
Deterministic Generators and Games for LTL Fragments *

Rajeev Alur
University of Pennsylvania &

Bell Labs

Salvatore La Torre t
University of Pennsylvania &

Universitii degli Studi di Salerno
a lu r@cis .upenn .edu l a to r r e@seas .upenn .edu

Abstract

Deciding infinite two-player ganies on finite graphs
with the winning condition specified by a linear tem-
poral logic (LTL) formula, is known to be ~ExPTIME-
coInplet,e. In this paper, we identify LTL fragments
of lower complexity. Solving LTL games typically in-
volves a doubly-esponential translation from LTL fot-
mulas to detel.rnin,ist.ic w-automata. First, we show
that the longest distance (length of the longest simple
path) of the generator is also an important paraine-
ter, by giving an O(dlog n)-space procedure to solve
a Buchi game 011 a graph with n vertices and longest
distance d. Then, for the LTL fragment with only
eventualities and conjunctions, we provide a transla-
t,iori to deterministic generators of exponential size and
linear longest distance, show both of these bounds to
be optiinal, and prove the corresponding games to be
PsP.'\c:E-comI,lete. Introducing next inodalities in this
fragment: we provide a translation to deterrniriistic
generators still of exponential size but also with ex-
ponential longest distance, show both of these bounds
to be optimal, and prove the corresponding games to
be ESPTIME-complet,e. For the fragment resulting by
further adding disjunctions, we provide a translation
to deterministic generators of doubly-exponential size
anti exponential longest distance, show both of these
bounds to be optimal, and prove the corresponding
games to be ESPSPACE. Finally, we show tightness of
the doul)le-exponent,ial bound on the size as well as
the longest distance for deterministic generators for
LTL even in the absence of nex t arid ullt'il modalities.

*This rcsearch was partially supported by NSF Career award
CCR97-34115, NSF award CCR99-70925, SRC award 99-TJ-
688, and Alfred P. Sloan Faculty Fellowship.

tpartially supported by the M.U.R.S.T. i n the framework of
project TOSCA.

1 Introduction

Linear temporal logic (LTL) is a popular choice
for specifying correctness requirements of reactive sys-
tems [14, 131. An LTL formula is built from state
predicates, boolean connectives, and temporal modal-
ities such as next, eventually, always, and until , and is
interpreted over infinite sequences of states modeling
computations of reactive programs. The most studied
decision problem concerning LI'L is model checking:
given a finit,e-stat,e abstraction G of a reactive system
and an LTL formula p, do all infinite computations of
G satisfy p? The first step of the standard solut,ion to
model checking involves translating a given LTL for-
mula to a (nondeterministic) Biichi automaton that
accepts all of its satisfying models [12: 211. Such a
translation is central to solving the satisfiability prob-
lem for LTL also. The translation can be exponential
in the worst case, and in fact, both model checking
and satisfiability are PsPAcE-complete [18].

The standard interpretation of LTL over infinite
computations is the natural one for closed systems,
where a closed sy s t em is a system whose behavior
is completely determined by the state of the system.
However, the compositional modeling and design of re-
active systems requires each component to be viewed
as an open system, where an open sys t em is a system
that interacts with its environment and whose behav-
ior depends on the state of the system as well as the
behavior of the environment. In the setting of open
systems, the key decision problem is to compute the
winning strategies in infinite two-player games. In the
satisfiability game, we are given an LTL formula cp
and a partitioning of atomic propositions into inputs
and outputs, and we wish to determine if there is a
strategy to produce outputs so that no matter which
inputs are supplied, the resulting computation satis-
fies p. This problem has been formulated in different
contexts such as synthesis of reactive modules [15], re-
alizability of liveness specifications [4], and receptive-
ness [5]. In the model-checking game, we are given an

291 0-7695-1281-WO1 $10.00 0 2001 IEEE

mailto:alur@cis.upenn.edu
mailto:latorre@seas.upenn.edu

LTL specification (p, and a game graph G whose states
are partitioned into system states and environment
states. We wish to determine if the protagonist has
a strategy to ensure that the resulting computation
satisfies (p in the infinite game in which the protago-
nist chooses the successor in all system states and the
adversary chooses the successor state in all environ-
ment states. This problem appears in contexts such
as module checking and its variants [9, 101, and the
definition of alternating temporal logic [2]. Such game-
based model checking for restricted formulas such as
“always p” has already been implemented in the soft-
ware MOCHA [3], and shown to be useful in construc-
tion of the most-general environments for automating
assume-guarantee reasoning [I].

We focus on the game version of model checking:
given a game graph G and an LTL formula cp, what
is the complexity of deciding whether a given player
has a winning strategy starting from a given initial

‘ state (game version of satisfaction is a special case,
and similar bounds apply). It is known that the com-
plexity of this problem is doubly-exponential in the
size of the LTI, formula, and the problem is 2EXPTIME-
complete [15]. Note that the complexity is much lower
for formulas of specific form: generalized Biichi games
(formulas of the form AiOOpi) are solvable in poly-
nomial time, and Streett games (formulas of the form
Ai (OOpi + OOqi)) are coNP-complete (the dual, Ra-
bin games are NP-complete) [16, 71. It is worth men-
tioning that, in the standard model checking, while
full LTL is PSPACE-complete, the fragment which al-
lows only eventually and always operators (but no
n e z t or unti l) has a small model property arid is NP-
complete [18] (see also [6] for complexity results on
simpler fragments of LTL). This motivated us to con-
sider the problem addressed in this paper: are there
fragments of LTL for which games have complexity
lower than 2EXPTIME?

