gram it by using the language which was supplied in
the 2D APT-II Memorandum 2, and to send the
result to MIT by November 1. This would show
up any inadequacies in the current language pro-
posal and enable MIT to provide a more usable
language" [AIA 1957c, p4]. Also at that meeting
it was decided that since the October date could
not be met, the new target would be a January 1,
1958 distribution of a system, if the companies
sent their program decks to MIT by December 1.
As it turned out, this date, too, could not be met,
for the last deck reached MIT February 3, 1958
[R5823], and the February 4 Coordinator's Report

85

states ''It is hoped that a working system can be
performing before the next SNC Meeting on
February 20." The March 13 Coordinator's
Report says

""At the (SNC] meeting it was reported that
a successful part program had been run
using the 2D.APT II program and that the
debugging operation was still in progress...
On this note, SNC arranged [that] a 'field
trial' distribution of the program was to be
made in the early part of March as a sort
of shakedown before a formal distribution
of the program... The target date for the
distribution of the more finished version of
Phase I was selected as the first of May.
During the interval between the March dis-
tribution and the May distribution, MIT
agreed to produce an edited and comprehen-
sive version of the documentation and to
furnish a corrected card deck to the APT
Project Coordinating Group [headed by O,
D. Smith of North American] for distribu-
tion to the industry. There will be included
in the May distribution, three items: A
part programmer's manual, a computer
programmer's manual and descriptive
brochure. This will complete MIT's
formal participation in the joint effort.
After May, the MIT project will revert to

a consultant status and concentrate on
further research efforts for AMC [Air
Mate]riel Command] " [Ross and Clements
1957].

Thus was the Field Trial first version of APT
defined. We now move back again in time to pick
up the language definitionthread that led to the
corresponding Field Trial Part Programmer's
Manual.

8. PERIOD 6: THE FIELD TRIAL APT
LANGUAGE
(November 1957 through April 1958)
8.1 Two Papers on APT

To set the background, on August 15, 1957
I had received an invitation from George Fry,
President of TruTrace (who had given the demon-
stration prior to the AIA decision to start APT)
to present a paper at the Third Annual Contour
Machining Conference to be held at L.os Angeles
October 23 through 25. Since this would be the
first chance to describe APT and the AIA Joint
Effort, in a public forum, I accepted [Cc57819].
The paper was actually written sometime between
September 13 and 27, disrupted by various acti-
vities including a week long debugging trip to
Eglin A.F.B. [R57913-927]. Figure 3 from that
paper [Ross 1957d] has already been presented.
Figures 4 and 5, also from that paper, show Siegel
language and APT language versions of a sample
part program. At the time, this was the most
complete part programming example I had written
since the original June 14 Language Memo [Ross
1957c]. Compare the placement of the modifiers
with the sample line in the letter to McWhorter
(Section 7.3). (WNotice thatthe October 22 Coor-
dinator's Report with the improved translation
scheme was completed just before I departed for
this Los Angeles paper presentation.)

Pl £0,0

PZ-G,'{

- ci=p2|2
p3/ P3:15,6

S2

C2:P315
c2 St =PI 45°
P4 = NSI|Ct
$2 = TCIi TC2
P5=FSIjC2

0,pl
15,P4
15,C1,52
15,52,c2
15,C2,P5

Figure 4 Sample Part Program,

Siegel Language

JIM =POINT/+6.,+7. $8

JANE = CIRCL/JIM, +2. §8

JOHN = POINT / +16.,+15. §8

JUNE = CIRCL / JOHN , +5. 88

BILL :LINE/+0.,+0.,+45 8%

START = SMAL Y, INT OF/BILL,JANE §8
WALDO = SMAL X, LARG Y, TAN TO/JANE , JUNE §8

FRCM /+0.,+0. 88

FED RT = +15, §8

GO TO / START §8

GO LEFT/JANE WALDO $8

GO FWD / WALDO,JUNE §8§
NEAR, GO CLW /JUNE, BILL 88

15
WaLDO
/
N
I8 JANE
START
BILL
.
o/ 4 ‘ "
o 6 16 .

Figure 5 Sample Part Program,

Upon my return from Los Angeles, the
November 8 resume says '""We have got some
sample parts programmed in APT language from
some of the companies, some very good and some
really sad'" [R57118, p2]. So I also had those
examples with their high incidence of tangent
check surfaces as stimulation. According to the
resume of November 12 through 18,

"Harry Pople has returned from his stint
in the Air Force ... I also described to
him briefly the use of the Scope Input
Program as a possible flexible input
language for APT programming., He
seemed quite taken with the idea., We

will save this for a little bit in the future,
however, and only try to do a very pilot
model to begin with. ... I will start work-
ing on the draft of the language memo today
[R571112-18].

As I mentioned earlier (Section 2), I had written
the first computer graphics input program in
1954, and here I was suggesting its use for part
programming, even though it was to come only
many years later.

86

2D-APT-II Language

The November draft of the APT language
memo (which I have) [N57117?] never was com-
pleted because it was interrupted by the activities
of other projects, but in particular, another paper-
writing stint, On October 7 I received an invita-
tion to present a paper on APT at the ACM-
sponsored session at the annual meeting of the
American Association for the Advancement of
Science in Indianapolis in late December
[C57107]. On October 9 I was further informed
that ""The paper you are to present ... has been
selected by the Association's Public Information
Committee as one which should be reported widely
to the general public. For your own protection I
trust that you will cooperate with us ..." and
requesting 100 copies of a non-technical abstract
of the paper by December 15 [C57109].

I started thinking about the paper December
2, sent the abstracts in on December 12, and
""Most of the time before Christmas was spent in
writing the AAAS paper and taking a week's vaca-
tion from December 23 on. The paper finally
came out quite well and was well received at the
meeting' [R57123-58019]. It made the frontpage
of the Indianapolis Star as I got on the airplane

Sunday morning, December 29, and upstaged
Crawford Greenwalt 15 column inches to two in

the next day's Wall Street Journal, etc, [R57123-
58019]. But the paper was later rejected for
publication in the Communications of the ACM,
"While very interesting | it] is too highly exposi-
tory for publication ... The Communications
would, however, be interested in publishing a
description of the programming language and a
small example of its use. The philosophy of pro-
gram construction, while interesting, parallels
that in any other development of a specialized pro-
gramming language. What would really be worth
while would be a discussion of the steps by which a
language for your particular class of problems has
been developed' [Perlis 1958]. I certainly did not
agree with this put-down and was still in the throes
of language design and therefore I made no further
efforts with ACM. Perhaps this paper twenty
years later will fill the bill, Throughout my
career editors and reviewers have reacted poorly
to the same work that others (often years later)
give me awards or accolades for.

The emphasis in the AAAS paper [Ross
1957f, 1958a] was on the ""'systematized solution
[which] greatly clarifies the obscure problems
which arise in spatial geometry, language design,
language translation, and system organization.
It is not improbable that continued work along
these lines can lead to a design machine which
will assist in the design process itself and then
automatically produce a part to meet the specified
conditions” [pl6]. Although the language aspect
is only mentioned in the AAAS paper, I illustrated
for the first time, the idea of "ignorable words"
with the sample statement "GO RGT, WITH, TL
FT, ON, CIRCLE/CENTER, PNT 3A, RADIUS,
+5.025 $$" [p26]. I also discuss some of the
ground rules for "applying the principles of
systematized solution to the problem of language
translation" [p28]. My yellow-page hand written
notes for the paper are of interest to me because
they say "Man is programmed by the language we
design for him to use, since only way he can get
the system to perform is to express his wishes in
the specified language form" [N5712?, p7], which
is the earliest trace I have of my stock statement
that a language designer bears a heavy burden of
responsibility because he provides the major part
of the solution of any problem that ever will be
solved with his language because he programs
(constrains) the thought processes of the human
who will use the language to solve a problem.

In any case, these were the sources of
background leading up to the April, 1958 Field
Trial Part Programmers Manual for APT. The
original June 1957 language memo, the clarifica-
tion of semantic content brought out by refinements
of input translation, instruction and definition pre-
processing, and control and ARELEM interaction,
along with the sample part programs of the Contour
Machining Conference paper, test programs from
the companies, philosophically-based first draft
attempt at a field trial language memo, and finally
the AAAS paper all taken together constituted the
background source for the first true APT Part
Programmer's Manual embodying the definition of
a complete APT language.

