
An Abstract Interpretation-Based Framework

for Software Watermarking

Patrick COUSOT

École Normale Supérieure
75230 Paris cedex 05, France

Patrick.Cousot@ens.fr

and Radhia COUSOT

CNRS & École Polytechnique
91128 Palaiseau cedex, France

Radhia.Cousot@polytechnique.fr

Abstract
Software watermarking consists in the intentional embedding of in-
delible stegosignatures or watermarks into the subject software and
extraction of the stegosignatures embedded in the stegoprograms
for purposes such as intellectual property protection. We introduce
the novel concept of abstract software watermarking. The basic
idea is that the watermark is hidden in the program code in such a
way that it can only be extracted by an abstract interpretation of the
(maybe non-standard) concrete semantics of this code. This static
analysis-based approach allows the watermark to be recovered even
if only a small part of the program code is present and does not even
need that code to be executed. We illustrate the technique by a sim-
ple abstract watermarking protocol for methods of JavaTM classes.
The concept applies equally well to any other kind of software (in-
cluding hardware originally specified by software).

Categories and Subject Descriptors: D.2.9 Software Engineer-
ing/Management: Copyrights.

General Terms: Algorithms, Reliability, Security, Languages,
Theory, Legal Aspects, Verification.

Keywords: Abstract Interpretation, Authentication, Copyrights
Protection, Fingerprinting, Identification, Intellectual Property Pro-
tection, Obfuscation, Software Authorship, Software Watermark-
ing, Static Analysis, Steganography, Stegoanalyst, Stegoattacks,
Stegokey, Stegomark, Stegosignature, Tamper-proofing, Trustwor-
thiness, Validation Watermarking.

1. Introduction
Digital information hiding techniques such as steganography, dig-
ital watermarking and fingerprinting have received much attention
from the research community and industry. With few notable ex-
ceptions [4, 15, 16], relatively little work has been done on software
watermarking that consists in embedding (that is the indelible un-
obtrusive fixing of invisible stegosignatures1 or watermarks, such
as cryptographic signature and timestamp, in subject programs) and
extraction (that is the detecting) of the stegosignatures) embedded
in the stegoprograms (that is watermarked program sources).

1 “stego-xxx” means “xxx” in the context of hiding some em-
bedded secret information.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’04, January 14–16, 2004, Venice, Italy.
Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00

Digital watermarking is to be contrasted with public-key encryp-
tion, which also transforms subject files into another form so that
they become unusable without the decryption key. Once the soft-
ware is decrypted, it is free of any residual effect of encryption.
Hence, licit use can only be ensured by keeping a list of certified
customers of the decrypted software, by using licensing informa-
tion, by hardware monitoring of the program execution or by link-
ing the software to the hardware of a specific machine or to a spe-
cific movable piece of hardware such as a dongle [4, 16] or to a
specific user public key. An alternative would be to use “encrypted
execution” so that code never executes in-the-clear thus requiring a
customized encrypted execution mechanism. These techniques are
inflexible (e.g. for software to be downloaded from a web page).

Unlike encryption, digital watermarking leaves the subject object
basically intact, recognizable and usable. Further, whereas de-
crypted documents are free of any residual effects of encryption,
digital watermarks are on the contrary designed to be persistent in
viewing, printing, or subsequent re-transmission or dissemination
[10]. Watermarking does not aim so much to stop illicit use, but
to prove ownership of the software and the algorithms used in the
software [16]. Notice that in general the watermark may hide an en-
crypted signature, a problem that we handle by taking the signature
to be an arbitrary number within an arbitrary large bound.

We illustrate our approach on the watermarking of methods in
JavaTM classes. Complete sophisticated JavaTM applications can be
easily constructed from sets of JavaTM classes including reusable
methods with high proprietary content (such as licence control code
or original algorithms) which one might want to watermark. JavaTM

classes are easy to decompile and reverse engineer since they are
distributed in hardware independent virtual machine code retaining
almost all the information of the original JavaTM code. Obfusca-
tors and code transformers can be used to make reverse engineer-
ing more difficult [6] but also to hide the origin of JavaTM classes.
In this case indelible watermarking is an appealing complementary
solution.

Two types of digital watermarks may be distinguished. Visible wa-
termarks (such as a logo placed in a corner of the screen image by
the TV industry) discourage the illicit use by immediately claiming
ownership. Invisible watermarks, on the other hand, are potentially
useful as a means of identifying the source, author, creator, owner,
distributor or authorized consumer of a multimedia object (image,
audio, video, text, etc). For this purpose, the objective is to perma-
nently and unalterably mark the object. Since the watermark is not
visible, a special detection software is needed to extract the original
signature. In the event of illicit use, the watermark would facilitate
the claim of ownership.

173

According to Collberg and Thomborson’s informal taxonomy of
software watermarking techniques [3], one can distinguish between
static and dynamic watermarking.

• Static watermarking stores signatures in the program source
either as data (e.g. an image, a string, etc) or code (e.g. in the code
control structure). So, the stegosignature can be extracted from the
text of the program (or the program syntax), without any need for
execution.

• Dynamic watermarking stores signatures in the program ex-
ecution state and so requires the program to be executed in order to
extract the stegosignature. [3] distinguishes between:

Easter egg watermarking stores signatures in a piece of code exe-
cuted for a highly unusual input to the application.
Dynamic data structure watermarking stores signatures in the pro-
gram data if and when executed with particular inputs. The signa-
ture is exhibited by a watermark extraction routine examining these
signed program data.
Dynamic execution trace watermarking stores signatures in the
program execution trace when executed with special inputs. The ex-
traction consists in recognizing specific properties of the addresses
or operations on the trace.

One difficulty with dynamic watermarking is that the special input
revealing the watermark can be localized by monitoring program
execution using standard instrumentation techniques and removed
by debugging techniques in which case it must be considered in-
effective. Dynamic data structure watermarking can be obliter-
ated by program transformations such as variable splitting/merging
while dynamic execution trace watermarking can be erased by pro-
gram optimization and transformation. This pessimistic view dis-
misses all current and future dynamic watermarking schemes as
completely ineffective.

• Abstract watermarking is the new framework that we intro-
duce for software watermarking. Abstract watermarking is fully
automatic and different from both static and dynamic watermark-
ing.

Abstract watermarking is a static watermarking in that the extrac-
tion of the signature requires no execution of the program. It fol-
lows that no easily recognized special input is needed for extraction.

Abstract watermarking is a dynamic watermarking in that the
stegosignature is hidden in the concrete semantics of the program
(which may be a non-standard one). However execution of the ste-
goprogram (or just of the stegomark inserted in the subject pro-
gram) will not reveal the stegosignature.