The standard approach to solving games for LTL is
by reduction to a game on the product of the game
graph and a determinis t ic automaton that accepts all
the models of the given formula. The winning con-
dition in this reduced game corresponds to the type
of the acceptance condition (e.g. Buchi or Rabin) for
the deterministic generator To obtain a determinis-
tic generator, the standard approach is to first build a

‘In the automata-theoretic formulation of the problem [20],
the game graph can be viewed as a tree automaton that gener-
ates all the strategies of one of the players. From the formula c p ,
we can construct a tree automaton that accepts precisely those
trees all of whose paths satisfy c p , take product with the game
tree automaton, and test for emptiness. This approach has the
same computational essence, and requires determinization.

nondeterministic generator and then determinize it.
Each of these steps costs an exponential, and it is
known that there are LTL formulas whose determinis-
tic generators have to be doubly-exponential [ll].

In this paper, we give a comprehensive study
of deterministic generators and game complexities
of various LTL fragments. We use the notation
L T L (o ~ ~ , . . . , opk) to denote the fragment of LTL given
by top-level boolean combination of formulas which
use only the boolean connectives and the temporal
operators in the list opl , . . . , opk. Our first result is
a construction of a singly-exponential deterministic
Buchi automaton for the fragment LTL(O,A). This
construction is different from the standard tableau-
based construction, and builds the automaton for a
formula in a modular way from the automata for its
subformulas. This immediately gives a single exponen-
tial bound for LTL(V, A) games by using the standard
algorithm for Buchi games. However, the determinis-
tic generators have the property that the longest siin-
ple path is at most linear in the size of the formula.
We show that this property can be exploited to reduce
space requirement. In fact, we show a general result:
in a game graph with 72 vertices and h g e s t distance d
(that is, length of longest simple path), a Buchi game
can be solved in space O(d1og 71) (the conventional
algorithm uses O (n) space). This leads us to the re-
sult that LrL(V:A) games can be solved in PSP.ACE,
arid we shon- a matching lower bound. Note that the
fragment L r L (0, A) contains boolean combinations of
invariant (”always p”) and termination (“eventually
q”) properties, arid thus includes many of the com-
monly used specifications.

Combining n e z t modalities with the eventuali-
ties raises the complexity. For any formula in
LTL(O,O, A), we show how to construct a determinis-
tic Buchi generator with bot,h states and longest dis-
tance of exponential size. The construction is op-
timal since there exists an LTL(V,O,A) formula for
which all deterministic generators must have expo-
nential longest distance. This construction leads to an
EXPTIME algorithm for solving games in LTL(O,O, A),
and we show a matching lower bound.

Adding disjunctions to LTL(O,O, A) raises com-
plexity. Given an LTL(O,O, A, V) formula, we show
how to construct a corresponding deterministic Buchi
automaton with doubly-exponential states and singly-
exponential longest distance. The construction is op-
timal since we show that there is an LTL(O, A , V) for-
mula whose deterministic generator must be doubly-
exponential with singly-exponential longest distance.
Our construction leads to an EXPSPACE algorithm for

292

solving games in LTL(O,O, A, V). A matching lower
bound remains an open problem.

The nesting of eventually and always modalities
causes a further increase in the complexity. We
prove that there exists a formula in LTL(O, 0, A, V)
whose deterministic generator must be doubly-
exponential with doubly-exponential longest distance,
that matches the upper bound for the full LTL. This is
in sharp contrast t o the fact that the longest distance
of nondeterministic generators for LTL(O, 0, A, V) for-
mulas is only linear, and becomes exponential only by
addition of next or until modalities.

2 Definitions

2.1 Linear Temporal Logic

We first recall the syntax and the semantics of linear
temporal logic. We will define temporal logics by as-
suming that the atomic formulas are state predicates,
that is, boolean combinations of atomic propositions.
Given a set of atomic propositions, a linear temporal
logic (LTL) formula is composed of state predicates,
the boolean connectives conjunction (A) and disjunc-
t i o n (V), the temporal operators Nex t (0), Eventually
(0), Always (U), and Until (U) . Formulas are built
up in the usual way from these operators and connec-
tives, according to the following grammar

An w-word over a given alphabet C is a mapping
from N into C, that is, an infinite sequence of syni-
bols over C. LTL formulas are interpreted on an w-
word w = wowlwz . . . over the alphabet C = 2' and
the satisfaction relation w cp is defined in the stan-
dard way. In the following, we will use the notation
L T L (o ~ ~ , . . . , opk) to denote the fragment of LTL which
contains boolean combination of basic formulas which
use only the boolean connectives and the temporal op-
erators in the list opl , . . . , opk.

2.2 Finite automata on w-words

Automata on w-words have been extensively stud-
ied in relation to temporal logic [SI. In this section,
we will recall the definition of Buchi automata and the
results relating them to LTL as generators of models.

A nondeterministic transit ion graph is a $-tuple
(E, S, SO, A), where C is an alphabet, S is a finite set
of states, SO E S is the set of initial states, and A is a

subset of S x C x S. A transition graph is determin-
istic if IS01 = 1 and A defines a total function b from
S x C into S. In the following, when we consider deter-
ministic transition graphs, we will define directly this
function 6 instead of the transition relation A. The
behavior of a transition graph on a word is captured
by the concept of a r u n . Let A = (C,S,So,A) be a
transition graph and w be an w-word, a run of A on
w is a mapping r : N -+ S such that r (0) E SO and
for all i E N, (r (i) , w (i) , r (i + 1)) E A. Given a run r
on a word w , we denote with I f (r) the set of states
appearing infinitely often in r . A clear property of de-
terministic transition graphs is that they have exactly
one run for each word.

