Check for
Updates

On Exponential-Time Completeness of the
Circularity Problem for Attribute Grammars

PEI-CHI WU
National Penghu Institute of Technology

Attribute grammars (AGs) are a formal technique for defining semantics of programming lan-
guages. Existing complexity proofs on the circularity problem of AGs are based on automata theory,
such as writing pushdown acceptor and alternating Turing machines. They reduced the acceptance
problems of above automata, which are exponential-time (EXPTIME) complete, to the AG circu-
larity problem. These proofs thus show that the circularity problem is EXPTIME-hard, at least as
hard as the most difficult problems in EXPTIME. However, none has shown that the problem is
EXPTIME-complete. This paper presents an alternating Turing machine for the circularity prob-
lem. The alternating Turing machine requires polynomial space. Thus, the circularity problem is
in EXPTIME and is then EXPTIME-complete.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; D.3.4 [Programming Languages]: Processors—Compilers, translator writ-
ing systems and compiler generators; F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computations on discrete structures; F.4.2 [Math-
ematical Logic and Formal Languages]: Grammars and Other Rewriting Systems—Decision
problems

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Attribute grammars, alternating Turing machines, circularity
problem, EXPTIME-complete.

1. INTRODUCTION

Attribute grammars (AGs) [Knuth 1968] are a formal technique for defining se-
mantics of programming languages. There are many AG systems (e.g., Eli [Gray
et al. 1992] and Synthesizer Generator [Reps and Teitelbaum 1989]) developed
to assist the development of “language processors,” such as compilers, seman-
tic checkers, language-based editors, etc. These AG systems process language
specifications written in AGs and generate corresponding language processors.

An AG is circular if there is a cycle in (attribute) dependency graphs. A
circular dependency is thought to be a specification error and should be detected
by AG systems. Knuth [1968] presented an exponential-space algorithm for the

This research was partly supported by the National Science Council, Taiwan, R.O.C., under Con-
tract No. NSC 89-2213-E-346-002.

Author’s address: Department of Computer Science and Information Engineering, National Penghu
Institute of Technology, Penghu, Taiwan, R.O.C.; email: pcwu@npit.edu.tw.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permision and/or a fee.

© 2004 ACM 0164-0925/04/0100-0186 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 1, January 2004, Pages 186—-190.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F963778.963783&domain=pdf&date_stamp=2004-01-01

On Exponential-Time Completeness . 187

circularity problem. The algorithm collects a set of synthesized dependencies
sd(X) for each symbol X . Let D(p) be the local dependency graph in production
p: Xo — Xi...Xk. For any combination of [dy, ..., dk], d; € sd(Xj),i > 0, the
algorithm then pastes together [dy, ..., dx] withD(p). The AG is circular if a
cycle is found in the resulting dependency graph. The only exponential factor
in the algorithm is the number of graphs in sd(X).

The intrinsically exponential complexity of the circularity problem for AGs
was first proved by Jazayeri et al. [1975], who reduced the acceptance prob-
lem of writing pushdown acceptors to the circularity problem. Jones [1980]
proposed a simpler proof by reducing the acceptance problem of exponential-
time-bounded deterministic Turing machines to the circularity problem of AGs.
Jazayeri [1981] (and the correction by Dill [1989]) also tried to provide a simpler
construction of AGs by reducing the acceptance problem of space-bounded alter-
nating Turing machines [Chandra et al. 1981] to the circularity problem. The
acceptance problem of (polynomial) space-bounded writing pushdown acceptors
and alternating Turing machines are exponential-time- (EXPTIME-) complete.
Both reductions show that the circularity problem for AGs is EXPTIME-hard,
at least as hard as the most difficult problems in EXPTIME. However, none has
shown that the problem is EXPTIME-complete.