Abstract watermarking is different from existing static or dynamic
watermarking methods in that the stegosignature extraction is by
static analysis of the stegoprogram that is by abstract interpreta-
tion of its (non-standard) concrete semantics (whence the “abstract”
qualifier of this watermarking method). Moreover the abstract ex-
tractor can be parametrised by a stegokey to fix the specific abstract
domain used for the signature extraction. Enriching the terminol-
ogy of [15], this is a semi-visible watermarking in that even if the
presence of a stegomark may be visible (e.g. by making public the
watermark embedding algorithm), the watermark or signature will
be invisible to those not owning the detection software and the cor-
responding secret stegokey.

2. Principle of Software Watermarking
We let P be the set of considered programs and S be the set of
stegosignatures. The watermark embedder is W ∈ P 7→ S 7→ P .
The watermark extractor is E ∈ P 7→ ℘(S). The principle of soft-
ware watermarking/fingerprinting is that the stegosignature can be
extracted from the stegoprograms, that is for all s ∈ S and P ∈ P ,
s ∈ EJWJPK(s)K. (Following the conventions of denotational se-
mantics for the application, syntactic arguments are between dou-
ble square brackets J...K while semantic/mathematical arguments
are between round brackers (...).)

The stegomark approach to software watermarking first consists in
defining a stegomarker Mr ∈ S 7→ P to encode the signature s
into a program Mr (s) called the stegomark. Second, a stegoinlayer
I ∈ (P ×P) 7→ P is used to compose the stegomark Mr (s) with
the subject program P ∈ P to get the watermarked stegoprogram:
WJPK(s) 1

= IJP, Mr (s)K.

3. Abstract Software Watermarking
In abstract software watermarking, the signature is hidden in the se-
mantics of the stegomark embedded in the subject program, whence
in the semantics of the stegoprogram. The signature extraction is by
static analysis of the stegoprogram using some abstract interpreta-
tion of the stegoprogram semantics.

3.1 Concrete Semantics
Since the stegosignature is hidden in the program semantics, we
must define a collecting semantics [7], at some level of abstraction
such as sets of traces, sets of reachable states, etc. In this applica-
tion, we consider the set of reachable states that is the set of possible
descendants of the initial states during program execution.

Formally, the small-step operational semantics of the program P
is a triple 〈6JPK,IJPK, τJPK〉 where 6JPK is a set of (memory
and control) states, IJPK ⊆ 6JPK is the set of initial states and
τJPK ⊆ 6JPK×6JPK is the transition relation relating a state s
to a possible successor s ′ whenever 〈s, s′〉 ∈ τJPK. The semantics
SJPK of the program P is the set of execution traces generated by
〈6JPK,IJPK, τJPK〉. We consider the reachable states abstraction
of this semantics [7].

Formally, given a set S and relations t , t ′ ⊆ S× S, we let t0 1
=

{〈s, s〉 | s ∈ S} be the identity, t B t ′ 1
= {〈s, s′′〉 | ∃s′ ∈ S : 〈s, s′〉 ∈ t∧

〈s′, s′′〉} ∈ t ′} be the composition of relations t and t ′, tn+1 1
= t B tn

be the powers of t , t∗ 1
=

⋃

n≥0

tn be the transitive reflexive closure of

t and post[t](X)
1
= {s′ | ∃s ∈ X : 〈s, s′〉 ∈ t} be the right image of X

by t (also called the strongest post condition of X for t). The set of
reachable states of program P is:

RJPK
1
= post[τJPK∗](IJPK) = lfp

⊆
F JPK =

⋃

n≥0

(

F JPK
)n

(∅)

where F JPK(X)
1
= IJPK∪post[τJPK](X) .

and lfp
≤

f is the ≤-least fixpoint of f (the existence of which is
guaranteed above by Tarski’s fixpoint theorem). RJPK is, gener-
ally, not computable.

3.2 Abstract Semantics
Using abstract interpretation, concrete program properties (that is
subsets of 6JPK) are approximated in an abstract domain LJPK

174

through an abstraction function α and a concretization function γ

chosen such that we have the Galois connection [7]:

〈℘(6JPK),⊆〉 −−→←−−α

γ
〈LJPK,v〉 . (1)

By definition of Galois connections, this means that 〈℘(6JPK),⊆〉
is a partially ordered set (it is indeed a complete lattice), 〈LJPK,v〉

is also a partially ordered set and for all X ⊆6JPK and X ∈ LJPK:

α(X)v X ⇐⇒ X ⊆ γ (X) .

Given an abstract transformer FαJPK such that for all X ∈ LJPK:

F JPK Bγ (X) ⊆ γ BFαJPK(X)

the abstract semantics is defined as:

RαJPK
1
= lfp

v
FαJPK . (2)

If 〈LJPK,v〉 is computer representable and satisfies the ascending
chain condition then RαJPK is computable iteratively as:

RαJPK =
⊔

n≥0

(

FαJPK
)n

(⊥) (3)

where ⊥ 1
= α(∅) is the infimum and the join

⊔

X 1
= α(

⋃

x∈X

γ (x))

abstracts set union. The abstract semantics RαJPK is an approxi-
mation of the reachable states of program P in that:

RJPK ⊆ γ (RαJPK) . (4)
A static analyser is a terminating program, written for a given ab-
straction α, which, given a program P as input, outputs RαJPK.

The static analyser can be made parametric in a computer repre-
sentation of the abstract domain 〈LJPK,v,⊥,t〉 and the abstract
transformer FαJPK so that e.g. the fixpoint computation:

lfp
v
FαJPK =

⊔

n≥0

(

FαJPK
)n

(⊥)

can be generated automatically.

Static analyser generators contain generic abstractions α which are
predefined in terms of simpler ones. For a simple example, let us
consider that the states 〈c, m〉 ∈ 6JPK = CJPK×MJPK are made
up of a control state c ∈ CJPK, and a memory state m ∈MJPK as-
signing values m(X) ∈VJPK to program variables X ∈XJPK so that
MJPK

1
= XJPK 7→ VJPK. Assume that we are interested in analy-

ses recording information for a subset V of the program variables
only (for example V might be the set of variables of a given type,
such as the integer variables). Static analyser generators such as
SOOT [20] provide a non-relational abstraction as a predefined ab-
stract domain LJPK that is parametrised by an abstract domain D
abstracting the values of variables:

〈℘(VJPK),⊆〉 −−→←−−α

γ
〈D,v〉 .