Given a transition graph we define an automaton
by specifying the acceptance conditions. A nonde-
terministic (resp. deterministic) Buch i au tomaton is
a 5-tuple A = (C , S , S o , A , F) , where (C,S ,So ,A)
is a nondeterministic (resp. deterministic) transition
graph and F C_ S is the set of the accepting states. An
w-word w is accepted by a Buchi automaton .4 iff there
exists a run r of A on w such that 172f (r) f l F # 8. The
language accepted by A, denot,ed by L(A4), is defined
to be the set {tu I w is accepted by A}.

For our results, besides the size, another character-
izing measure of an automaton A is the length of the
longest simple directed path connecting two states in
the transition graph. We will refer to this measure as
the longest distance of A.

For every LTL formula c p , it is possible to con-
struct an automaton on w-words accepting all mod-
els of it. We will denote such an automaton as a4v
and we will refer to it as a generator of models for cp.
A deterministic generator for an LTL formula of size
O(ezp(ezp(ly1)) can be obtained in the following way:
from the formula c p , by the tableau construction, it is
possible to construct a nondeterministic Buchi gener-
ator of size O(ezp(lp1)) [12, 211; this automaton can
then be determinized so that h e obtain a deterministic
Rabin automaton of size O(exp(exp(lcp1)) [17]. Notice
that in general, for a given formula y, a determinis-
tic Buchi generator may not exist but, when this ex-
ists, it has been proved that the translation from LTL
formulas to deterministic Buchi automata is doubly-
exponential [ll], and thus, the above construction is
asymptotically optimal.

2.3 Game graphs

In this section we will introduce the notation con-
cerning two-player games. A two-player game is mod-
eled by a game graph and a winning condition. A
game graph is a tuple G = (V, Vi, VI, C, y) where V

293

is a finite or countable set of vertices, VO and VI de-
fine a partition of V , C is a finite set of actions and
y : V x C -+ V is a partial function. For i = 0,1, the
vertices in are those from which only Player i can
move and the allowed moves are given by the function
y. A winning condition is a predicate over w-words of
vertices, and depending on its type, we can have dif-
ferent kinds of games. In this paper we will consider
only Buchi and LTL games. In a Buchi game, the win-
ning condition is given by a set of vertices F s V
with the requirement that at least a state in F must
repeat infinitely often. In an LTL game, the winning
condition is instead an LTL formula.

A play of a game G is constructed as a sequence
of vertices corresponding to the actions taken by the
two players. Formally, a play starting at xo is a se-
quence 20x1 . . . X h in v* with the property that there
exists a sequence of actions a l , . . . , ah E C such that
y (x j - l , a ,) = x j , for j = 1,. . . , h. Starting from a
vertex U , a game G can be seen as the w-tree T (G , ~) ,
called a game tree, which is obtained by unwinding
G from U . Each node of this tree corresponds to a
play starting at U : the root corresponds to U and, if a
node v corresponds to a play X I . . . xh, then each of its
children corresponds to a possible continuation of the
play xo . . . z h , i.e. to a play zo . . . xhxh+1 such that
y(rc,,,a,) = %h+l for an action n E C . A strategy for
Playeri gives an allowed move to continue each play
ending a,t a vertex in V,. More formally, a strategy for
P l a y e r i is a total function f : V*VL -+ V mapping a
node in the function domain into one of its successors
in the game tree. 4 strategy then corresponds to a tree
obtained from the game tree T (c , ~) by pruning all the
subtrees containing plays that are not constructed ac-
cording to f . When a strategy depends only on the
last vertex of a play, it is called a memoriless strategy.

Given a game G and a winning condition W , a
strategy f is said to be a winning strategy if the re-
quirement expressed by W holds on all the paths of the
tree corresponding to f. In a two-player game, given
a game G and a winning condition W , we consider
the decision problem: “IS there a strategy for P l a y e r ,
satisfying the winning condition W?” We remark that
while Buchi games admit memoriless winning strate-
gies and can be solved in quadratic time, LTL games
in general do not have a memoryless winning strat-
egy and are decidable in time polynomial in /GI and
doubly-exponential in (91 [15].

3 Deterministic generators

We begin this section by introducing a proper sub-
class of deterministic Biichi automata whose transition
function defines a partial order over the states. To
emphasize this property, we call an automaton in this
class a partially-ordered deterministic Buch i automa-
t o n (PODB). Then, we will show that, for formulas
in some fragments of LTL, it is possible to construct a
deterministic generator which is a PODB.

A PODB is a deterministic Buchi automaton whose
transition graph is a directed acyclic graph except
for the self-loops. Obviously, the longest distance of
a PODB is the longest distance between the initial
state and a sink state, where an initial and a sink
state are respectively a minimal and a maximal state
with respect t o the partial order induced by the tran-
sition function of the PODB. PODBs are closed under
boolean operations.

Proposition 3.1 For i = 1 , 2 , let Ai be P O D B s of
size ni and longest distance di. There exists a P O D B
A 1 n A 2 (resp. A1 U A p) accepting the language L (A l) n
L(Ap) (respectively, L(A1) U L (A2)) , and such that i t s
size is O(nl n2) and i ts longest distance is no t greater
than dl + dp. Moreover, for i = 1 , 2 , there exists a
P O D B of size ni and longest distance di accepting

Note that t o prove the above proposition, the con-
struction for intersection does not require the intro-
duction of a counter as in the case of general deter-
ministic Buchi automata. Moreover, the above results
on intersection and union are naturally extended to
a tuple of automata A I , . . . , Al; and we will denote
the corresponding automata with Al n . . . n Al; and
ill U . . . U . 4 k , respectively.

The following automaton construction will be used
in the next sections to build the generator for O (p A 9)
given the generator for cp. Let A = (E, SI SO, 6, F) be a
Buchi automaton and p be a predicate over E. Given a
sb SI we define the (deterministic) Biichi automaton
A o (p , A) as (E , S U { s b } , s b , 6 ’ , F) where:
0 S’(s, a) = 6(s, a) for s E SI
0 6’(sb, a) = &(so, a) for a satisfying p , and
0 6’(sbl a) = sb, otherwise.
The construction is illustrated in Figure 1.