87

8.2 The Field Trial L.anguage

Whereas the June 14, 1957 2D APT II-2 Lan-
guage Memo [Ross 1957c] consisted of six pages,
the April 29, 1958 2D-APT II Part Programmer's
Manual (Field Trial Version) | Ross 1958e] was 50
pages long. The flavor of the language at that
stage is concisely conveyed by the now-famous
"MIT Teardrop'' sample part, see Figure 6, (a
combination of Figures 1, 2, 3 from the Manual}.
Page 21 also, however, illustrates the more com-
plex nesting of a geometric definition in a complex
motion instruction, with post-processor control, by

TL LFT, ON KUL, FAR, 2, GO FWD,
ELIPS/+4.5, +5., ... $%

But page 36 points out that in this, more complex
form, 'feedrate may not be added before the $$",
whereas it could be in the simpler forms, (Sev-
eral other restrictions evidence various growing
pains in the coordination between the program
modules, in this case, between INSPRE, DEFPRE,
and CONTROL. Once INSPRE passed control to
DEFPRE, it could not send feedrate to CONTROL,
as it usually did, and DEFPRE would only return
control, not the value of feedrate it could have
found!)

Examination of Figure 6 also shows that
at this point the flat plane of the two-dimensional
part was considered the Drive Surface (DS),
whereas later this was made the Part Surface
(PS). The example is missing a crucial comma in
line 17, but neatly side-steps the startup problem
covered in detail on pages 28 and 29 of the manual,
where a sequence of three DNT CT, GO TO instruc-
tions demonstrates how ''Illegal Use of Vertical
Motion'' can be avoided by a slanting dodge seen by
ARELEM, but resulting in a simple vertical
plunge by the machine tool. Since sense of direc-
tion came from comparison of the most recent
motion with the direction of the tool axis, a plunge
was impossible for ARELEM!

9. PERIOD 7: THE POSTCOORDINATOR
REPORT
(July 1958)

It was a lot of work putting together the
first APT Field Trial System. Clarence Feldmann,
who was to work closely with me for the next
twenty years, had joined the project as a Research
Assistant, June 28, 1957 [R57628] and had been
responsible for MIT's INSPRE and CONTROL
modules, as he rapidly learned the ropes. He,
HarryPople, Jerry Wenker, and Bob Johnson,
loaned to the project by IBM, were the prime
movers, although a week's visit to MIT by Dale
Smith in February [R58210-17] also helped greatly
with ARELEM integration, at the start.

The April 15, 1958 Coordinator's Report
[Ross and Clements 1958] says "Accompanying
this memorandum are the rest of the computer
program writeups for the field trial of the 2D-APT
II Phase 1 system... The IBM Service Bureau,
shipped the field trial card decks [some 8000 cards

line
Numbey

ALUMINUM BLANK 2

MOUNTING
HOLES 7

\

N
EIU

/
1
-\
,’/\
'\/\
@
@
n
>
3

25
SYMBGLS AND TOOL PATH
28

1-4
Figure 6

to 16 companies] via Railway Express on April 10,
1958. " Finally, the May 1 Coordinator's Report
says that '"The programmer's memo of instructions
for the field trial version of the 2D-APT II Phase l
system was mailed on April 30. On May 6, 1958
another mailing will occur which will contain a
deck of cards for the sample part program des
scribed in detail in the report, instructions for
running this test part through the system and up=~
to-date deck corrections. It is hoped that this
manual and this test part will allow the recipient
companies to start actual field trial tests for the
system on their own.' From that point on, the
official debugging of the APT System was intended
to take place in industry with coordination by Dale
Smith of North American.

Although ostensibly MIT was to concentrate
on the documentation, following the distribution of
the APT Field Trial decks, we also continued with
full-scale development and debugging runs on APT
II and APT III on Whirlwind, along with intensive
debugging of the 704 APT system, United Air-
craft had joined the AIA Joint Effort, and by
March 4, Dale Smith suggested that they take
over the Instruction Preprocessor and Control
Element responsibility from MIT [Clements 1958],
By this time also Sam Matsa, now at IBM, had
obtained a go-ahead to develop an APT III region

programming system for the IBM 704 [R58312.17],

Portion of

of

AP? Pr'osum ’ APYT Statementa Statement
s = PLANE/+0.,+0.,+1.,¢3. ¢ Definition
SET PT = POINT/+1.,%1.,+3. $$ n
GEOMETRIC Y AXIS = LINE/+0.,40.,43,40.,+10+.3.88 *
DEFINITIONS
BASE = LINE/*l.,43.,+3.,44.,+3.,43.58 "
CONIC = ELIPS/+4.,+5.,+5.,+.53333,
400y +00o+0e,y+.5,40. 3§ "
SLANT = LINE/*1.,*3.,%3.,42.,+4.,,93. §¢ "
PARMMETER TL DIA/ +1.0 $8 Instruotion
DEFINITIONS POLER/ +.005 $§ .
FEDRT/ +80. 8% "
HEAD 1 $8% Special
TO0L
CONTROL MODE 1 3% .
INSTRUCTIONS
ON 5PN $$ "
ON KUL $§ "
ps 15 /DS $% Instrustion
STARTING
INSTRUCTIONS FROM/ SET PT §3 n
AY
GO TO/ +0.p41.,+3. §$ "
TL ON GO R3T/ Y AXIS, BASE $§ *
1L RGT, GO RGT/ BASE $% -
CUTTING "
INSTRUCTIONS 6o FWn/ cowyc 84
60 LFT/ SLANT, BASE §% .
CUT FIRISH TERY, 00 LFT/ BASE $¢ .
INSTROCTIONS 0 10/ SEY PT 88 .
OF XUL $$ Specinl
PROGRAM
FINISH OF SPN §8 "
INSTRUGTIONS
END) "
FINI $8 "

88

"MIT Tear Drop'' Sample Part

and United Aircraft was going to collaborate with
IBM on this effort, which shortly was christened
AUTOPROMT (for automatic programming of
machine tools). It was decided that IBM would
concentrate on the region programming aspects,
while United Aircraft concerned itself with the
incorporation of 2D APT II for the curve program-
ming necessary for initial passes and treatment

of region boundaries,

After various interchanges, a fruitful
meeting between MIT and United Aircraft pro-
grammers took place at MIT on July 2, 1958. Ken
Kaynor and Richard Leavitt met with myself and
Clarence Feldmann, and a number of syntactic
and semantic language issues were finally settled
[Kaynor 1958].

There was a meeting of the Numerical
Control Panel (the new name of the SNC) in Seattle
July 16 through 18 at which both Dale and I made
presentations on the status of the Field Trial dis-
tribution and rework. A polling of the companies
represented showed that great difficulties were
being encountered, but that most were still count-
ing on APT being successful and switching to it
once it was [AIA 1958] . I also met with the people
at Boeing ''going over the greatest parts of the
Phase I system which is now defined as that system
which MIT will now write up. Discussion was

~
1
@

TOOL PATH
& METAL PART ¢
6 =

/—JlLL
e JIM

SETPT

SIDE

JiLL
JOE
JiM
JACK

1 i
o [N z\l\a T4 5 6
=7 N—sETPT

Care To Match Wits With A Giant Braint?

Marvelous new APT System, ueing large
oomputers and automatic machine tools
loets you out out complex metal parts
Just by writing down the instructions.
Read the "APT language" part program
above, comparing with the picture, and
see how brainy these brains are getting
to be. Abbreviations are TL = tool,

= POINT/1, 5
= POINT/2, 3
= POINT/6, 4
TLDIA/ +10, INCH
FEDRAT/ 30, IPM
= FROM, POINT/2, 0
IN DIR, POINT/ €
» GO TO, LINE / THRU, A, AND, B
WITH, TL LFT, GO LFT, ALONG/ SIDE
= GO RGT, ALONG, CIRCLE/ WITH, CTR AT, 8, THRU, A
= UNE/ THRU, A, AND, C
= POINT/ X LARGE, INT OF, JOE, WITH, JILL
= LINE/ THRU, JIM, AND, B
GO RGT, ALONG/ JACK, UNTIL, TOOL, PAST, SIDE
60 TO/ SET PT
STOP, END, FINI

DIA = diameter, FEIRAT = feedrate,

IN DIR = in direction of, LFT = left,
RGT = right, CTR AT = center at,

INT OF = intersection ofs MIT soien-
tists working for Air Foroe developed
new Automatically Programmed Tool

{APT) system with cooperation of Aire
oraft Industries Association companies.