Then, we have 〈℘(6JPK),⊆〉 −−−−−→←−−−−−
αP,V

γP,V
〈LJPK,v〉 by defining the

global abstraction αP,V (X) of X ⊆6JPK as:

αP,V (X)
1
=

∏

c∈CJPK

∏

X∈V

α({m(X) | 〈c, m〉 ∈ X}) .

This global abstraction αP,V , which we implicitly use in the fol-
lowing, collects for each program point c and each variable X ∈ V
we are interested in, an abstraction, by the elementary α, of the set
of values of this variable (which is reachable in some execution of
P from the initial states).

The abstract transformer FαJPK can then be predefined in terms
of basic abstract operations of the language P . The abstraction �
of a k-ary concrete operation · (with domain dom(·) and codomain
codom(·)) should satisfy for all x1 ∈ LJPK, . . . , xk ∈ LJPK [7]:

{·(x1, . . . , xk) | x1 ∈ γ (x1)∧ . . .∧ xk ∈ γ (xk)∧

(x1, . . . , xk) ∈ dom(·)} ⊆ γ (�(x1, . . . , xk)) .

3.3 Abstract Software Watermarking
The principle of abstract software watermarking is to choose a
particular abstraction α as well as an abstract extractor E(Q) ∈
LJQK 7→ S to extract the stegosignatures of a program Q ∈P :

EJQK = E(RαJQK) . (5)

The correctness conditions of Sec. 2 must be satisfied, so:

s ∈ E(RαJWJPK(s)K) .

Informally stated, we can watermark the subject program P with
stegosignature s by transformation of the program P into the ste-
goprogram WJPK(s) where s is invisible. The signature can be ex-
tracted from the stegoprogram WJPK(s) by extraction with E from
its abstract semantics RαJWJPK(s)K which is entirely specified by
the abstraction α. By maintaining α and E secret, it is computation-
ally hard, if not impossible to extract the stegosignature.

The method is not static in that the stegosignature is not directly hid-
den in the program syntax that is the data or the control structure of
the stegoprogram WJPK(s) nor dynamic since it is not hidden in the
concrete semantics RJWJPK(s)K of the stegoprogram (which need
not be executed to extract the signature from an execution trace). It
is abstract, that is hidden in the abstract semantics RαJWJPK(s)K
of the stegoprogram, which is computable by static analysis of this
stegoprogram.

In particular, the concrete semantics which is used, need not be the
collecting semantics for the standard semantics as considered up
to now. For example, if we want to watermark a method M of a
program P , we can use the semantics of M where the parameters
and global variables are all unknown as in a so-called monovari-
ant intraprocedural static analysis. The semantics of M can also
be chosen to be non-standard and kept as an additional secret. A
simple example would be a non-standard interpretation of floating
point constants and operations as integer constants and operations.

3.4 Principle of Parametrised Abstract
Software Watermarking and
Fingerprinting

In order for the public to be confident in the robustness of the pro-
posed abstract software watermarking method, it is necessary to
publish the watermarking method, including the specific abstrac-
tion α and abstract stegosignature extractor E which are used.

Therefore in practice it is more convenient to have the abstraction
αn and abstract extractor En be parametrised by a secret stegokey
n. The abstraction λn ·αn and the abstract key extractor λn ·En
can be made public provided the abstract semantics En(Rαn JPK)
is hard, if not impossible to compute when n is unknown.

175

Moreover, the abstract software watermarking embedders and ex-
tractors will produce different stegosignatures for different ste-
gokeys as if we had different watermarkers, which can therefore
be utilized separately and independently.

We now illustrate this principle of parametrised abstract software
watermarking by a particular instance.

4. Abstract Software Stegosignature
Embedding

4.1 Signatures
A secret signature will be an arbitrary large natural number c ∈
N so that S

1
= N. In practice the natural numbers representable

within the numeric primitive types must be less than or equal to a
given maximum m (e.g. MAX_VALUE for long in JavaTM). In order to
bypass the implementation requirement c ≤ m, we use the Chinese
remainder theorem stating that:

Let n1, . . . , n` be ` ≥ 1 positive integers which are pairwise co-
prime (meaning gcd(ni,nj)= 1 whenever i 6= j) then Z/n1...n`Z is
isomorphic to the cartesian product Z/n1Z × . . . × Z/n`Z.

So in order to embed a secret signture c of size strictly bounded by
n1 . . .n` with 1 < ni ≤m for all i = 1, . . . ,` we can isomorphically
embed ` keys 〈c1, . . ., c`〉 ∈ [0,n1−1]× . . .×[0,n`−1] such that:

c =
∑̀

i=1

(

(

i−1
∏

j=1

n j

)

.ci .
(

∏̀

j=i+1

n j

)

)

(mod
∏̀

j=1

n j) . (6)

So the secret key can be assumed to be a tuple 〈c1, . . ., c`〉 ∈
[0,n1 − 1] × . . .× [0,n` − 1] to be embedded/extracted in a pro-
gram by successively embedding/extracting ci , i = 1, . . . ,`.

The principle of stegosignature embedding is to add a stegomark
to the program in order to hide the constant ci while the extrac-
tion consists in a static analysis of the program revealing this con-
stant ci . Not knowing the secret factor ni it is computationally hard
if not impossible to retrieve ci . However knowing the `-ary ste-
gokey 〈n1, . . .,n`〉, the static analysis can be repeated ` times to
retrieve the secret signature c. After explaining signature embed-
ding in Sec. 4.3 and signature extraction in Sec. 5.1, we will show
that the above restriction to a maximal value m can be lifted.

4.2 Stegomark
We let c ∈ Z be a stegosignature satisfying (6) to be embedded in
a program (indeed a JavaTM method). As explained in Sec. 4.1, we
successively embed ci , i = 1, . . . ,`. Each ci , i = 1, . . . ,` is hidden
in a stegomark Mr (ci). The stegomark is built up in three parts, the
stegomark declaration part (introducing a new auxiliary stegovari-
able, say W, hiding the value of the secret key ci .):

int W;

the stegomark initialization part:

W = P(1) in Z

and the stegomark iteration part:

W = Q(W) in Z

such that: P(1) = ci in Z/niZ and
ci = Q(ci) in Z/niZ

that is once initialized, the stegovariable W is constant in Z/niZ.
This property will be used to extract the stegosignature ci . Al-
though it is constant in Z/niZ the value of W will appear to be

stochastic in successive executions of the stegomark iteration part
W= Q(W).