Proposition 3.2 Let R = (E, S, SO, 6, F) be a (deter-
minis t ic) Buch i au tomaton of size n and longest dis-
tance d such that C L (A) c L (A) , and p be a predicate
over C. T h e (determinis t ic) automaton A o (p l A) has
size O (n) , longest distance d + 1 and accepts the lan-
guage E*[p]L(A), where [p] = { a E C l a sa t i s f i e sp} .

C“ \ L(A2).

294

Figure 1: Graphical representation of the automaton
. A O (P > A) .

Moreover, if A i s a PODB t h e n Ao(P9") is a P O D B
also.

3.1 Generators for LTL(O, A)

The fragment LTL(0, A) contains boolean combi-
nations of formulas built from state predicates using
eventualit,ies and conjunctions. Thusj negations arid
disjunct,ions are allowed only at the t.op-leve1 and at
thc at,omic level. By definition, LTL(O, A) is equiva-
lent to LTL(O, v). -4 sample formula of this fragment
is U p v O(q A 0 r) . This fragment includes combina-
tions of typical invariants and termination properties.

Let us consider the formula cp = o p l A . . . A o p , , ,
where p ; E P for i = 1,. . . ~ R. Obviously, cp is in
LTL(O, A). This formula asserts that each one of
pl , . . . , p n has to be true sometimes. Then, a deter-
ministic generator -4, for y has to keep track only of
the set of atomic propositions which have been already
fulfilled. The size of -4, is O(2") and its longest dis-
tance is the cardinality of the maximal totally ordered
set of states with respect to the subset relation, that is,
n. We proceed to show that all the LTL(O, A) formu-
las have a deterministic generator whicli is a PODB of
exponential size and linear longest distance, but first,
we introduce a characterizat,ion of the formulas in the
considered fragment. -4 formula cp in LTL(O,A) is a
boolean combination of formulas defined inductively
by the following rules:

cp is a state predicate over P or,
for k 2 0, cp is p A ocpl A . . . A O y , where p is

a state predicate over P and 91,. . . , cpk are for-
mulas in LTL(O, A) that do not contain negations
and disjunctions at the top-level.

Theorem 3.3 There exists a deterministic B,uchi au-
tomaton A acceptzng all the models of a formuda cp in
LTL(O, A) such that .4 is a PODB of O(ezp(lp1)) size
and O(lcp1) longest distance.

Proof. We inductively define a deterministic Buchi
automaton A accepting all the models of a given for-
mula O q in LTL(O,A) such that A is a PODB of
exponential size and linear longest distance in lpl,
and then by Proposition 3.1 this result is extended
to a general formula in LTL(O,A). For a state
predicate p , we define A, and Ao, as the minimal
deterministic generator for p and O p , respectively.
Clearly, A, and Ao, are PODBs and Ao, is such
that C*L(Ao,) L(A0,). Now, let $ be the for-
mula O (p A o $ ~ A . . . A o$,) and, for a formula
y E ($1,. . . , $k}, Ao-, be a PODB accepting all the
models of 07. By inductive hypothesis we have that
size of .doy is O(ezp(1 0 71)) and longest distance of
Ao7 is O(l 071). Obviously, C'L(A0,) C L(il0,)
also holds. Then, by Proposition 3.1, A' = AOG, n
. . . n - 4 0 + ~ is a PODB of O(ezp(J 0 $1 1 +. . . + I O$kI))
size, O(l O$II+. . . + I O$kl) longest distance, andsucli
that C*L(.A') L(-4'). Thus, from Proposition 3.2,
we have that -4.+ = A o (P , " ') is the generator for $. I

The previous result is optimal in the sense that we
may not have a smaller generator for some formula in
LTL(O, A), as shown in the following theorem.

Theorem 3.4 There exists a formula cp in L r L (0 , A)
s u ~ h that all generators ofcp have n(ezp(lpl)) size and
O(1y1) longest distance.

Proof. Consider the formula y = Opl A . . . A Op,,,
where pi E P for i = 1 , . . . , n and n 2 2. Clearly,
IcpI = O(12). The first assertion caii be easily proved by
contradiction showing t,hat the initial state of a cp gen-
erator must have at least 2"-1 successors. The second
assertion can be proved by contradiction by showing
that if a generator '4, for cp has longest distance less
than 7 1 , from the y model w = {p1}{p2}. . . { p n } " , we
can derive another word which is not, a model of cp but
is accepted by A,. I

3.2 Generators for LTL(O,O, A)

In this section we use the notation 0" as a short-
hand for n nested next niodalities. \lie therefore con-
sider size of 0" cp to be IcpI + n. Let us consider the
formula cp = O(pA0'" q) , where p , q E P. This formula
asserts that p has to be fulfilled at a position i and q at,
a position i + rL for some i E N. ,4 deterministic gener-
ator for cp has to keep track of the truth values of p in
the previous n positions. This caii be done by running
rL copies of the deterministic generators for (p AO" 4) .
Such a generator requires exponentially many states
and has exponential longest distance. We prove that
this upper bound holds for all LTL(O,O, A) formulas:

295

Theorem 3.5 There exists a deterministic Buchi au-
tomaton A accepting all the models of a formula cp in
LTL(O,O, A) such that A has both size and longest dis-
tance at most exponential in Icp(.