Figure 7 Sample Part Program

concerned primarily with post processing and the
translation and preprocessing' [R5814-21].

Upon returning to MIT, on Tuesday, July
22, 1 "Had a long go around with Harry and Clare
concerning the shortcomings of the APT II system
and the APT documentation... After much hashing
around, we finally decided that we would issue a
postcoordinators report describing all the changes
that are necessary to make the field trial version
into a Phase I system... and at the same time
request changes in the SHARE writeups''[R58722].

On July 24, "Don and I called Dale Smith
and although he seemed somewhat taken aback at
first, after we explained what we meant by a post-
coordinators report he seemed to think it was a
good idea' [R58724]. The report itself was issued
July 25 [Ross 1958f] and, in effect, it constituted
the specifications for the program changes neces-
sary to allow me to actually get down to work com-
pleting the Part Programmerzr's Manual.

The remaining portions of the crystalization
of APT language ideas took place in my writing,
correspondence, and discussion over the next few
months. By November 14 "Drafting and typing are
well underway' [R581113 + 14], but it was not
actually received back from the printers for mailing
until mid-February 1959 [R59210-18]!

10. PERIOD 8; THE FIRST REAL APT
LANGUAGE
(August 1958 through November 1958)

10.1 The Phase I Part Programmer's Manual

For all the ups and downs in deciding how
to handle the syntactic and semantic processing,

89

this first really complete version of the APT
language [Ross 1959a] ended up with a number of
very interesting features which not only strongly
influenced the subsequent development of APT,
but were strongly influencial on my thinking in
the design of the phrase substitution and object-
oriented-language features of AED., They do
come quite close "'except for the funny punctua-
tion' to the objective of having APT be an
"English-like'' language. The Press Conference
handout example, Figure 7, illustrates this best,

By the time the instruction preprocessor
was allowed to handle all translation and call on
the definition preprocessor when necessary, and
when the same words, such as TO, ON, PAST,
were allowed to appear either as modifiers in the
major section or as parameters in the minor
section, very English-like idea flow was made
possible, especially if ignorable words were
used, too,

The manual states [pl-7],
"There are four types of APT statements
containing one, two, or three principle

sections, separated by distinguishing
punctuation characters'. These are:

Definition statement

Symbol = major section/minor section

Instruction statement

Major section/minor section

Synonym statement

Symbol = minor section

Minor’ Section Words
Symbol = Major Section Words (Separated by Commas) / (Separated by Commaa}
Symbols Motion Instructions Modifiers Geometric Names Definition Modifiers
(Examples)
Al FROM [} TL LFT M POINT [TO o
2532 IN DIR o TL RGT M LINE o ON o
SET PT GO TO o TL ON M CIRCLE o PAST o
Y AXIS GO ON o 0-M ELLIPS o TAN o
LINE 5 GO PAST o DNT CUT O-M HYPERB o CTR AT o
JOHN GO TAN ¢} { NEAR O-M PARAB 8 AT ANGL o
. GO DELTA o FAR 0-M PLANE RADIUS o
_Special Words) GO RGT 0 2 T SPHERE o INT OF T
REMARK GO LFT o 3 T CONE o TAN TO T
GO FWD o 4 T CYLNDOR g X LARGE T
GO BAC L o ELL CON X SMALL T
GO BAC R o giiﬂ’i%ic"i‘lp‘i”j ELL CYL o Y LARGE T
GO UP o (Concord TOMtrdl) pagp cyp, o ¥ SMALL T
GO DOWN o MODE 1 M HYP CYL o Z LARGE T
. : MODE 2 M TAB CYL o Z SMALL T
Special Instructions | yopEy M ELLPSE o RIGHT T
Z SURF ™M P STOP o ELL PAR o LEFT T
TN CK PT M STOP o HYP PAR o LARGE T
LOOK TN M HEAD 1 M HYPLD 1 o SMALL T
LOOK DS M HEAD 2 M HYPLD 2 o Numbers
LOOK PS M HEAD 3 M QADRIC Lo} (‘E‘n““ﬁ)
{ 2D CALC M OF KUL M VECTOR [o] Xamples
3D CALC M ON KUL M +123.4
PS IS M END o Parameter Names -0.01234
FINI o LOKX M TOLER M +123
ULOKX M FEDRAT M -123
Ignorables MAX DP M 123
WITH AND TL RAD M
ALONG TL DIA M Pre-Defined Symbols
INCH COR RAD M
DEG COR DIA M
1IPM BAL RAD M
THRU BAL DIA M
UNTIL GNRL TL M
JOINT
TOOL

Figure 8 - Complete Initial Vocabulary for the APT II System

Special statement

Major section

""Each word exhibits a certain modifying
power with respect to the overall meaning
of the entire part program..,. called
Modal (M), One-shot (O}, Transient

(T), and variable One-shot or Modal
(O-M).

"Figure 8 [pl-11] lists the entire present
vocabulary of the APT system and shows
whether each word is to be placed in the
major or minor section of an APT state-
ment..., The words are arranged into
classes with appropriate headings such
as 'motion instructions' and 'parameter
names', and within some of the classes,
words are further grouped into sets by
means of brackets. Only one word from
any set (or if there is no bracket, only
one word from the entire class) may
appear in any single APT statement,
unless a class contains several bracketed
sets, in which case one word from each
set may appear. There are of course
many exclusions from this general rule,
e.g., if one word is chosen at random
from each of the classes and sets, then a
meaningless statement will result. Once
the meaning [sic] of the individual words
are understood, however, if the words
are selected such that they make good
English sense, then the resulting APT
statement will be acceptable.

"A word which has modal meaning need
be written only once in the part program,
after which its meaning applies to all
succeeding statements until another word

920

from the same set is given... One-shot
words apply only to the statement in which
they occur and do not modify the meaning
of words in other APT statements.,. One-
shot-or-Modal words have either one-shot
or modal meaning depending upon what kind
of statement they are used in. If they are
used in a special statement they have modal
meaning whereas if they are used in a defi-
nition or instruction statement (i.e., a
statement punctuated with a /) their mean-
ing is one-shot, Once a one-~shot meaning
has been executed, the meaning will revert
to the modal setting... Transient words
modify only the word immediately preced-
ing or the word immediately following

their occurrence. Thus the combination
FAR, 3, means the third far intersection;
whereas the combination X SMALL, INT
OF, means the intersection with the small-
est X coordinate, When transient modifiers
are bracketed into sets in Figure 8, it
means that two words from the same set
may not be used to modify the same single
word, even though several set uses may
appear in a single statement' [ppl-10,

12, 13].

It is, of course, essential to know the mean-
ing of each individual word as well, For example,
FROM applies only to a point in space and tells
ARELEM the location of the tool following a manual
set up procedure by the machine operator, Thus,
FROM/LINE would be meaningless and unaccepta-
ble. Similarly, INDIR, meaning "in the direction
of", works only with points or vectors, not the
other geometric quantities,

The first glimmerings of the need for INDIR
show in my daily resume for February 25, 1958

[R58225], but the word itself is first referenced

in the resume for April 2 and 3 [5842, 3], even
though it was excluded from the Field Trial lan-
guage [Ross 1958e]. Along with GO TO, ON,
PAST, TAN a surface, INDIR finally solved the
start up problem (although ARELEM could not do
GO TAN, and probably should not have been asked
to). Similarly, allowing TO, ON, PAST, and TAN
to be parameters on the right of the slash in a
motion instruction, gave complete control over
termination of cutting conditions, thereby eliminat-
ing the word TERM from the language. To elimi-
nate an illegal jog motion when backing up from a
tangent check surface condition, GO BAC became
GO BACR or GO BACL to convey the part program-
mer's intention so that an alarm could be generated
in the illegal cases.