To show the circularity problem for AGs to be EXPTIME-complete, we need
an algorithm that requires exponential time but not actually exponential space.
The existing circularity test algorithms [Deransart et al. 1984; Jazayeri et al.
1975; Knuth 1968; Raiha and Saarinen 1982] all require exponential space in
the worst cases. Jazayeri et al. [1975, p. 704] also provided an upper bound
on the circularity problem, which takes O(29") time and space, where n is the
grammar size. In fact, it is almost unlikely to find an algorithm for the circu-
larity problem that takes only polynomial space. If there is one, the circularity
problem is in polynomial space (PSPACE) and PSPACE 2> EXPTIME. Since
PSPACE < EXPTIME, we would get PSPACE = EXPTIME, which is still un-
known in complexity theory (cf., e.g., Chandra et al. [1981]).

This paper presents an alternating Turing machine for the circularity prob-
lem. The alternating Turing machine requires polynomial space. Thus, the cir-
cularity problem is in EXPTIME and is then EXPTIME-complete.

2. THE ALTERNATING ALGORITHM

In an alternating Turing machine [Chandra et al. 1981; Jazayeri 1981], there
are two main kinds of states: universal and existential. An existential state
leads to an acceptance of the input, if one of the alternatives (possible next
moves) leads to an accepting state. A universal state leads to an acceptance of
the input, if all of the next moves lead to an accepting state.

Algorithm CircularityTest is an EXPTIME algorithm represented using an
alternating Turing machine. Since complete development of the algorithm us-
ing “primitive” operations, for example, moving heads and writing tape symbols,
in Turing machines is very complex, the algorithm is sketched using higher-
level operations, borrowed from programming languages. Typical sequential
code fragments are written directly in Pascal-style pseudocodes, which can

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 1, January 2004.

188 . Wu

easily be converted into alternating Turing machine operations. The “guess”
actions in states gq; and gz can be programmed using a series of existential
states, each of which randomly chooses or does not choose an arc in a depen-
dency subgraph. To explore the parallelism in alternating Turing machines, we
use the ALL and SOME statements to create a number of parallel tasks (possi-
ble next moves). The ALL statement succeeds if all of the child tasks succeed;
the SOME statement succeeds if some of the child tasks succeed. Each state
is universal or existential depending on whether the ALL or SOME statement
is used, respectively. Each task is given its next state and a number of input
parameters, which are placed on the working tape. A task ends with either
success or failure. Alternating Turing machines directly support task returns
and do not need run-time stacks.

Algorithm CircularityTest.

Input. An AG ag. P denotes its production rules, N denotes its nonterminal symbols,
Inh(X) (Syn(X)) denotes the inherited (synthesized) attributes of symbol X, and D(p)
denotes the dependency graph of a production p.
Output. Whether ag is circular or not: ag is circular if success, noncircular if failure.
Method.
State qo:
SOME ai(p), p € P;
State q;(p):
IFp: Xo—¢
THEN failure; {*There is no cycle in the dependency subgraph of X*}
ELSE
Letp: Xo— X1...Xy;
Guess an array of dependency subgraphs [dy, ..., di] for X;,

where d; C Inh(X;) x Syn(Xj),i > 0;

Compose dependency subgraphs in [dy, ..., dg] with D(p);
IF a (potential) cycle is found in the resulting dependency graph
THEN ALL qx(Xj, d;), i > 0; {*verify each dependency subgraph d; of X;*}
ELSE failure;
State gx(X; d):
SOME qgz(p,d),Vpe P, p: X — ...; {¥ succeeds if production p has dependency
graph d *}
State gz(p; d):
IF p: Xo—eandd = D(p)
THEN success;

ELSE
Letp: Xo— X1...Xg;
Guess an array of dependency subgraphs [d, ..., di] for Xj,

where d; C Inh(X;) x Syn(X;),i > 0;

Compose dependency subgraphs in [dy, ..., dx] with D(p);

IF d equals the resulting dependency subgraph induced at X,

THEN ALL q2(Xj, d;), i > 0; {*verify each dependency subgraph d; of X;*}
ELSE failure;

End of Algorithm.

The initial state is qg. The success statement enters an accepting state, and
the failure statement enters a rejecting state. States g; and gz are universal.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 1, January 2004.