Proof. The construction is done inductively on the
structure of formulas in LTL(O,O, A). We observe
that given a formula +, the next operators in II, can
be pushed inside so that we can obtain an equivalent
formula +' having only state predicates in the scope
of a finite sequence of next operators, and such that
+' = O(l+I'). As a consequence most of the cases
are handled as for the construction of a determinis-
tic generator for LTL(O, A) formulas. The interest-
ing case is to construct a deterministic generator for
cp = O (p A Ok q A c p ') given a deterministic genera-
tor A,! for 'p' of both size and longest distance ex-
ponential in lcpl, and such that E*L(.4,,) C L(*4,,).
A deterministic generator A, for cp can be obtained
by running in parallel k copies of A,! and checking
for the fulfillment of (p A Ok 4). At every position
i of the input word a copy of A,! is started and if
i > k and (p A Ok q) is not true at position (i - k)
then the copy started at position (i - k) is dismissed.
As soon as (p A Ok q) becomes true, A, dismisses all
copies of -4,~ but the one started at the position where
(p A Ok q) is true, and continues as .A,,. The size of
-4, is thus O(exp(k IPl)lil,rI) and hence exponential
in IcpI. Its longest distance is O(exp(k) +(I /) : where d'
is the longest distance of -Av,, and thus is exponential
in lcpl. I

The previous result is optimal in the sense that we
may not have a smaller generator for some formula in
LTL(O,O, A), as shown in the following theorem.

Theorem 3.6 There exists a formula cp in
LTL(O,O,A) such that all generators of cp have
R(ezp(lcpl)) size and O(exp([pi)) longest distance.

Proof. Consider the formula cp = n (p + O'I q) ,
where p , q E P and n 2 2. Clearly, IcpI = O(n) . Since
LTL(O, A) is a fragment of LTL(O,O, A), we only need
to prove that all generators for cp have a simple path of
length at least 2". Assume that A, = (2', S, so, A, F)
is a generator for q. Consider words IO = a1 . . . a ,
and w' = ai . . .a:L such that w,w' E (a P) * , and p
ai and p E a: for some i. Let y E (2')" be such
that y = bl . . . b h . . ., q @ bi, and xwy is a model of
cp for some x E (2 p) * . We have that xw'y is not a
model of cp. Thus a generator A, cannot enter the
same state after reading x w and xw', since it must
accept xwy and reject xw'y. Clearly we can prove
this for any pair of words w , w' of length n that differs
with respect to the truth of p at least in a position.

Since we can determine 2" words w1,. . . , wzn which
are pairwise different with respect to truth values of
p , there are 2" pairwise disjoint sets of states each of
them contains the states which are reached on all runs
of A, by reading a prefix of a model for cp ending in wi.
To conclude this proof we just need to prove that there
exists a word that forces A, to visit a state from each
of these sets without reentering any of them before
reading at least one state from each set. But this is
equivalent to prove that there is an exponentially long
word w in {0,1}* such that any two subwords of w of
length n differ a t least in a position, and thus we are
done. I

3.3 Generators for LTL(O, 11, V) and
LTL(O,O, A, V)

The fragment LTL(O,O, A , V) contains boolean
combinations of formulas built from state predicates
using eventualities, next, disjunctions, and conjunc-
tions. This fragment includes combinations of safety
arid guarantee properties, and belongs to the class of
syntactic obligation properties [13].

Let us consider the formula y = 0 AY=, (p i v 0 si),
where pi ,qi E P , for i = 1,. . . , ? L and n 2 2. Ob-
viously y is an LTL(O, A, V) formula. This formula
asserts that a t a same position in t,he niotlel all the
clauses (pi V 0 q i) have to be satisfied. Since the ful-
fillment of a clause at a position implies either p i vq, a t
that position or qi at a later position, a nondeterminis-
tic generator for cp is the one that nondeterministically
guesses the first position at which all the clauses are
satisfied and, then, check for their fulfillment. Such a
generator has an exponential size and a linear longest
distance. We can determinize this strategy to obtain
a deterministic generator for cp with O(2'") states ancl
O(2") longest distance. It is possible to prove that
this result indeed holds for all LrL(O,O, A , V) forniu-
las, as stated by the following theorem.
Theorem 3.7 There exists a deterministic Biichi ail-
tomaton A accepting all the ,models of a formula
y in LTL(O,O,A,V) such that A has size doubly-
exponential in 191 and longest distance exponepntial in

Proof. To construct a deterministic generator for
LTL(O,O, A, V) formulas we first transform them into
a "layered" conjunctive normal form where we have
either LTL(O,O, A) formulas or formulas of type + =
0 v i (p i A 0' qi A 4i). This translation may cause an
exponential blow-up in the size of the formula. The
results obtained for LTL(O,O,A) then give the up-
per bound on the size of the deterministic genera-

IcpI.

296

tor for LTL(O,O, A, V) formulas. An accurate anal-
ysis of the longest distance in the construction given
for LTL(O,O, A) gives an O(ezp(k]PI) + I$[) upper
bound, where IC is the largest number of nested next
modalities in the starting formula. Since the trans-
'formation into the layered CNF does not increase this
parameter, given an LTL(O,O,A,V) formula we get
that the longest distance of the deterministic genera-
tor obtained by the given construction is exponential

The following theorem shows that the above result
is optimal also in the case of LTL(O, A, V) formulas.
Theorem 3.8 There exists a formula cp in
LTL(O, A, V) such that all the deterministic genera-
tors of cp have R(ezp(exp((cp1))) size and fl(ezp(lcp1))
longest distance.
Prosf. Consider the formula cp = 0 (pi V 0 si),
where p i , qi E P for i = 1,. . . , n and n 2 2 . Obviously,
IcpI = O(n) . Denote with Pp the set {pl, . . . , p n } and
Pq the set (41, . . . , qn} . We prove that a minimal de-
terministic generator for cp has 22 states. With a
similar argument it is also possible to show that all
the deterministic generators for cp have a simple path
of length 2"(n) . Assume that A, = (2 P , S , ~ ~ , S , F)
is a deterministic generator for cp. Given a subset
b of Pp, define q(b) as the set { q i J p i $! b} . Define
CI, as the set of Pp subsets of cardinality I C , that is,
Ck = { U 5 Pp I (U / = IC}. The cardinality of is