4.3 Stegomark Inlaying
The watermarking WJPK(ci) of the program P consists in first
choosing a method M , and in watermarking M . Formally
WJPK(ci) is P where the chosen method M is replaced by
WJMK(ci). In JavaTM, the method seems to be the smallest unit
of algorithmic interest, hence our choice. It is trivial to generalize
the approach to the case where the stegosignature is spread over a
class or the full program.

The watermarking WJMK(ci) of a method M consists in inlaying
the stegomark Mr (ci) in the method M with IJM, Mr (ci)K defined
as follows:

• the stegomark declaration part is included among the local dec-
larations of the method M;
• the stegomark initialization part is embedded at a random posi-
tion of the initial basic block of the method M;
• the stegomark iteration part is inserted later at a random position
in the body of the method, preferably within a loop.

4.4 Obfuscating the Stegomark
The stegomark should be obfuscated in order to hide the stegosig-
nature ci .

First, the auxiliary variable W can be any integer program variable
which is dead at the initialization point, in which case the extra
declaration of W is not necessary.

The initialization assignment W= P(1) uses a (e.g. second-degree)
polynomial P of the form:

P(x) = x2+ k1.x+ k0

with the coefficients k1 =−(1+ ci) and k0 = 2.ci . In order to hide
the secret signature ci , these coefficients are incremented, within
the limit m, by a random number of times the modulo ni . Therefore:

k1 = −(1+ ci)+ r1.ni
k2 = ci + r2.ni

where integers r1 and r2 are random integers. Observe that in
Z/niZ, we have P(1) = ci . Indeed, the polynomial value P(1) is
better computed by Horner’s method:

P(x) = (x+ k1).x+ k0

by successive assignments (where T is another new temporary vari-
able2):

W= 1; . . . T= W+ k1; . . . T= W* T; . . . W= T+ k0

introduced at random successive points in the method’s initial basic
block. A polynomial of higher degree can also be used if necessary.

In the iteration assignment W = Q(W) of the stegomark, Q is chosen
to be of the second degree (or higher), of the form:

Q(x) = a.x2+b.x+ c

where a and b are (not too large) non-zero random numbers and c
is chosen to ensure that ci = Q(ci):

c = ci − (b.ci +a.ci
2)

2 T can also be another program variable which is dead at that
point.

176

Again, we use Horner’s method:

(x) = (a.x+b).x+ c

to compute Q(W), by introducing the following sequence of assign-
ments at random positions in the body of the method:

T= W*a; . . . T= T+b; . . . T= T* W; . . . W= T+ c .

The last instruction is inserted only if c 6= 0. If c is negative, we use
the difference − instead of addition+ for naturalness.

5. Abstract Stegosignature Extraction
By defining αi such that Rαi JPK performs constant propagation
in Z/niZ for all methods M of P , a static analysis will be able to
recognize that some variable (i.e. W) has the constant value ci in
Z/niZ once initialized (or ultimately if a dead variable has been
reused) thus indicating that the method M had been watermarked.
We now explain the technical details of this static analysis.

5.1 Abstract Domain and Operations
Let n be some n1, . . . , n` (or their product n1 . . .n` in case
n1 . . .n` ≤ m). We now introduce a program static analysis,
parametrised by n and to be repeated ` times for n = n1, . . . , n`,
in order to retrieve the secret signature c by successively discover-
ing c1, . . . , c`.

Basic Abstract Domains: We let Z/nZ
1
= {{hz | h ∈ Z} | 0 ≤

z < n} ∼= [0,n−1] be the ring of integers modulo n > 1. The unit
element for addition is 0 and that for multiplication is 1.

The basic abstract domain is that of constant propagation [13] for
the ring Z/nZ that is the complete lattice:

Ln
1
= {⊥,>}∪Z/nZ

where ⊥ abstracts the empty set (that is unreachable code), > ab-
stracts Z/nZ (that is an unknown value) and c ∈ Z/nZ abstracts the
congruence class {hc | h ∈ Z}. The set Ln is ordered by:

∀x ∈ Z/nZ : ⊥ v⊥@ x v x @>v>

which abstracts set inclusion. Ln is a complete lattice where the
join t (abstracting set union ∪) and the meet u (abstracting set in-
tersection ∩) are defined, for all x ∈ Ln , y ∈ Z/nZ such that x 6= y,
by:

⊥t x = x t⊥ = x x t x = x
>t x = x t> = > x t y = >

⊥u x = x u⊥ = ⊥ x u x = x
>u x = x u> = x x u y = ⊥ .

Basic Abstractions: We let ηn ∈ Z 7→ Z/nZ defined as:

ηn(z) 1
= let r = z mod n in if r ≥ 0 then r else r +n

be the canonical embedding of the set Z of integers onto [0,n−1]
isomorphic to the quotient ring Z/nZ. The abstraction αn specifies
how a subset of Z/nZ should be approximated. The intuition is that
the empty set (∅ represented by ⊥) and equivalence classes ({hc |
h ∈ Z} represented by ηn(c) where c ∈ Z) are preserved exactly
while any other subset is approximated by Z/nZ (represented by
>). Formally, αn is defined by:

αn(Z)
1
=

⊔

{ηn(z) | z ∈ Z} .

The concretization γn specifies which subsets of Z/nZ are repre-
sented by elements of the abstract domain Ln :

γn(⊥)
1
= ∅,

γn(z) 1
= {hz | h ∈ Z} if z ∈ [0,n−1],

γn(>)
1
= Z .

We obtain a Galois connection [7]:

〈℘(Z),⊆〉 −−−→−→←−−−−
αn

γn
〈Ln,v〉

such that for all Z ∈ ℘(Z) and Z ∈ Ln :

(αn(Z)v Z) ⇐⇒ (Z ⊆ γn(Z)) .

Basic Abstract Operations: The abstraction � of a k-ary con-
crete operation · (with domain dom(·) and codomain codom(·))
should satisfy for all x1 ∈ Ln , . . . , xk ∈ Ln [7]:

{·(x1, . . . , xk) | x1 ∈ γn(x1)∧ . . .∧ xk ∈ γn(xk)∧

(x1, . . . , xk) ∈ dom(·)} ⊆ γn(�(x1, . . . , xk)) .

The abstract unary (k = 1) operation� (such as the abstract inverse
) abstracting the concrete operation · (of the inverse−) is defined
as follows:

�⊥
1
= ⊥, �>

1
=>,

�z 1
= αn({·x | x ∈ γn(z)∩dom(·)}) if z ∈ [0,n−1]
= ηn(·z) .

