
ThinkingISsues

Tony Clear
School of Computer and Information Sciences

Auckland University of Technology,
Private Bag 92006, Auckland 1020, New Zealand

Tony.Clear@aut.ac.nz
The Waterfall is Dead. Long Live the Waterfall!!

I find myself now in the throes of rewriting the
guide I provide to our students undertaking their
capstone software development projects. Like
many such artefacts it has evolved over time and is
an amalgam of my own and prior colleagues
thoughts, informed by numerous sources from the
literature. But we are now at some form of
watershed, experiencing an increasing level of
discomfort with the existing guide and the schedule
we have applied for assessing students’ work.

In our capstone software development project
students undertake projects under three broad
headings: 1) commercial software development for
live client to deliver a working application, 2) R&
D project for commercial client to undertake a
technology evaluation and deliver a proof-of-
concept application, 3) a more theoretical research
project developing software within a research team
or for a research sponsor.

The table below identifies four broad categories of
work (among other criteria) under which students
have previously been assessed.

Requirements analysis

Feasibility/Design

Construction

Implementation & testing

Table 1: Assessment Items

Students are required to submit a portfolio
providing evidence of their work under each
assessment item. So, for instance, to evidence their
project management they may include copies of
baseline project plans, project plan revisions,
progress reports etc. So far so good!

Yet the development process as represented by the
categories in table 1, becomes problematic. Inbuilt
are the assumptions of linearity and segmentation.
These may indeed be reinterpreted on a case by
case basis, and tailored deliverables may be
identified for each project, but there is an inevitable
colouring portrayed by the words themselves.
Students seem to revert to a waterfall development
approach in order to produce the documentation
they interpret as necessary for their assessments.

My colleague Anne Philpott has brought this home
to me recently. Anne has been incorporating more
agile approaches to software development in the
earlier sequence of courses in our undergraduate
degree. Initially applied within the software design
and implementation course, this has now rippled
forward to a review of the content of our software
engineering course, and has caused me to rethink
our capstone project. Anne's emphasis has been on
Highsmiths's [1] interaction, cooperation and
collaboration within the software process. Her
students have applied various agile methodologies
and techniques as discussed in [1] such as pair
programming, SCRUM, and feature driven
development.

So in rethinking this process, I find myself
wrestling with the core distinctions between
programming-in-the-small and programming-in-
the-large. Key questions such as “what is
programming?” come to mind. Is programming
“the implementation of a design”, as my colleague
Bob Roggio has recently suggested? Or is it
something else, the core activity of software
development, around which a whole series of often
confounding models and translation processes have
evolved? Then too what is rigour in the software
process? The most agile methods such as extreme
programming [5] seem to concentrate on the code,
the code and nothing but the code. But without
supporting documentation to drive the thinking, and
communicate the intentions to project stakeholders
such as sponsors, users, development colleagues,
future maintainers of the software, and operators of
the systems, how does this differ from mere
software hacking?

There seem to be a few conflicting issues here. The
waterfall lifecycle is somehow deeply engrained in
developers’ psyches. Ambler and Constantine [3]
note “that the iterative nature of the [RUP] lifecycle
is foreign to many experienced developers, making
acceptance of it more difficult”.
Even the Object Oriented Software Process
advocated in [3] is proposed as “serial in the large,
iterative in the small, delivering incremental
releases over time”. Bruegge and Dutoit [4]
likewise advocate very soundly the iterative and
incremental nature of development, yet at the core,
when their documents and artifacts are scrutinised
the waterfall skeleton shows through.
Perhaps the use of the term “construct” is at the
core of the issue. Do we really “construct”
software, or is this a misplaced metaphor for a
disaggregated “coding” stage? In the same way
that “software engineering” is a problematic term,
have we just borrowed the language of engineers to
superimpose the carefully staged framework of
bridge building - namely “design, build/construct,
maintain” on the software process?

If as argued in [5] “when a development team
creates a new system it is actually inventing a new
way for people to work”, is this as concrete and
fixed an outcome as a bridge? And can a new
technology supported work process be wholly
envisaged from the inception and seamlessly
delivered without ever being enacted? I doubt it.
And this need to interact with the system,
experience the proposed new practices, and
comprehend the system’s behaviour is the point at
which misinterpretations can become apparent, new
possibilities can be foreseen, and flaws in the
original vision can be comprehended.
So it seem to me that we have a tension between
four opposing forces:

• A force for change built upon an initial and
evolving vision, which drives the software
process

• a commercial force for certainty of cost and
outcomes

• a project management force for certainty of
delivery against targets

• a professional force for delivering quality
software

It is the confluence of these forces and the
borrowing of commercial and project management
models from the engineering community that have
brought us today’s methodologies. Yet I do not
think we have yet reconciled their inconsistency
with the very nature of software, and the
requirements of a quality software process. Until
we do so, I can see the industry continuing with
fictitious project progress reports to keep linear
managers happy in the delusion of control of an
inherently uncontrollable process.

1. Highsmith, J., Agile Software Development

Ecosystems. The Agile Software
Development Series, ed. A. Cockburn and J.
Highsmith. 2002, Boston: Addison-Wesley.
404.

2. Beck, K., Extreme Programming Explained:
Embrace Change. 2000, Boston: Addison-
Wesley.

3. S. Ambler and L. Constantine, The Unified
Process Inception Phase. Lawrence: CMP
Books, 2000.

4. Bruegge, B. and A. Dutoit, Object Oriented
Software Engineering. 2000, New Jersey:
Prentice Hall.

5. H. Beyer and K. Holtzblatt, "Data Based
Design," in The Unified Process Inception
Phase, S. Ambler and L. Constantine, Eds.
Lawrence: CMP Books, 2000, pp. 36 - 44.