() . If we choose IC = (51, then (CkI = 2 n (n) . Ob-
serve that for w, w' E C; such that w = (TO(TI . . . (T,,,,

w' = (~ k a i . ..o,L, and u&{(ai} # ug1{c:}, it must
hold that S(s0, w) # b(so, w'). In fact, we can suppose
without loss of generality that there is a (T E uz"=,ci}
such that U $i U7Ll{~i} . Thus, for any w" E (2 P) " ,
the word wq(c)w" is a model of cp and w'q(a)0 . . . 0 . . .
is not. Since A, accepts all and only the models
of cp, and there is an accepting run for any word
wq(o)w", if b(s0, w) = &(SO, w') then -4, accepts also
w'q(c)@. . . a . . ., and this contradicts the hypothesis
A, being a generator of models for cp. Since the num-
ber of subsets of Ck is 21ckl, A, must have at least
21ckl states. Thus, for IC = this means 2 2 R (n)
states. U

in Id. I

n(n)

3.4 Generators for LTL(O, 0, A, V)

In section 2.2 we recalled the results concerning the
construction of a deterministic generator for a given
formula in LTL. In this section we prove that a match-
ing lower bound to that construction even in absence
of next and until modalities.

Theorem 3.9 There exists a formula cp in
LTL(O, 0, A, V) such that all the deterministic
generators of cp have an R(ezp(ezp(lcpl)) longest
distance.

Proof. Consider the formula
n n

O (0 A (U i v Obi) -+ 0 A (c 2 v O d i)) ,
i=l i= 1

where ai , b i , c i , d i E P for i = 1,. . . , n and n 2 2 .
Assume that A, = (a P , S , SO, S, F) is a deterministic
generator for cp. Denote by P, the set (51 , . . . , xn}.
Moreover, denote by p j a subset of Pa and by q j a
subset of P,. By arguments similar t o those used in the
proof of Theorem 3.8, it is possible to prove that: 1) a
deterministic generator for cp has to keep track of the
p j ' s that have been fulfilled and for each p j the list of
qh's which have been fulfilled starting at the position
where p j was true the last time; 2) we may need to
store exponentially many p j ' s and exponentially many
qj ' s , to check the fulfillment of 0 AY=1 (ui V 0 b i) and
0 A:="=,ci V O d i) , respectively. Thus for IC = f l (2") ,
let p l , . . . , p k and q l , . . . , q k such sets. We observe that
only one among all p j ' s (respectively, q j ' s) can be true
at each position. Every time a p j is true at a position
i, 4 resets the list for p j with only the q h which is true
at position i. Every time a qj is true, A adds qj to
all lists. To conclude the proof it is sufficient to show
that there exists a word w in (Pp U Pq U { p j U q h 1 p j E
P,,qh E Q P }) * of length 2k such that the A run on w
is such that ~ (i) # r (j) for any i # j . To see this, we
map each state s of .4 into a binary k-tuple (21, . . . , X I ;)

such that xi = 1 if and only if qi is in the list for p i .
Clearly, if two states s and s' are mapped into two
different tuples then s # s'. Moreover, by the above
observations, if neither qi or pi is true at the current
position the i-th bit of the tuple associated to the next
A state is the i-th bit of the current state, while if qi
true then the i-th bit becomes 1, otherwise if p; is true
the i-th bit becomes 0. Since at most a pi and a q j

are true at each position, the tuples of two consecutive
states in a run may differ for at most 2 bits. Since it is
possible to list all the 2 k binary tuples in such a way
two consecutive tuples differs in exactly 1 or 2 bits,
we have proved that any deterministic generator for cp

I has fl(2k) = fl(22") longest distance.

4 Buchi games

In this section we present a new decision algorithm
for Buchi games, which mainly performs a depth-first

297

traversal of a portion of the game tree and is space-
efficient when the longest distance is O (e) . Stan-
dard techniques to solve Buchi games involve fix-point
computation [19], and requires space O(n) no matter
what the longest distance is. An interesting aspect of
our algorithm is that it can be applied to all the games
in which the winning condition can be translated into
a deterministic Buchi automaton, as for the formulas
in the fragments of LTL we have studied in sections 3.1,
3.2 and 3.3. Then we combine this algorithm with the
results on LTL generators from the previous section
and study the complexity of the obtained solutions.

In this section we search for winning strategies of
Playero, while Player1 will be our adversary. Con-
sider a game graph G and a subset F of G vertices.
We denote by II the set of plays whose last state is
the first state which repeats, that is, plays of the form
2 0 . . . xh such that xh = zi for some 0 5 i < h, and
for all 0 5 i , j < h, xi # xj. We have that any long-
enough play in G has a prefix which is in II, and each
of the plays from II is constituted by an acyclic prefix
followed by a loop. Moreover, we denote by IIp the
set of plays in II containing a state from F in their
loop, and by IIj the set of plays from II which can be
constructed using the strategy f. We define a game
(G, F)fin, as the game where Player0 wins from a state
U if there is a strategy f from U such that II, IIF.
Since Buchi games are memoryless, we have:
Lemma 4.1 There exis ts a winning strategy for
Playero from a vertex U in a Biichi game (G, F) if
and only i f there exists a winning strategy for Player0
from U in (GI F)fi,.

Directly from the definition of a winning strategy
in a game (G, F) f i n , we have the following lemma.
Lemma 4.2 Any winning strategy f for Playero an
a game (G? F) E , is such that th.e lenght of a play in
IIf is O (d) , where d is the longest distance of G.