The abstract binary (k = 2) operations� (of addition⊕, subtraction
	 or multiplication ⊗) for the concrete operation · (of addition +,
subtraction− or multiplication×) are defined as follows:

⊥� z 1
= ⊥, �⊥

1
=⊥, if z ∈ Ln,

z1� z2
1
= αn({x1 · x2 | x1 ∈ γn(z1)∧ x2 ∈ γn(z2)∧

(x1, x2) ∈ dom(·)}) if z1, z2 ∈ [0,n−1]
= ηn(z1 · z2),

>� z 1
= >, z�> 1

=> if z ∈ Ln .

Abstract Integer Variable Domain: Let n1, . . . , n` be ` ≥ 1
positive integers which are which are pairwise coprime. The ab-
stract domain is the product

〈L, v̇〉
1
= 〈

∏̀

i=1

Lni , v̇〉 (7)

smashed for ⊥ and > which, by the Chinese remainder theorem, is
isomorphic to the abstract domain:

〈L,v〉
1
= 〈{⊥,>}∪Z/n1...n`Z,v〉 . (8)

When n1 . . .n` > m the analysis on (8) cannot be directly imple-
mented using machine integers. It can be replaced by an analysis
with abstract domain (7), which is always more precise (and even
strictly more precise since one can discover that a variable is con-
stant modulo some n j although it might not be constant modulo the
product n1 . . .n`). Moreover a static analysis with (7) is equivalent
to ` successive analyzes with Ln = Ln1 , . . . , Ln = Ln` .

Abstract Environment Domain: Given the set XJPK of vari-
ables of program P , the abstract domain is extended pointwise
to environments mapping variables to integer values. Recall that
the set of memory states is MJPK

1
= XJPK 7→ VJPK. We let

177

XintJPK ⊆ XJPK be the subset of program variables which are of
integer type. We have:

〈℘(MJPK), ⊆̇〉 −−−−−−→−→←−−−−−−−
α̇n1 ...n`

γ̇n1...n`
〈MJPK, v̈〉

where MJPK
1
= XintJPK 7→

∏̀

i=1

Lni

and for all m ⊆MJPK and m ∈MJPK:

α̇n1...n`(m)
1
= λX ∈ XintJPK ·

∏̀

i=1

αni ({ρ(X) | ρ ∈ m})

γ̇n1...n`(m)
1
= {ρ ∈MJPK | ∀X ∈ XintJPK : ∀i ∈ [1,`] :

ρ(X) ∈ mni (m(X)i)} .

All information on non-integer variables is lost while the informa-
tion on integer variables is restricted to modular constant informa-
tion.

Abstract Reachability Domain: Given the set CJPK of con-
trol points c of a program P , the abstract environment domain
is extended pointwise to all program points (recall that 6JPK =
CJPK×MJPK). The abstract domain LJPK which is used for sig-
nature extraction in a program P is therefore:

LJPK
1
= CJPK 7→MJPK

satisfies the requirement (1) since:

〈℘(6JPK),⊆〉 −−−−−−→−→←−−−−−−−
α̈n1 ...n`

γ̈n1 ...n`
〈LJPK, ˙̈v〉 (9)

where given S ⊆6JPK and S ∈ LJPK:

α̈n1...n`(S)
1
=

∏

c∈CJPK

α̇n1...n`({m | 〈c,m〉 ∈ S}),

γ̈n1...n`(S)
1
= {〈c,m〉 | c ∈ CJPK∧m ∈ S(c)} .

Static Analysis:

• Collecting Semantics: The considered concrete collecting se-
mantics RJPK of each method P is the set of descendants of the ini-
tial states of the method P with an initial environment λX · .VJPK
where all variables are undefined.

• Abstraction: The extraction of the secret signature for the ste-
gokey 〈n1, . . .,n`〉 starts with the computation of an overapprox-
imation of the abstract semantics Rα̈n1...n`

JPK that is by constant
propagation in the abstract domain LJPK for each method P of the
program. Therefore the static analysis is purely intraprocedural on
local variables of integer type using the abstraction (9). In prac-
tice, this is equivalent to the successive (or simultaneous or paral-
lel) static analyses propagating constants in the abstract domains
corresponding to the individual Lni , i = 1, . . . ,` since:

Rα̈n1 ...n`
JPK =

∏̀

i=1

Rα̈ni
JPK .

• Abstract Transformer: To simplify the abstract transformer
Fα̈n1...n`

JPK is defined using the following approximations (fur-
ther refinements to deter obfuscation may be necessary as discussed
later):

• the initial state of the integer local variables is undefined (>);
• the only operations taken into account in the control flow graph
are the addition, the subtraction and the multiplication;
• tests as well as other operations such as procedure and function
calls are simply ignored;
• for loops, tests and branching the environment pointwise union
is used at control junction points.

• Abstract Semantics: The abstract semantics
Rα̈n1...n`

JPK

of the method P is defined as the least fixpoint of the abstract trans-
former Fα̈n1 ...n`

JPK as defined in (2). It can be computed iteratively
(3) using any chaotic or asynchronous iteration strategy, as usual in
abstract interpretation.

The result of the analysis is the set of constants belonging to the
ring Z/niZ which are the constant values of local integer variables
of the method P for i = 1, . . . ,`.

Application of Static Analysis to Validation Watermarking:
Validation watermarking [15] consists in embedding a watermark
in a software, which may be visible hence simply concatenated to
the software, and yields the essence of the software. This digest
can be used to verify that the software is still essentially the same
as when authored. The essence extraction process can be (a cryp-
tographic digest of) the abstract reachability analysis RαJPK for a
secret abstraction α chosen such that it is essentially invariant for all
versions of the subject software. Then a publicly available verifier
can detach the watermark from the software, make the static anal-
ysis of the software and compare the result with the watermark to
check that the software (hence, its abstract semantics) have not been
modified. Observe that the verifier itself must not be faked whence
its integrity should be ensured by a signature or a MD5 checksum.

Signature Extraction: The extractor (5) uses the result
Rα̈n1 ...n`

JPK of the static analysis of the method P to extract the
stegosignature.

The stegosignature c is extracted by the abstract extractor E if and
only if all ci , i = 1, . . . ,` are extracted from the abstract semantics
Rα̈n1 ...n`

JPK of the method P .

To extract ci , the abstract extractor E has to determine whether the
static analysis has detected that some local integer variable of the
method P has the abstract value ci at two program points at least (at
least one should appear after the stegomark initialization part and
another one the stegomark iteration part).