Z SURF, which for a long time was re-
stricted to being equivalent to Z PLANE [R58827-
29], specified a surface on which all implicitly
defined points should lie, I recognized the need
for it as early as August 30, 1957 [Ross and
Clements 1957], but it never was properly speci-
fied, so that the initial preprocessing package
[C58324, McWhorter 1958] set the Z coordinate
of every point defined equal to zero -- hardly
three dimensional.

I invented the 'tangent check point'", TN
CK PT, solution to the tangent check surface
problem July 22, 1958 [R58722]. If the step
size were selected small enough (limited by
MAXDP [R58417-55]) the tangent check surface
calculation would be guaranteed to see the check
surface if it looked from the current tool position
to the tangent check point rather than looking in
the surface normal direction. Thus, for example,
a single check point interior to a convex part
would insure that all surfaces of that part could
properly be found. The three LOOK instructions
tell whether to use that or the drive surface or
part surface normal for tangent check surface
calculations. These arose when it was found that
the old unreliable surface normal method was in
fact preferable for certain classes of parts in
which tangent check points would need to be
changed repeatedly and yet the normal vector
method would work satisfactorily. Hence the
part programmer was given this control,

2D CALC and 3D CALC were intended to
switch ARELEM calculations from 3 to 2 dimen-~
sions and back [Ross and Clements 1957, August
30]. This capability wasn't actually implemented
until considerably later.

An interesting phenomenon is that PS IS

is all that remains in the 2D APT II system in this
initial official language., DS IS and CS IS were
later reinstated, but at this point in time, the
addition of TO, ON, PAST, and TAN as definition
modifiers allowed them to be completely replaced
for two~dimensional work, in addition to doing
away with word TERM, as has previously been
described [Kaynor 1958]. Literally the last word
in APT, decided on at the July 2 MIT/UAC meet-
ing, is the word FINI which indicates the very end
of each part program so that the APT processing

rograms can reset to their original condition
FKay'nor 1958].

91

Each geometric name has a corresponding
collection of "preprocessing formats' which pre-
scribe the wording and punctuation of the minor
section of a statement [Ross 1959a, Ch. 7]. By
means of the = sign, a symbolic name can be give:
to the geometric quantity thus properly defined.
By means of synonym statements, symbols may
also be assigned for numbers or other symbols.
Symbolic numbers may be used wherever numbers
are called for and many of the definition formats
call for the use of symbolic geometric quantities.
If no geometric name is given with FROM, INDIR,
GO TO, or GO ON, then point is assumed. Simi-
larly, GO DELTA (the incremental GO TO) has
vector as normal case. Ignorables can be written
any place to make the reading more English-like,
but are completely ignored by the system,

Under parameter names, TOLER was a
single mathematical tolerance specification to
match the existing ARELEM, even though the
need for separately-specifiable inside and outside
tolerance had been recognized at MIT since at
least January 1957 when the ligsecant cut" of maxi-
mum length allowed by a complete tolerance band
was used in APT III [R57017, 8].

Figure 9 shows (the Press Conference ash
tray version of) the Geometric Definitions, Tool
Path, and Part Program for the first sample part
completely worked out in the manual. (The center
portion was a three-dimensional ''saddle surface"
hyperboloid of one sheet, pocketed by decreasing
indexed elliptic cylinders, with a slanting gouge
for a cigarette at each upper corner.) The exam-
ple is interesting because it showed the use of the
geometric definitions to perform ruler-and-
compass constructions to define the complete
geometry given very sketchy input requirements.
The same outside shape and two other insides of
this part were also worked out in the manual, The
second outside part program illustrated how the
flexibility of the language would allow the part
programmer to program a path directly. He
could simply start out from the beginning and
define quantities as he went along by adding
symbols to earlier statements and using those in
constructing definitions for later statements,
rather than doing all the definitions beforehand
as in the first example,

10.2 Phase II Extensions

I don't think there ever was a completely
functional APT system corresponding to this first
Part Programmer's Manual. Once the Seattle
Meeting decided that Phase I would be defined to
be ''the system that MIT was documenting' I very
carefully kept out of the Part Programmer's
Manual any ideas that might smack of a possible
Phase II [R58725-29]. In fact, it is probably
true that it was not until well after the San Diego
Project effort in 1961, in which the truly defini.
tive APT system was generated by programmers
from many companies working together in the
same place for an extended period of time, did
APT ever have a set of documentation that ade-
quately matched the system then in use., The
whole project was so difficult and drawn out,
however, the lack of current documentation seemed
like a normal state of affairs to APT participants.

FROM
15,32

\ ‘6o 10
1.8,3,0

APT X
AR WIT. ANT.
FEA'SY

REMARK ASHTRAY OUTSIDE CUT
WIDTH » +3,,INCH
LENGTH o #l., INCH

RAD » .5, INCH
TL RAD/ + .8, INCH
TOLER +.01, INCH
FEDRAT/ «T.5, IPM
MAX DP/ ¢ 128, INCH
2DCALC, P8 IS, PLANE/ 90., +Q.,¢L,¢0.
SETPT = FROM,POINT/¢1.8,+ 3, ¢2.
GOTO/ 418, 43.,90.
IN DIR, VECTOR/ -1, +Q., +0.

C1 = CIRCLE/ CTR AT, +0., +0., RADIUS, +.5, INCH
¢ CIR2 « ORCLE/CTRAT, 40, +0., RADIUS, + 5.8, INCH
X CIRS « CIRCLE/ CTR AY, WIDTH, 0., RADIUS, +3.5, INCH
PNTA « POINT/Y SMALL, INT OF, CIR 2, WITH, CIRS

CIR4 « CIRCLE/ CTR AT, PNT A, RADIUS, LENGTH
UNEI LINE/THRU, PNT A, AT ANGL, +90., OEG

PNT B+ POINT/Y SMALL, INT OF, LINE |, WITH, CR4

CR3 = CIRCLE/CTR AT, PNT B, RADIUS, RAD

UNE2 = UNE/RIGHT, TAN TO, CIRI, AND, RIGHT, TAN TO, CIR S
Tt RGT, GO PAST/LINER
GOLFT/LNER
GOFWD/ QRS

CIRG * CIRCLE/ CTR AT, WIDTH, +0., RADIUS, +.5, INCH
GO FWD, LINE/ RIGHT, TAN TO, CIRS, AND, RIGHT, TAN TO, CIR 6
GOFWD/CIRE
GO FWD, CIRCLE/ CTR AT, PNTI, RADUS, 4., INCH
GO FWD/CIR1, UNTIL, TOOL, TAN, LINE2
GO DLTA/ #0., +0., +1.5, INCH
90 TO/ 8ET PT
END, FINL

Figure 9. PART PROGRAM NO. 1
Rocker Arm Cam Outside Cut

A few historic highlights are worth citing 2) The various check surface types,
even though they don't show in the first APT Part including their use as decision
Programmer's Manual because they showed up surfaces, was seen February 11,
much later in subsequent development or have not 1957 in Whirlwind APT II
been pinned down as to time, in my previous dis- discussions.

cussion here,
3) February 12, 1957, again in dis-

1) The use of symbolic names for geo- cussions with Siegel regarding the
metric quantities minimizing course, is the first place that the
numerical parameters so that terms ''preprocessing' and ''post-
entire families of part shapes can processing" for those major sections
be accommeodated by the automatic of the APT system structure make an
programming system, comes from appearance,
my discussions January 29 through
31, 1957 with Arnie Siegel in prepa- 4) April 29, 1957 I first proposed the
ration for the Numerical Control tabulated cylinder (which like an
Course at MIT. aurora borealis passes parallel

92

5)

6)

7)

8)

9)

10)

lines through an arbitrary chain of
points in space) as the general way
to handle arbitrary two-dimensional
curves in a way that properly fits
into the three-dimensional case,

On August 15, 1957 NAA raised
questions on using filleted end mill
cutters to cut pocketing with sloping
bottoms as in the AIA Test Part

No. l. They suggest the idea of a
"limit surface to control the extent
to which any of the other surfaces,
part surface, driving surface, check
surface apply' [Ross and Clements
1957, August 30, pll]., We actually
did incorporate such limit surface
capabilities in our MIT ARELEM

in 1960, but I believe that this is
still a current topic to be accom-
plished in the current CAM-I
Advanced NC Project even today.