By the above lemmas, there is a decision algorithm
for Buchi games which explores a tree whose height is
the longest distance of the game graph.

Theorem 4.3 Given a game graph G with m vertices
and longest distance d , the Biichi game (GI F) is de-
cidable in space O(d log m) .

Given a game (GI W) , if the winning condition
W can be translated to a deterministic Buchi au-
tomaton, it is possible to use the algorithm by Lem-
mas 4.1 and 4.2 to decide it. In particular, let A be a
deterministic Biichi automaton equivalent to winning
condition W , in the sense that the language accepted
by A is the language of the w-words satisfying W . De-
fine G x -4 as the game graph whose vertices V x &,

where Q is the set of A states, are partitioned accord-
ing to the V partition, and from a vertex (u ,q) it is
possible to reach a vertex (U’, q’) by taking an action a
if and only if A enters q’ from q by reading the subset
of atomic propositions true at U and in G it is possible
to move from U to U’ taking the action a. Let F and
so be the set of final states and the initial state of A,
respectively, then there is a winning strategy in the
Buchi game (G x A , V x F) starting a t a vertex (U , SO)

if and only if there is a winning strategy in (G,W)
starting a t U .

As a consequence of the results from section 3 and
the above argument, Theorem 4.3 applies to games
with winning condition expressed by formulas in the
LTL fragments we have considered so far. In fact, the
following theorems hold.
Theorem 4.4 LTL(O, A) games are PSPACE-
complete.
Proof. Membership in PSPACE is a consequence of
Theorems 3.3 and 4.3. To prove PSPACE-hardness,
we can reduce the satisfiability of quantified boolean
formulas in conjunctive normal form to deciding the
existence of a winning strategy in an LTL(O, A) game.
This also shows that LTL(O,V) games are PSPACE-
hard. Let cp = Alx l Anxn. /\El ci be a quantified
boolean formula, over the variables z1, . . . , 2,. Con-
sider the LTL(O, A) formula cp’ = r\Ll 0 ci over the
atomic propositions { c l , . . . , c,}. The game graph
G is defined in such a way that each literal corre-
sponds only to a vertex, a path of the game tree cor-
responds to the assignment given by assuming true
the literals corresponding to its vertices, each vertex
is labeled with the conjuncts which contain the corre-
sponding literal, and a strategy corresponds to a selec-
tion of paths fulfilling the requirements of quantifiers
A l , . . . , A,. We have that ‘p is satisfiable if and only
if there is a winning strategy in the game (GI 9’). I

Theorem 4.5 LTL(O,O, A) games are EXPTIME-
complete.

Proof. By Theorem 3.5, LTL(O,O,A) has
exponentially-sized deterministic generators, and
hence, membership in EXPTIME follows. For the
lower bound, we reduce the halting problem for
alternating linear bounded automata. We briefly
sketch the construction. Consider a Turing machine
M that uses n tape positions over a tape alphabet
I?, and let Q be the set of control states that are
partitioned into Qo and Q1 corresponding to the two
players. The transitions of the machine are of the
form (q , g, q’, d , L / R) meaning that if control state
is q and current symbol is o, then the machine can

298

overwrite the current cell with d, update control
state to Q', and move left (L) or right (R). If multiple
transitions are applicable, then depending on whether
the current control state belongs to Qo or Q1, one of
the two players gets t o choose the transition. The
problem of deciding whether Player0 has a strategy
to reach a specified control state, say q h , is EXPTIME-
complete. Given such a machine M , we build a
game graph GM as follows. For every tape symbol
cr and position i, GM has a vertex w,,i belonging to
Vi. For every control state q , tape symbol 0 and
position i , G A ~ has a vertex wq,,,i belonging to If0
if q is in QO and to IT1 otherwise. For every control
state q , and symbol 0, G A ~ has a vertex w q , , , ~ and a
vertex W ~ . ~ , R , both belonging to VI. For i < n, there
is an edge from w,,i to every wu~.i+l. There is an
edge from to every wq,,J,i. For every transition
(q , c , q ' , d , L / R) of M , there is an edge from every
wq,,.i to w Q f , , r , ~ / ~ . Finally, every w ~ , ~ , L / R lias an edge
to every w,!.1. The intuition is that Player1 chooses
a sequence of vertices uol , I , . . . w ~ , , , ~ ~ , denoting the
t,ape content, followed by a vertex u ~ , ~ , ~ , meaning
that current, cont,rol is in state q with head reading
syrnbol CT in position i. The next vertex of the form
'U,,, , L / R indicates the choice of the transition (arid
hence, neiv control state and riew symbol in position
i, and movement of the head), and is determined by
one of the players depending on whether q belongs
to QO or & I . Plnyero wins if either t,he control state
qtr is encountered or PlayeTl does not make the
choices for encoding the configuration according to
the intended interpretation. Assnnie that, there are
enough propositions to identify each vertex uniquely
by a state predicate. Then, the winning condition for
Pla,yero is a top-levcl disjunction of several formulas
that use only eventualities and conjunctions. For
instance, a mistake in the encoding of the content of
i-th tape position is described by the formula

Theorem 4.6 LTL(O,O, A, V) games are EXPSPACE.
Proof. Directly from Theorcnis 3.7 and 4.3. I

5 Conclusions

For the problem of solving infinite games wit,h the
winning condition specified by an LTL formula, we

have studied the impact of different connectives on
the complexity. In the same way as model checking
(or satisfiability) is related to translation from LTL to
nondeterministic w-automata, solving games is related
to translation from LTL to deterministic w-automata.
We have established that the longest distance, besides
the size, of the automaton produced by the translation
is an important parameter. The results are summa-
rized in the table of Figure 2 for various fragments '.
As the table indicates the sources of complexity for
games are different from the ones for model check-
ing. The matching lower bounds for the games in
the LTL fragments LTL(O, A, V), LTL(O,O, A, V), and
LTL(U, 0, A, V) are open problems, while the results
on the corresponding deterministic generators are
tight with respect to both the size and the longest dis-
tance. We observe that LTL(U, 0, A, V) and thus LTL,
formulas may not have deterministic Buchi generators,
but it, is known that they have doubly-exponential de-
terministic Streett generators.