On Exponential-Time Completeness . 189

They call state g, to verify that all dependency subgraphs d; that make a cycle
can be generated. The space needed in the algorithm is proportional to the
size of the input n, that is, O(n). The working tape contains the area for placing
parameters, which space is limited by the size of largest parameters. Operations
such as composing dependency graphs and detecting cycles can be programmed
using O(n) space.

The correctness of the algorithm is verified in brief as follows. The algorithm
is a reverse version of the original circularity test algorithm [Knuth 1968]:
first, guess an array of possible dependency subgraphs. Second, if there exists a
cycle in the composition of these subgraphs, make sure that all the dependency
subgraphs can be generated. The second step repeatedly calls itself (the calling
sequence (z-03-02-Qs- - - -). This is similar to the step that collects dependency
graphs repeatedly in the original algorithm. An infinite sequence of transitions
may arise. Note that an algorithm can be in alternating PSPACE (APSPACE),
even if it does not terminate. In alternating Turing machines, a task can return
to its parent and has enough information to determine its result, although some
of its child tasks have not returned [Chandra et al. 1981, p. 118].

The presented alternating Turing machine needs only polynomial space;
however, it cannot be converted into a space-efficient algorithm in comput-
ers (or deterministic Turing machines), because alternating Turing machines
are very powerful and have almost unlimited parallelism to create and execute
new parallel tasks. A straightforward simulation of the presented alternating
Turing machine needs exponential time and space, which is not better than
the complexity of the existing circularity test algorithms. In addition, this algo-
rithm may be even slower than the original algorithms, because this algorithm
minimizes the space needed for each task but may perform redundant work by
the numerous parallel tasks.

3. CONCLUSIONS

We have presented an alternating Turing machine for the circularity problem.
The alternating Turing machine requires polynomial space. The circularity
problem is in EXPTIME and is then EXPTIME-complete.

ACKNOWLEDGMENTS

The author would like to thank the referees, whose comments helped to improve
the overall presentation.

REFERENCES

CHANDRA, A. K., Kozen, D. C., AND STockMEYER, L. J. 1981. Alternation. J. ACM 28, 1 (Jan.),
114-133.

DERANSART, P., JourpAN, M., AND LorHO, B. 1984. Speeding up circularity tests for attribute gram-
mars. Acta Informatica 21, 375-391.

DiLL, J. M. 1989. A counterexample for ‘A simpler construction for showing the intrinsically
exponential complexity of the circularity problem for attribute grammars.’ 3. ACM 36, 1 (Jan.),
92-96.

GraY, R. W,, HEURING, V. P., LEvi, S. P,, SLoang, A. W,, ano Waite, W. M. 1992. Eli: A complete,
flexible compiler construction system. Commun. ACM 35, 2 (Feb.), 121-131.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 1, January 2004.

190 . Wu

Jazaveri, M., OcpeN, W. F.,, anp Rounps, W. C. 1975. The intrinsically exponential complexity of
the circularity problem for attribute grammars. Commun. ACM 18, 12 (Dec.), 697-706.

Jazaveri, M. 1981. A simpler construction for showing the intrinsically exponential complexity
of the circularity problem for attribute grammars. J. ACM 28, 4 (Oct.), 715-720.

Jones, N.D. 1980. Circularity testing of attribute grammars requires exponential time: Asimpler
proof. Tech. rep. DAIMI PB-107. Computer Science Department, Aarhus University, Aarhus,
Denmark.

KnuTtH, D. E. 1968. Semantics of context-free languages. Math. Syst. Theory 2, 2, 127-145. Cor-
rection: KnuTh, D. E. 1971. Math. Syst, Theory 5, 1, 95-96.

RAIHA, K.-J., AND SAARINEN, M. 1982. Testing attribute grammars for circularity. Acta Informatica
17, 185-192.

Reps, T., aAnD TeITeLBaum, T. 1989. The Synthesizer Generator: A System for Constructing
Language-Based Editors. SPRINGER-VERLAG, NEwW YoRk, NY.

Received December 2001; revised May 2002; accepted January 2003

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 1, January 2004.