Despite the overapproximation (4), signature extraction from the
watermarked method always succeeds:

THEOREM 1 (CORRECTNESS). For all methods P ∈ P ,
stegokey n1 . . .n`, stegosignature c = c1 . . .c`, the ab-
stract extractor En1...n` will extract the stegosignature
c from the watermarked method Wn1...n`JPK(c) that is
c ∈ En1...n`(Rα̈n1...n`

JWn1...n`JPK(c)K).

More generally, we would like to prevent attacks by pro-
gram transformation. Ideally, the probability that there ex-
ist a polynomial syntactic program transformation algorithm T
that preserves the semantics SJPK of program P (may be up
to some observational abstraction αO : ∀P ∈ P : αO(SJPK) =
αO(SJT JPKK)) and that can attack the watermarked program (i.e.
c 6∈ En1...n`(Rα̈n1 ...n`

JT JWn1...n`JPK(c)KK)) should be very low.

178

The characterization of all such transformations T is quite difficult.
Hence such an ideal theorem would be hard to prove. Potential
attacks are further discussed in Sec. 7, 8 and 9.

5.2 Example
Subject Program: Let us consider the embedding of the
stegosignature in the main method of the following sample pro-
gram:

public class Fibonacci {
public Fibonacci() {}
public static void main(String[] args){

int n=Integer.parseInt(args[0]);
int a=0; int b=1;
for (int i=1;i<n;i++)
{ int c=a+b; a=b; b=c; }

System.out.println("Fib("+n+") = "+b);}}

For this program, we are only interested in the values of n and b
at the final states reachable from the initial states as defined by its
operational semantics (and this defines its observational abstraction
αO).

Stegokey and Stegosignature: The secret stegokey is assumed
to be ` = 2, n1 = 30001 et n2 = 5421. The stegosignature is c1 =
21349 and c2 = 3012.

Stegomark: The stegoprogram is obtained by inclusion of the
following stegomark (where, for clarity, the variables W and T are
given explicit names of the form <W:ni:ci> and <T:ni:ci>, 1 ≤
i ≤ ` which, for discretion, should be chosen as more anonymous
identifiers by obfuscation).

• Stegomark for c1:
int <W:30001:21349>, <T:30001:21349>;

<W:30001:21349> = 1;
<T:30001:21349> = <W:30001:21349> - 111353;
<T:30001:21349> = <W:30001:21349> * <T:30001:21349>;
<W:30001:21349> = <T:30001:21349> - 47305;

<T:30001:21349> = <W:30001:21349> * 4;
<T:30001:21349> = <T:30001:21349> + 1566;
<T:30001:21349> = <T:30001:21349> * <W:30001:21349>;
<W:30001:21349> = <T:30001:21349> + 21494;

• Stegomark for c2:
int <W:5421:3012>, <T:5421:3012>;

<W:5421:3012> = 1;
<T:5421:3012>=<W:5421:3012>+-35539;
<T:5421:3012>=<W:5421:3012>*<T:5421:3012>;
<W:5421:3012>=<T:5421:3012>+11445;

<T:5421:3012>=<W:5421:3012>*658;
<T:5421:3012>=<T:5421:3012>+971;
<T:5421:3012>=<T:5421:3012>*<W:5421:3012>;
<W:5421:3012>=<T:5421:3012>+4623;

• Stegoprogram:
public class FibonacciWatermarked {
public FibonacciWatermarked() {}
public static void main(String[] args){

int n=Integer.parseInt(args[0]);
int a=0; int b=1; int d=1; int e=35538; int f=1;
int g=-111353;
e=d*e; d=e+11445; g=f*g; f=g-47305;
for (int i=1;i<n;i++)
{ int c=a+b; e=d*658; f=f*4; a=b; g=g+1566; e=e+971;
g=g*f; e=e*d; b=c; d=e+4623; f=g+21494; }

System.out.println("Fib("+n+") = "+b); }}

5.3 Lifting the Data Size Physical Limitation
The physical data size limitation, as given by the maximal integer
m which can be represented by the type int in our sample abstract
watermarking algorithm, can be lifted by considering integers of
arbitrary size in the stegomark and stegoprogram non-standard se-
mantics whence in the abstract semantics Rα̈n1...n`

JPK computed
by the static analyser.

For the static analyzer, the concrete interpretation of modulo arith-
metic operations is in Z (whence non-standard for the program se-
mantics). To handle this non-standard semantics correctly, the static
analyzer must use libraries of big numbers. Of course such big
numbers could also have been used in the stegomark but this would
be too easily recognizable.

The concrete execution of the instructions of the stegomark inlaid
within the stegoprogram may overflow. Fortunately this is com-
pletely harmless with the standard integer modulo arithmetic. The
only limitation to be taken into account is for the constants (like
k0, k1, a, b, c) appearing in the text of the stegomark, which must
be within the physical limitation imposed by the language. When
too large in the standard concrete semantics, these constants can be
computed in the non-standard semantics by program expressions
using only constants satisfying the physical limitation imposed by
the language standard semantics. Actual evaluation of the stego-
mark (with overflow in the standard concrete semantics but not in
the non-standard one) will then be harmless thanks to modulo arith-
metic.

In case m is chosen much larger than the physical limitation and
is kept secret, the stegosignature extraction is even harder if not
impossible.

6. Requirements Satisfied by Abstract
Software Watermarking

Our abstract software watermarking method satisfies a number of
criteria discussed below which are advisable for all software wa-
termarking methods (e.g. to be effective in the protection of the
ownership of intellectual property).

6.1 Practical Requirements Satisfied by the
Watermarks

Functionality Preservation: The watermarking should preserve
the functionality of the subject program and so the semantics of the
stegoprogram WJPK(s) should be “identical” as that of the subject
program P 3. Formally, this means that up to some observational
abstraction αO , the operational/denotational semantics S are the
same and so for all P ∈P and s ∈ S:

αO(SJPK) = αO(SJWJPK(s)K) = αO(SJIJP, Mr (s)KK) .

Typically the abstraction αO gets rid of the auxiliary variables and
the effect of the code which are inlaid in the subject program to
encode the signature.

Performance Preservation: The performance of the subject
program should not be significantly degraded. Our abstract soft-
ware watermarking method preserves execution time up to some
small constant factor (which is negligible for large programs).

3 up to e.g. a little more time and memory consumption for ex-
ecution of the stegomark.

179

Universality Preservation: If the subject program is universal
(i.e. can be executed on any hardware with appropriate compiler
or interpreter) then no special hardware should be required for ex-
ecuting the stegoprogram (contrary to native code with encrypted
signatures [6]).