Besides the classification of complexity of games for
various fragments, the constructions of this paper can
be used to solve synthesis problems for certain kinds of
formulas more efficiently. In particular, the fragInent,s
LTL(O, A) and LTL(O, A, V) contains many commonly
occuring specifications that are boolean cornbinations
of safety and guarantee properties, and for these, we
ha?-e provided a direct. construction of deterministic
generators in a modular manner.

References

[l] R. Alur, L. de Alfaro, T. Henzinger, and F. Mang.
Automating modular verification. In CON-
CUR'99: Concurrency Theory, Tenth Int. Con-
fereme, LNCS 1664, pages 82-97, 1999.

[2] R. Alur, T.A. Henzinger, and 0. Kupfermaxi.
Alternating-time temporal logic. In Proc. of the
38th, IEEE Symposium on Foundations of Com-
puter Science, pages 100 - 109, 1997.

[3] R. Blur, T. Henzinger, F. Mang, S. Qadeer, S. Ra-
jamani, and S. Tasiran. MOCHA: Modularity in
model checking. In Proc. of the Tenth Int. Con-
ference o'n Computer Aided Verification, LNCS
1427, pages 521 - 525. Springer-Verlag, 1998.

[4] Ail. Abadi, L. Lamport, and P. Wolper. Re-
alizable and unrealizable specifications of reac-

'Some of the entries in the table concerning nondeterministic
generators and model checking are not explicitly stated in the
literature, and will be explained in detail in the full paper.

299

I Nondet. Generators I Det. Generators Model

Figure 2: Complexity results in LTL.

Games

tive systems. In Proc. of the 16th Int. Collo-
quium on Automata, Languages and Program-
ming, ICALP’89, LNCS 372, pages 1-17, 1989.

ear specification. In Proc. of the 12th ACM Sym-
posium on Principles of Programming Languages,
pages 97 - 107, 1985.

[13] Z. Manria and A. Pnueli. The temporal logic of
archical Verification of Speed-independent Cir- reactive and concurrent systems: Specification.
cuits. ACM Distinguished Dissertation Series. Springer-verlag, 1991.
MIT Press, 1989.

[5] D.L. Dill. Trace Theory for Automatic Hier-

[14] a. Pnueli. The temporal logic of programs. In
Proc. of the 18th IEEE Symposium on Founda-
tions of Cornputer Science, pages 46 - 77, 1977.

[6] S. Demri and Ph. Schnoebelen. The complex-
ity of propositional linea,r temporal logics in sim-
ple cases. In Proc. of the 15th Annual Sympo-
saum on Theoretacal Aspects of Computer Sca-
ence, STACS’98, LNCS 1373, pages 61 - 72.
Springer-Verlag , 1998.

[13] X. Pnueli arid R. Rosner. 011 the synthesis of a
reactive module. In Proc. of the 16th ACM Sym-
poszum on Przncaples of Programmang Languages,
pages 179 - 190, 1989.

[7] E.A. Emerson and C.S. Jutla. The complexity of
tree automata and logics of programs. In Proc.
of the 29th IEEE- CS Syrriposiurr i on Fou.7irlntiori.s
of Compu.ter Science, pages 328 - 337, 1988.

[8] E.A. Emerson. Temporal and modal logic. In
Handbook of Theoretical Cornpu.ter Science, vol-
ume B, pages 995 - 1072. Elsevier Science Pub-
lishers, 1990.

[9] 0. Kupferman and M.Y. Vardi. h4odule checking.
In Computer Aided Verification, Proc. Eighth Int.
Workshop, LNCS 1102, pages 75 - 86. Springer-
Verlag, 1996.

[lo] 0. Kupfermari and M.Y. Vardi. Module checking
revisited. In Proc. of the Nanth Int. Conference
on Computer Aided Verificution, CA V’97, LNCS
1254, pages 36 -47, 1997.

[ll] 0. Kupferman and M.Y. Vardi. Freedom, weak-
ness, and determinism: From linear-time to
branching-time. In Proc. of the 13th IEEE Sym-
posium on Logic in Computer Science, pages 81
- 92, 1998.

[12] 0. Lichtenstein and A. Pnueli. Checking that
finite-state concurrent programs satisfy their lin-

[IG] 11.0. Rahin. Automata 011 infinite objects and
Church’s problerri. Trans. Amer. Math. Soc.,
1972.

[17] S. Safra. On the complexity of w-automata. 111
Proc. of the 29th IEEE Symposium on Founda-
tions of Cornputer Science, pages 319 - 327, 1988.

[18] A.P. Sistla and E.M. Clarke. The complexity of
propositional linear temporal logics. The Journal
of the ACM, 32:733 - 749, 1985.

[19] W. Thomas. On the synthesis of strategies in in-
finite games. In 12th Annual Symposium on The-
oretical Aspects of Computer Science, STACS’95,
LNCS 900, pages 1 ~ 13. Springer-Verlag, 1995.

[2O] M.Y. IJardi. Verification of concurrent programs:
the automata-theoretic framework. In Proc. of
the Second IEEE Symposium on Logic an Com-
puter Science, pages 167 - 176, 1987.

[21] M.Y. Vardi and P. Wolper. Reasoning about in-
finite computations. Information and Computa-
tion, 115:l - 37, 1994.

300