The '""CL tape' cutter location tape
standard of APT came out of talks I
had at North American with Dale
Smith in early October 1957 and was
selected by me at Carlberg's urging
by "semi democratic authority" in
preference to a less-flexible scheme
then being proposed by Boeing, on
December 3rd, 1957. (It was later
refined somewhat.,)

The first test run of CONTROL and
ARELEM together took place some-
time in January 14 through 16, 1958
on the IBM 704 at MIT.

On March 14, 1958, in his first
Coordinator's Report [Smith 1958],
Dale Smith presented a proposal for
automatic pocketing based upon
indexing of drive surfaces, We also
had considered indexing in our APT
work at MIT, and this type of opera-
tion did get incorporated in APT in
the APT Macro facility about 1961
[AIA 1961].

Under '"Loops and subroutines in the
part program' Dale also recognized
that there is more to indexing, but
evidently he was not aware of our
suggestion [R57211] that check
surfaces be used as actual decision
surfaces for part program logic
control, I had included labelled
instruction statements in my original
June 14, 1957 Language Memo [Ross
1957c] for this purpose.

We first talked about iterating a
general tool shape into the valley
formed by multiple check surfaces
on April 7, 1958,

93

11) While writing the Post Coordinator’'s
Report July 25, 1958, I saw (with
Pople) that using the terms N, E, S,
W would be preferable to the RGT,
LFT, FWD, BAC, especially to go
with later coordinate transforma-
tions, but it never got into APT,

12) On October 17th through 20, 1958,
I say, ""Talking a little bit more long
range with Clare, I pointed out that
we could use the connectives AND
and OR really with no need for
parentheses since we would want to
follow any such statement by suitable
IF clauses which would automatically
determine the meaning. This is
somewhat different that FORTRAN
since we can, in our case, make the
system figure out what we mean by
what we say in later statements.
In strictly mathematical problems
this is not possible.... The prob-
lem of macrocoding such as is
required in tool shape and director
specifications, [also mentioned in
the March 14 Dale Smith report] as
well as the inclusion of FORTRAN
and SAP language in APT programs
also should be included in Phase II.
The writing of a general normal
vector and directed distance pro-
gram would facilitate the inclusion
of arbitrarily defined surfaces, "

These not only presage the phrase sub-
stitution of AED, but were in fact
included in my later recommendations
to the APT project which became viable
features in subsequent versions., It may
be of interest to APT afficianados to
know that their consideration was docu-
mented this far back in time,

10.3 Macros and Phrase Substitution

One of the most interesting aspects of the
extensions of APT beyond the initial Phase I lan-
guage was the way in which several of the more
powerful language and translation features that
would later become important also in general-
purpose programming languages arose in a com-
pletely natural fashion much earlier in APT, I
believe that the reason this happened is that
because of its subject matter (and perhaps any
truly application-oriented language would share
this property) APT had to be, from the beginning,
what I now call an "object~oriented language''.
[Ross 1975]; in other words, a language in which
the viewpoint and terminology reflected in the
vocabulary, syntax, semantics, and even the
pragmatics of the language are concerned directly
with describing and manipulating specific real
objects of the area of discourse. The attitude of
the user and of the designer of the language is
concerned directly with the subject matter and

not with how that subject matter may be repre-
sented in a computer. This means that the lan-
guage is concerned exclusively with objects, and
with properties of or operations on those objects.
(This means that the types, in the sense of
today's abstract data types [Liskov 1978, Shaw 1978,
etc.], are concerned with descriptors and opera-
tors of the type.) There is no place in either the
thinking or the language for ''pointers'' or
"references', which are strictly representational
matters.

In the case of APT, two important features
came up early and naturally -- macros and nested
definitions (i.e., phrase substitution). The first
ideas for macros in APT (which I have previously
cited) have to do with making repetitive patterns
of holes, (DRILL), or in carrying out the reliable
control of feedrate in the drilling-like start-up of
a pocketing operation, (PLUNGE), These were
considered macro instructions and called "macro-
instructions" [Smith 1958; 1, pl0] because they
involved repetitive patterns of the more elementary
GO types of APT instructions. It was then buta
short step to see that the same process applied to
both rough and finish cuts in part programming,
from which the application of the macro pattern-
generation concept applied equally well in the
motion-instruction domain in general, This in
turn brought out the idea that the same concern
for safe control of feedrate during a plunge opera-
tion should be applied to the same concerns for
general part programming, and the idea of pack-
aging stylized patterns of general part-
programming~standards mm cros was a natural
consequence,

All of this took place well before the de-
velopment of the SAP macro facility in 1960 by
McIlroy of Bell Labs [McIlroy 1960]. (My resume
of February 10 through 29 [sic!], 1960 says "Got
a writeup of the new SAP MACRO system just this
morning. It appears that these facilities will suit
very well our flow diagramming and coding con-
ventions and will make the generation of the com-
piler or whatever system I ultimately end up with
much easier and more powerful. The boys from
Bell Labs did a very good piece of work here'
[R60210-29]. In fact, our early APT macro
thoughts included conditional macros, for that is
how '"loop-logic' was to be exploited for rough and
finish cuts, This was, in fact, the purpose of the
""'symbol) ... " beginning of the statement types in
my original June 14, 1957 Language Memo [Ross
1957¢], although it was dropped for a time and
did not come back until Dale Smith's Coordinator's
Report #4 of August 20, 1958 [Smith 1958, 4] lists
""'symbolic statement identification'' along with
""completely variable field card format.!' But it is
not until his "Prognostications' of report #7, dated
January 13, 1959 [Smith 1959] that we find among
other things "Addition of logical part program
jump instructions' and "Addition of macro instruc-
tions'' as separate headings. I believe it was some.
time after that that I finally was able to start get-
ting people to see that from the beginning I had
intended that these all be one set of thinking.

The matter of nested definitions or phrase
substitution, in which any phrase of a given type
can be substituted wherever any other phrase of
the same type can occur, may go back as far as

94

my original discussions with Arnie Siegel, espe-
cially in the context of the preparation for the
Numerical Control Course we gave for AIA at

MIT [R57212], but I can't really vouch for that,
The earliest APT language, like Siegel's language,
only allowed symbols to be given to geometric
quantities and then those symbols were written in
instructions or other definitions -- but not the
definitions themselves. I do know, however, that
once we had seen that DEFPRE could be called
from INSPRE [R58930-107], (and I spoke of it at
the time as ''nesting definitions in instructions")
the idea of nesting definitions within definitions
was a natural step, The problem was that the
definition preprocessor control was not up to that
task at the time. (It was a simple dispatcher, not
a compiler.) Therefore it is not until the Septem-
ber, 1959 Coordinator's Report of Len Austin (who
followed Dale Smith as Coordinator) that we find
nested definitions as an assigned APT Phase II
item [Austin 1959]. I had been pressing for its
inclusion ever since writing the portion of the
Phase I Part Programmer's Manual in wkich in-
struction statements were converted into definition
statements after the fact by writing "symbol = ,.,"
at the beginning of an already-written statement in
the "path-oriented" second program of the rocker
arm can sample part (see Section 10, 2),

The important thing to notice about these
macro and nested definition language features is
that they both became full-blown in concept and
purpose, if not in practice, at least by early 1959
and certainly were brewing in 1957. My recollec-
tion is that they came from the needs of the appli-
cation area, rather than from any influences of
general-purpose programming thinking (although I
can't fully vouch for that). In any case they were
very influential on my own formulation of plex and
my Algorithmic Theory of Language which, as I
have already cited, also had its roots in the same
period. [Another interesting aside is that my
resume shows that on April 16 through 18, 1959 a
symbolic manipulation conference was held at MIT
(no formal auspices) at which "I talked for a short
time on multimode control as applied to list
searches, [Ross 1958d], group control and pro-
posed a modified list structure which seems more
appropriate to our design machine application'.
[R59416.511] , which was my first public discussion
of my ''n-component element'' plex ideas (although
I did not at that time have the word ''plex'). This
predates by almost exactly one year the May 20-21,
1960 Philadelphia ACM conference on Symbol
Manipulation at which my note published in CACM
March 1961 [Ross 1961] was presented, As I have
cited here, the start of this thinking was '""Milling
Machine Conference Number One'' in 1956 [Ross
1956c]. Since most people seem to associate 1961
(the CACM late publication date) with the start of
my plex thinking, I thought it would be interesting
to point out these earlier dates,]