Unbounded Signature Size There should be no bound on the
size of the signature (or it should be very large) thus allowing
embedded signatures to be arbitrarily encrypted unique identifiers.
This is achieved both by decomposition of signatures c of size
strictly bounded by n1 . . .n` into ` keys 〈c1, . . ., c`〉 ∈ [0,n1−1]×
. . .× [0,n`− 1] [Sec. 4.1] and by choosing large ni , i = 1, . . . ,n
beyond the machine limitation m thanks to a non-standard reinter-
pretation of modulo arithmetic in Z [Sec. 5.3].

Credibility and False Recognition: Since the signature
uniquely identifies the copyright owner, the watermarking should
provide an authentic, clear, secure and indubitable proof that the
stegoprogram is protected (as opposed to a false recognition or a
probabilistic detection). For the watermarking to be credible, most
programs should be unmarked that is the extraction of stegosig-
nature from programs in which no signature has been embedded
should not produce a false recognition. Formally, for all P , Q ∈ P

and s ∈ S such that Q 6=WJPK(s), we should have:

s 6∈ EJQK . (10)

Of course, theorem 5.1 does not exclude false positives (since we
want to be able to watermark the same method several times with
the same stegokey). This means that it is possible to find a sub-
ject program variable which happens to be a constant κ in Lni for
some i ∈ [1,`]. This constant κ might create an ambiguous result
at extraction time whenever 0 6= κ 6= ci in contradiction with (10).

A simple solution is to perform a signature extraction just af-
ter signature embedding to check that this does not happen. If
this happens one can either change the stegokey ni used for em-
bedding/extraction, or change the stegosignature ci in the secret
database of stegosignatures (for the given stegokey ni), or main-
tain κ as invalid for the stegosignature ci for the program P in the
secret database for the stegokey ni , etc.

Secrecy: The watermark, i.e. the stegomark inlaid in the subject
program, should not reveal the signature when discovered by the
average observer (but should be readily detectable by the proper
authorities). In case the stegomark can reveal the signature, it is
a good practice to encrypt the signature encoded within the stego-
mark.

• Extracting the Signature from the Stegomark: It should be
impossible, or at least computationally hard, to extract the stegosig-
nature s ∈ S from the stegomark Mr (s). As in many cryptographic
methods, this is based on the use of a random stegokey n ∈N which
is kept secret, so that the stegomark:

int W; . . . W= P(1); . . . W= Q(W)

can hardly reveal the signature which is left invariant by the stego-
mark computation. Indeed, given polynomials P and Q, the ques-
tion is to solve for the unknown x , n where:

x = P(1)mod n
x = Q(x)mod n .

Following [12], let us set Q′(X)= Q(X)− X , so we now have

x = P(1)mod n
0 = Q′(x)mod n

or equivalently 0 = Q′(P(1))mod n.

Anyone can compute Q′(P(1)), which is some number i , and the
problem is now to find n such that i = 0 mod n which essentially
amounts to factor i in order to find one factor of i (or even all of
them). Factoring can reasonably be assumed to be hard for large
factors. Hence one might want to check that i has large factors
(which is easier when already knowing the factor n) and consider
lifting the data size physical limitation as explained above. In prac-
tice extracting the stegosignature s without knowing the secret ste-
gokey n then essentially amounts to randomly trying all possible
stegokeys n ∈ N (or, at least a very large number of the possible
stegokeys).

• Extracting the Stegomark from the Stegoprogram: Finally,
it should be impossible, or at least computationally hard, to auto-
matically discover the stegomark within the watermarked program
WJPK(s) = IJP, Mr (s)K). Obfuscation methods are helpful for
that purpose. Again the static analysis method for signature ex-
traction proposed in Sec. 5.1 EnJWnJPK(s)K depends on the secret
stegokey n so that when n is unknown, the signature extraction es-
sentially amounts to randomly trying all possible stegokeys.

Robustness/Perenniality: The watermarks should be perma-
nent. If visible, they should be hard or impossible to remove with-
out investing a lot of time and/or without severely damaging the ste-
goprogram so much that it becomes hardly usefully usable or leave
traces on the modified stegoprogram which can be immediately de-
tected by comparison with the undamaged subject program.

If not impossible, it should be computationally hard to re-
cover the subject program P from the stegoprogram WJPK(s)
= IJP, Mr (s)K. One solution is for the software watermarker
WJPK(s) to include an obfuscation of the stegoprogram. However
this is not mandatory since obfuscation pursues different objectives.
Moreover, and contrary to [2], we do not aim at obfuscating the
observable semantics αO(SJPK) of the program P (which can be
specified e.g. in a publicly available reference manual).

Multiple Watermarks: Abstract software watermarking allows
several different signatures to be embedded in the stegoprogram
hence is robust against rewatermarking. Formally, marking with a
new signature should not delete previous signatures:

if s ∈ EJPK then s ∈ EJWJPK(s ′)K .

The number of signatures should be unbounded (or very large) at
the time that the subject program is created. Indeed the value of the
stegokey n fixes the number of possible stegosignatures for that ste-
gokeys, but the number of stegokeys is itself unbounded. Moreover
if a program is signed several times, the extractors are only able to
recover the signatures for which they are authorized provided they
are given different stegokeys n.

Fingerprinting: The abstract software watermarking method
does allow fingerprinting to uniquely mark each program for ev-
ery buyer by a unique licence number. If that buyer then makes
an illicit copy, the illicit duplication may be convincingly demon-
strated by extracting the stegosignature which is the given licence
number.

6.2 Practical Requirements Satisfied by the
Abstract Embedding/Extraction
Algorithms

Our stegosignature embedding/extraction algorithms satisfy the fol-
lowing requirements which are desirable for all software water-
marking tools.

180

Automaticity: Signature embedding and extraction are fully au-
tomatic and require no manual preparation of the subject program.
Hence they are usable on a large scale and allow for checking of
legal use, e.g. on the web.

Low Cost: Signature embedding and extraction have a low com-
putational complexity, comparable to compilation.

Resistance to Counterfeiting: The watermark should withstand
direct and automatic attacks (e.g. by creation of counterfeit of the
subject program using typical automatic program transformations
that are common to program manipulation applications such as ob-
fuscation) but not disallow the copying of the signed file.

Formally, the watermarking should resist program transformations
T ∈ P 7→ P that do not change the observable abstraction of the
subject program semantics. This means that for all P ∈P , s ∈ S:

if αO(SJWJPK(s)K)= αO(SJT [WJPK(s)]K) then
EJWJPK(s)K= EJT [WJPK(s)]K .

In our case, the static analysis can be made more difficult so this
problem is further discussed in Sec. 9.