11. PERIOD 9: THE PRESS CONFERENCE
(November 1958 through February 1959)

The official launching of APT on the world
was, of course, the Press Conference of February
25, 1959 [MIT 1959a], with which I opened this
paper, According to my resumes, over a year
went into its preparation [R580131], triggered by
the significant press coverage of my AAAS paper

reverberating through the month of January 1958,
Nothing actually happened, of course, for a long
time as the Field Trial effort struggled past the
projected May lst date. On June 9, 1958 I re-
ceived an invitation to present a paper at the
ASME annual meeting in New York City December
1 through 5, 1958, in a special program sponsored
by the Aviation and Machine Design Divisions
[C5869]. I accepted and proposed the title "A
Progress Report on the 2D APT II Joint Effort for
Automatic Programming of Numerically Controlled
Machine Tools" [C58630]. On August 13, I
started writing, and by August 29 I was putting

the finishing touches on the ASME paper [R58827-
29]. A figure in that paper [Ross 1958g] shows
the state of my thinking at that point in time with
regard to the Figure 8 language chart of the final
Part Programmer's Manual, At that point in time,
""miscellaneous'" words was a catch-all category.

I had not yet decided to treat INDIR as a motion
instruction because it set the sense of direction
for all the rest. ZSURF was ZPLANE at that
point, and direct setting of the drive and check
surfaces was included. A few spellings are also
different, but the language itself was almost com-
plete when this paper was submitted on August 29,
1958.

By mid November George Wood of MIT
public relations department took over [R581113 +
14]. His primary suggestion was that we try to
arrange some sort of demonstration along with
the release, By January 9 we had decided to make
souvenir ashtrays from the part programming
example and have sense switch control of scope
plots, etc, [R581229-59019]. The Press Con-
ference itself took place February 25, 1959.

"We had a little over 60 press people present,
split almost equally between popular and
technical press. The impact of the con-
ference was, I think, beyond anyone's
expectations, We evidently made the front
page several places and received some
radio and TV coverage as well,.. Lowell
Thomas also made a pun on APT, saying
that with APT almost anything was apt to
happen,.. One of General Irvine's state-
ments was taken out of context so that the
press releases said that he said that APT
would make possible a war machine that
the Russians wouldn't dare to tackle.
Whereas actually what he had said was
more of this kind of development could
lead to such a situation, We haven't yet
begun to get the technical press and
magazine coverage which should be more
factual than the newspaper coverage...
The amount of notoriety that has reflected
on me personally is quite unnerving but I
seem to be surviving well enough and I
hope my professional colleagues will take
most of the noise with a grain of salt"

[R59219-34].

It was, however, a first class job all
around with a much higher than usual communica-
tion of valid technical information into the public
consciousness. It was, I think, more than mere
hoopla, for the added credibility of this wide-
spread attention helped to see the APT Project
through the many ups and downs in the later

95

months and years. (The resume for January 29 -
February 5, 1959 says "We are going to call this
the APT Project rather than the Joint Effort'.)

12, PERIOD 10: THE MIT ARELEM EPILOGUE

(July 1959 through July 1962)

Although APT was used for production
parts from mid~1959 on, in various places, the
performance of ARELEM was extremely erratic
and unreliable, To wrap up the story and provide
a tie to my later development of plex, my Algorith-
mic Theory of Language (the application of plex
to the subject of language), and AED, I will cite
briefly the subsequent history,

As we were finishing up the Phase I docu-
mentation, in the summer of 1959, the AIA APT
Project asked us to look into the ARELEM prob-
lem at MIT. Ewven though we were switching our
Air Force sponsorship from APT to the subject
of computer-aided design and computer graphics,
we carried along an APT collaboration task until
July of 1962, During that period, with Clarence G,
Feldmann (and part of the time with John F.
Walsh) I worked out’a completely new approach
which became known as the "MIT ARELEM",
which still forms the basis for the APT system
used widely today [MIT 1961], We did two com-
plete versions of this ARELEM analysis, the
First-Order Analysis being based primarily upon
linear approximations, the Second-Order Analysis
directly taking into account the curvature approxi~
mations to yield much more efficient results.

Both analyses gave ''guaranteed cut vectors' in
the sense that using the actual points of tangency
to the surfaces involved, the ''deepest point of
gouge'' was determined with respect to independent
inside and outside tolerance bands at both ends of
the straight~line cut vector, as well as in the
middle of the cut. We also, in our MIT version,
had a scheme called ''parabolization' which is a
generalized scheme for drastically speeding up
and guaranteeing the convergence of iterative
vector computations. Both versions of the pro-
gram also incorporated adaptive ''learning' to
generate excellent starting conditions for the cut
vector iterations, The scheme for efficiently
selecting the appropriate tool segment for use with
a given center of curvature of a surface is interest-
ing because it corresponds almost exactly to the
guarded commands of Dijkstra [1975], including
several very efficient algorithms for evaluation of
"simultaneous Boolean expressions' with a mini-
mum number of steps [MIT 1961, pp 61-66].

Although we had all of these versions of the
MIT ARELEM working at MIT at various times, it
was a lengthy process and went through several
stages of interaction with the on-going AIA APT
Project. The very first incomplete version was
made mostly workable by programmers from
Chance-Vought and was used in AIA APT for a
short time even though we were continuing with
the developments further at MIT, Feldmann spent
many months and many trips working directly with
the San Diego APT Project, first helping them to-
program the First-Order Analysis in FORTRAN,
and later incorporating portions of the Second-
Order Analysis as well., To our knowledge the
AIA APT never did incorporate the complete MIT

Second-Order Analysis with parabolization, and
the work had dragged out to such an extent and we
were 50 deeply into the beginnings of AED by 1962,
that we never did complete the documentation of
the final analyses beyond the quite complete de.
scriptions that appeared in our MIT project
Interim Reports. By that time, however, the APT
Long Range Program was beginning at Armour
Research Foundation (now IITRI) [Dobe 1969] so
that the APT Project managed to get along without
our further intensive assistance.

The programming and testing of the MIT
ARELEM from 1959 through 1961 was the place
where we first worked out the ideas and approaches
to n-component element plex programming using
'"reverse index registers!'. Each tool segment
and each surface had many parameters which were
kept together in a block of contiguous storage with
different components accessed by an appropriate
setting of an index register which pointed to the
head of the block and the offset with respect to the
index picked up the component. We also used the
same method to embed transfer instructions in the
n~-component elements so that an indexed transfer
jump through the element would act as a switch
in a program, In this way merely by changing the
index register pointer from one tool segment to
another or one surface to another, the entire
collection of programs constituting ARELEM
would radically change both its data and its flow-
of-control behavior. Although now commonplace
in advanced programming languages, this was a
radical innovation in 1959. It was, however, very
natural in the context of our ARELEM analysis and
the nature of the problem we were solving.

One thing that has always disappointed me
is that this entire massive effort had so little
direct impact on the other developments in pro-
gramming language and computer science develop-
ments. For the most part the (by now) several
hundred computer programming people who have
worked on the system have been from industry, not
academia. Paper writing, except addressed to the
"in-group', has been almost non-existent, The
continual evolution of more sophisticated features
in systems which were in daily productive use
meant that almost never was a complete, elegent
package available for concise description and docu-
mentation. Finally, the system and problem area
itself is so complex and elaborate that it is difficult
to isolate a single topic in meaningful fashion for
presentation to those not familiar with the complete
APT and numerical control culture. For the most
part, APT was viewed with respect, but from a
distance, by members of the computer science
community, even though many of the significant
developments of the '70s first were tried out in
the '60s in APT.

In any case, I hope that this historical look
into the beginnings of APT has helped to redress
the balance, somewhat, I believe the hypothesis
of my theme -~ that although old, the original APT
was ''"modern', because otherwise it could not
have been done -- is supported by the facts from
which I found it emerging. The one solid conclu-
sion I have reached is that it is much easier to
make history than to write about it. I now have
added to my APT files endless notes and cross

96

references that may, someday, be useful to real
historians. AllI can really say is that an awful
lot of people did an awful lot of good work in those
days. I'm glad I was part of it all.

REFERENCE LIST

AIA, 1957a March 26. Report of the Meeting of
the AMEC /SNC Study Group for Manuscript Codes,
Computer Programming and Computer Sub-
Routines Held on 1 March 1957 in Los Angeles,
California. Los Angeles, CA: Aircraft Industries
Association memo AMEC-57-34,

1957b April. Report Concerning the Meet-
ing of the AIA/AMEC-SNC Control Data Process-
ing Group Held at ATA, Los Angeles, California

on 23-24 April 1957, Los Angeles, CA: Aircraft
Industries Association (draft copy} no doc. number).

.

1957c October 18. Report of the AMEC/
Subcommittee for Numerical Control held at AIA,
Los Angeles, Californja, on 3-4 October 1957.
Los Angeles, CA: Aircraft Industries Association
memo AMEC-57-87,

—

1958 August 20, Report of AMEC /Numerical
Control Panel Meeting held in Seattle on July 16-
17-18, 1958, Los Angeles, CA: Aircraft Indus-
tries Association memo AMEC-58.44,

1959 October 9, Meeting Report, Proceed-
ings of Computer Programmers Meeting, August
24-26 (Project 358-12,3). Los Angeles, CA:
Aerospace Industries Association memo MEC.59-
69. (Section VIII, pl2, starts MIT ARELEM
work.)

1961, APT Documentation (6 Volumes)
Washington, DC: Aerospace Industries Association
(results of the APT III Central Project at San
Diego, CA).

—
.

ANSI. 1976, AmericanNational Standard Program-
ming Language PL/1l. New York, NY: American
National Standards Institute, Inc. Doc. No.

ANSI X3.53-1976.

Austin, L. 1959 September. Summary of
September 1959 Monthly APT Progress Reports.
St. Louis, MO: McDonnell Aircraft Corporation
(no number),

Benetar, V, 1957 May 10. Subject: Standard
Manuscript Language, Marietta, GA: Lockheed
Aircraft Corp. memo to AIA AMEC/Subcommittee
for Numerical Control (no number).

Boeing. 1957a February 27. Part Programming
Language, Numerical Control Program - Tenta-
tive. Seattle, WA: Boeing Airplane Co. Numerical
Control Mathematical Programming memo, 1 page.

1957b February 28, Numerical Control
Library Routines A, M. C. Skin Mills - Preliminary
Qutline. Seattle, WA: Boeing Airplane Co. memo,
16 pages.

Braid, I. C. 1975 April.
Bounded By Many Faces,
ACM 18(4):209-216.

The Synthesis of Solids
mmunications of the

Bromfield, G. 1956 January 12, Numerical Con-
trol for Machining Warped Surfaces, Cambridge,
MA: MIT Servo Lab Rpt, No. 6873-ER-14.

Carlberg, E, F. 1957 March 27.
Ross with Attachments A-F,

Letter to D. T,

Clements, D, F. 1957 June 21, Coordinator's
Report for Period May 20 ~ June 20, Cambridge,
MA: MIT Servo Lab memo 2D APT I1I.6,

1958 March 4 letter to O, D.
Smith.

Coons, S. A. and Mann, R. W, 1960 October.
Computer-Aided Design Related to the Engineering
Design Process. Cambridge, MA: MIT Servo Lab
Rpt. No. 8436-TM-5, 13 pages, DDC No.
AD252061.

Dijkstra, E, W. 1975. Guarded Commands,
Nondeterminacy and Formal Derivation of Pro-
grams. Communications of the ACM 18(8):
pages 453-457.

Dobe, J. W. 1969 April. The APT Long Range
Program: Progress to Date; Plans for the Future.
Glen View, IL: Numerical Control Society Sixth
Annual Meeting and Technical Conference

Proceedings.

Everett, R. R, 1951. The Whirlwind I Computer,
New York, NY: AFIPS, Proceedings of the 1951
EJCC: page 70,

Gregory, R. H. and Atwater, T. V, Jr. 1956
March 1. Economic Studies of Work Performed
on a Numerically Controlled Milling Machine,
Cambridge, MA: MIT Servo Lab Rpt. No. 6873-
ER-18. See also 1957 Journal of Engineering
8(6): 337-352.

Hori, S. 1972 July. The Structure of Functions
and its Application to CAM Planning. Glen View,
IL: Numerical Control Society NC Scene July
1972: pages 2-5.

IBM. 1963 January. ADAPT, A System for the
Automatic Programming of Numerically Controlled
Machine Tools on Small Computers. San Jose,
CA: Final Tech. Eng. Rpt. (Air Force Contract
AF33(600)-43365).

Kaynor, K. 1958 July 8. Memo to R. Nutt. Subject:
Conclusions reached at MIT on July 2, 1958,

Kinney, G. E,
Jacob.

1957 June 10. Letter to G. W.
Copy received by D. T, Ross 1957 June 18.

Liskov, B.,, Snyder, A,, Atkinson, R., and
Schaffert, C. 1978 August, Abstraction Mech-
anisms in CLU. Communications of ACM 20(8):
564-.576,

Mcllroy, M. D. 1960 April. Macro Instruction
Extensions of Compiler Languages. Communica-~
tions of the ACM 3(4): 214.220,

97

McWhorter, B. J. 1958 April 10, Letter to D. T.
Ross, with enclosures. Contains excellent
description of INTRAN-DEFPRE processing
method.

MIT Servo Lab., 1952 July 30. Final Report on
Construction and Initial Operation of a Numerically
Controlled Milling Machine. Cambridge, MA:
Report No, 6873-FR-1, Reprinted in Appendix B
of FWard 1960].

. 1956 March 15. Design, Develop-
ment and Evaluation of a Numerically Controlled
Milling Machine. Final Report. Cambridge, MA:
Report No. 6873-FR-2. Reprinted in Appendix A
of [Ward 1960].

. 1957a January 1 through March
31, Automatic Programming for Numerically
Controlled Machine Tools. Cambridge, MA:
Rpt. No. 6873-IR-3.

1957b February 18, Program-
ming for Numerically Controlled Machine Tools,
Cambridge, MA. Special course brochure printed
by MIT Summer Session Office.

. 1957c March 23-April 3. Course
Outline and Workbook for the Special Course on
Programming for Numerically Controlled Machine
Tools, Cambridge, MA: {(no report number),

1958a January 1 to June 30.
Automatic Programming of Numerically Controlled
Machine Tools. Cambridge, MA: Rpt. No. 6873
IR-6 and 7, ASTIA No. AD-156060.

1958b April. Research in
Defense Techniques for Airborne Weapons, 1957

Annual Report; Vol. 2. Cambridge, MA:
Servo Lab Rpt. No. 7668-R-5(2).
. 1959a February 25, APT Press

Conference. Cambridge, MA: Appendix C of

" [Ward 1960].

1959b.
APT System Documentation.
Ross, D. T. 1959b June. Vol. I, General

Description of the APT System, 85 pages.
. 1959a May. Vol, II, APT Part
Programmer's Manual, 130 pages.

XXXXX. Vol. III, APT Calculation Methods
{not published).

MIT and AIA participating company staffs, 1959
May. Vol. IV, A Description of the APT Com-
puter Programs, 162 pages.

Feldmann, C. G. 19592 May, Vol. V, Opera-
tor's and Troubleshooter's Manual, 27 pages.

1959b May. Vol. VI,
Modification and Change Procedures, 54 pages.
McAvinn, D. 1959 December. Vol. VII,

Group Control for Automatic Manipulation of
Computer Programs which Exceed Core -

Memory, 59 pages.

- . 1961 January. Investigations in
Computer-Aided Design (December 1, 1959 to
May 30, 1960). Cambridge, MA: Interim Engi-
neering Rpt. No. 8436-IR-1,

Pease, W. 1952 September. An Automatic Ma-
chine Tool. Scientific American. 187(3):
101-115,

Perlis, A. J. 1958 March 27. Letter to D. T.
Ross rejecting [Ross 1957f] for publication in
CACM.

Ross, D."T. 1956a February 7-9. Gestalt Pro-
gramming: A New Concept in Automatic Program-
ming. New York, NY: AFIPS, Proceedings of the
1956 WJCC, pages 5-9.

————— . 1956b through 1963. Daily Resumes
(Unpublished), Lexington, MA: to be placed in
MIT Archives, 833 pages.

. 1956c November 30, Machine Tool
Programming Conference No. 1 (Unpublished
memo draft), Cambridge, MA,

1957a March 29. Design of Special
Language for Machine-Tool Programming. Cam-
bridge, MA: published in [MIT 1957c], pages
3/29.5-9. (Reproduced here in Section 4, in full.)

—_———— . 1957b May 1. Preparations for
Joint Programming of AIA APT II System.
Cambridge, MA: MIT Servo Lab. Rpt, No. 6873-
TM-2 (Distributed to AIA/AMEC /Subcommittee for
Numerical Control)

—_————, 1957c¢ June 14, A Proposed Basic
Language for the 2D APT II. Cambridge, MA:
MIT Serve Lab. memo 2D APT II-2, 6 pages
(Reproduced here in Section 6, in full,)

1957d October 23-25. Some Recent
Developments in Automatic Programming of
Numerically Controlled Machine Tools. Presented
at Third Annual Contour Machining Conference
(no Proceedings). Published in [Ross 1958a].

—_————.. 1957e November 27 letter to B. J.
McWhorter.

—_———— .. 1957f December 28, Development of
a Research Effort in the Automatic Programming
of Numerically Controlled Machine Tools, Pre-
sented at Association for Computing Machinery
Session of the Indianapolis meeting of the American
Association for the Advancement of Science (no
Proceedings). Published in [Ross 1958a].

. 1958a January 7, Papers on Auto-
matic Programming for Numerically Controlled
Machine Tools. Cambridge, MA: MIT Servo Lab.
Rpt. No. 6873-TM-3,

. 1958b April,
Experimental Programming;
[MIT 1958b].

The SLURP System for
Section III-E in

98

., 1958c April. A Philosophy of
Problem Solving; Section III-D in [MIT 1958].

—————. 19584 April. A Multi-Mode Control
Element; Section III-C in [MIT 1958].

. 1958e April 29. 2D-APT II Post
Programmer's Manual (Field Trial Version).
Cambridge, MA: MIT Servo Lab. memo 2D
APT II-16.

1958f July 25. Post Coordinators [sic]
Report re Phase I System. Cambridge, MA: MIT
Servo Lab, memo 2D APT II-19.

——— 1958g November 30. A Progress
Report on the 2D-APT-II Joint Effort for Auto-
matic Programming of Numerically Controlled
Machine Tools, New York, NY: ASME Paper No.
58-A-236 at ASME Annual Meeting. Published in
condensed form, two parts, 1959 May, Mechanical
Engineering, 81(5): 59-60 and 70. Also published
as Chapter II in [MIT 1958a].

1959a May. APT Part Programs-
See Vol, II of [MIT 1959b],

mer's Manual.

—— . 1960 September, Computer-Aided
Design; A Statement of Objectives, Cambridge,
MA: MIT Servo Lab. Rpt. No. 8436-TM-4, DDC
No. AD252060, 22 pages.

1961 March. A Generalized Tech-
nique for Symbol Manipulation and Numerical
Calculation. Communications of the ACM 4(3):
147-150.

—_——— ., 1962 November, An Algorithmic
Theory of Language. Cambridge, MA: MIT Servo
Lab. Rpt. No. ESL-.TM-156, DDC No. AD296998,
68 pages.

. 1964 September. AEDJR: An Experi.
mental Language Processor. Cambridge, MA:
MIT Servo Lab. Rpt. No. ESL-TM-211, DDC No.
453881, 53 pages.

. 1975 December, Plex 1: Sameness
and the Need for Rigor and Plex 2: Sameness and
Type, with''are: pres, pl. of BE" | 1976 April].
Waltham, MA: SofTech, Inc. Rpt. Nos. 9031-1.1,
2.0, and 10. (Abstracted in [Ross 1976]).

~———— .. 1976 March. Toward Foundations
for the Understanding of Type., SIGPLAN Notices
8(2), Vol. II, Proceedings of Conference on Data:
Abstraction, Definition and Structure: pages 63-65.
(Abstracted from [Ross 1975].)

., 1977a January, Structured Analysis
(SA): A Language for Communicating Ideas. LEEE
Transactions on Software Engineering, 3(1):
16-34,

—————, 1977b October, Comments on APT
Items in D. T. Ross Daily Resumes (unpublished)
Lexington, MA,

and Clements, D. F. 1957 and 1958.
Coordinator's Report(s), Cambridge, MA: MIT
Servo Lab, memos

2D APT 11.9
2D APT I1I-10

for Period August 1 - August 30

for Period September 1 -
September 27

2D APT II-11 for Period September 28 -

October 21

for Period October 22 -
February 4, 1958

2D APT II-12

2D APT I1I-13
2D APT II-14
2D APT II-15
2D APT 11.17

for Period March 14 - April 4
for Period April 5 - April 15
for Period April 15 - May 1

——————— and McAvinn. 1958 December,
Data Reduction for Pre-B.58 Tests of the XMD-

7 Fire-Control System, Vol. 3 Evaluation of
Fire-Control System Accuracy., Cambridge, MA:
MIT Servo Lab., Rpt. No. 7886-R-3, ASTIA

AD 207 353,

—~—— — and Pople, H. E. Jr. 1956 June 26
through December 31. Automatic Programming
of Numerically Controlled Machine Tools.
Cambridge, MA: MIT Servo Lab. Rpt. Nos.
6873-IR~1 and 6873-IR-2,

——————, Rodriguez, J. E., and Feldmann,
C. G, (Ed.). 1970 January. AED-0 Program-
mer's Guide, Cambridge, MA: MIT Servo Lab
Rpt. No. ESL-R-406 published by SofTech, Inc.,

Waltham, MA.,

Runyon, J. H. 1953 December 1., Whirlwind I
Routines for Computations for the MIT Numeric-
ally Controlled Milling Machine, Cambridge, MA:
MIT Servo Lab. Rpt. No. 6873-ER-8.

Shaw, M., Wulf, W, A,, London, R. L. 1977
March., Abstraction and Verification in

ALPHARD: Defining and Specifying Iteration and

Generators. Communications of the ACM 20(8):
553-564,
Siegel, A. 1956a March 1. Information Process-

ing Routine for Numerical Control. Cambridge,
MA: MIT Servo Lab. Rpt. No. 6873-ER-16.

1956b October. Automatic Program-
ming of Numerically Controlled Machine Tools.
Control Engineering, 3(10): 65-70.

for Period February 5 - March 13

99

Smith, O, D, 1958 and 1959. AIA Coordinator's
Report(s). Los Angeles, CA: Aircraft Industries
Association memos

1. AMEC.58-17; 1958 April 4; for Period
through 1958 March 14

2. AMEC-58-45; 1958 August 25; for Period
through 1958 August 7

3. AMEC-58~47; 1958 August 27; Definition
Preprocessing Memo

4. AMEC-58-47; 1958 August 27; for Period
through 1958 August 20

5. AMECL.58-55; 1958 October 8; for Period
through 1958 September 9

6. AMEC-58-62; 1958 October 30; for Period
through 1958 October 22

7. AMEC-59-5; 1959 January 20; for Period
through 1959 January 13

8. AMEC-59.11; 1959 February 24; Work
Assignments 1959 February 18

and Corley, C, F.
10, APT-II Arithmetic Program. Los Angeles,
CA: North American Aviation, Inc, SHARE-type
writeup submission to 2D APT II Field Trial.

1958 February

Swift, C. TJ.
Carlberg.

1957 October 24 letter to E, F,

Voelcker, H., B, and Requicha, A, A, G. 1977
December, Geometric Modeling of Mechanical
Parts and Processes, IEEE Computer 10(2):
48-57.

Ward, J. E. 1960 January 15. Automatic Pro-
gramming of Numerically Controlled Machine
Tools, Final Report, Cambridge, MA: MIT
Servo Lab. Rpt. No, 6873-FR-3.

. 1968, Numerical Control of
Machine Tools. New York, NY: McGraw Hill
Yearbook of Science and Technology: pages 58-65,

Wirth, N. and Hoare, C. A, R. 1966 June. A
Contribution to the Development of ALGOL.
Communications of the ACM 9(6): 413.431.