Resistance to Fraudulent Reuse Including with Hardware
Protection: Since extraction requires no execution of the stego-
programs at all, it is possible to extract the signature of the stego-
program if only part of it is available but not executable (provided
obviously that the available part of this stegoprogram contains the
stegosignature). This makes possible the tracking of stegoprograms
on the web or of parts of the stegoprogram included in another pro-
gram itself protected e.g. by a hardware dongle.

Public Domain: The embedding/extraction algorithms can be
made public since they require a secret stegokey (but not the sub-
ject program) for extraction. Moreover different extractors can be
authorized owning different stegokeys without possible interactions
between them.

Pervasion: The embedding/extraction of the signature in the ste-
gomark is symmetric since both depend on the same secret stegokey
(n in Sec. 6.1). As noted by [12], it may be absolutely necessary to
disclose information from time to time which may require, in ab-
sence of trusted third authority, to make public the secret stegokey.
In this case, copies of the software previously watermarked using
the same stegokey, will be unprotected after the first action taken to
enforce the watermark.

One solution is to use fingerprinting, that is a unique stegomark
for each copy of the software with different stegokeys or to insert
several stegomarks in all copies.

A complementary solution is to choose the stegosignature s and the
stegokey n as large primes (assuming again that the data size phys-
ical limitation is lifted for unbounded signature size as in Sec. 5.3).
The stegoprogram is marked with s by inserting the stegomark ini-
tialization part:

W = P(1) in Z

and the stegomark iteration part:

W = Q(W) in Z

such that: P(1) = s in Z/nZ and
s = Q(s) in Z/nZ

as discussed in Sec. 4.2. The stegoprogram is then deposited with
accompanying signatures s.pi where the pi , i = 1, . . . ,k are large

prime numbers for safekeeping by one or better several trusted third
parties. In order for an unbiased third party to equitably verify that
the stegoprogram is signed, the verifier is given (at the i-th verifica-
tion):

• the stegosignature s.pi ;
• the abstract stegosignature extractor E ;
• the stegokey n.pi .

By ensuring that P(1) = s.pi in Z/n.piZ and
s.pi = Q(s.pi) in Z/n.piZ

the verifier can check that the stegoprogram is signed by s.pi and
can do the same with the originally signed program.

If the information 〈E , s.pi ,n.pi 〉 is made public, claimants might
be able to discover the signature s.pi by designing their own pro-
gram analyser. This may be a good reason to keep the extractor E

private, or at least to have the extractor not reveal where the ste-
gomark is within the stegoprogram, and shows the necessity for
deterring attacks on stegomarks as discussed in next Sec 7. Never-
theless, neither s nor n can be computationally discovered so that
〈s.pi+1, n.pi+1〉 can be used for the next verification of stegopro-
grams whose stegomark is persistent.

7. General Attacks on Signatures and
Stegomarks

Manual attacks against watermarked programs can hardly be
avoided if enough manpower and time are available, so we con-
centrate on automatic attacks. Let us recall the various attacks con-
sidered by [3]:

Subtractive attacks detect the presence and approximate location
of the stegosignatures and eliminate the part of the program where
it is supposed to be located. Examples of subtractive attacks in-
clude static dead code elimination in case the stegosignatures are
supposed to be hidden in dead code (see e.g. [14]) or dynamic ob-
servation of the dead code in case the dead code is protected by an
opaque predicate (opaque means that the outcome of the predicate
is known at watermarking time but the predicate is difficult for an
adversary to resolve i.e. to find the truth value solution of [1, 6, 14]).
Distortive attacks apply transformations to the object so that the
stegosignatures can no longer be extracted. Obfuscation and op-
timizing compilation to generate machine code are such distortive
attacks. Another example is [19] where secrets are hidden in se-
quences of machine code, which can be easily distorted by replac-
ing machine instructions by equivalent ones.
Additive attacks watermark with new signatures so that one can-
not be proved that the original mark temporally precedes the pirate
ones.
Collusive attacks remove signatures by comparison of different
versions of the same program watermarked by different finger-
prints. An example would be diff (which is naïve since it can
be easily defeated by obfuscation).

For example [3, 16] encodes signatures into graphs generated when
executing the program for special inputs. Program monitoring or a
probabilistic static analysis can be used to discover the parts of the
program that are seldom executed. Then a dependence analysis as
in program slicing can be used as a subtractive attack eliminating
the part of the program producing the graph. A distortive attack
would modify the graph whence the signature.

181

8. General Attack Deterrence
Subtractive attacks are made difficult if the elimination of the sig-
nature changes/destroys the semantics of the program so that it be-
come unusable. Therefore a good strategy is to make the stegomark
dependent upon the subject program and reciprocally e.g. by trans-
forming the subject code so that some values are computed as func-
tions of the stegomark or have original and stegovariables merged,
a well-known distortive attack!
Distortive attacks may not all be disturbing. For example ob-
fuscation makes reverse engineering even more difficult so might
sometime be considered helpful. The same way code generation
prevents easy redistribution hence is also a form of protection.
Some distortive attacks can be prevented by considering only part
of the code to extract signatures. Many of the obfuscation methods
considered in [5, 6] can be defeated in this way. For example in-
troducing dead and irrelevant code or converting a reducible to an
irreducible flow graph does not change the abstract interpretation
of the useful code. The same way, opaque test and loop predi-
cates [1, 6, 14] is no problem if the signature extraction does not
depend upon predicates. However the embedding might include
such opaque predicates for obfuscation purposes. Restructurations
of classes (such as modifying inheritance relations, extending the
inheritance hierarchy tree, false refactoring, method inlining, clone
methods as considered in [5]) are ineffective if the signatures are
embedded at the method level and the signature extraction is purely
local, not depending on global variables.
Some other distortive attacks can be prevented by considering only
part of the program data to extract signatures. Among the obfus-
cation methods, array restructuration considered in [5] and object
aliasing considered in [6] can be simply defeated by putting no data
in structured static or dynamic data.
Additive attacks are difficult to fight in particular if the embed-
ding algorithm is made public. Note however that unique signatures
as well as original and signed programs can be revealed to trust-
worthy authorities at the embedding time to authenticate temporal
precedence whence determine the actual owner of the program.
Collusive attacks can be prevented by allowing the embedding of
multiple signatures. A common initial watermark can be embedded
in all copies. Moreover obfuscation of the copies using different
program transformations (including e.g. different code reorderings)
would make comparisons very difficult.

Obviously not all possible attacks have been considered. The most
harmful ones will be discussed in next Sec. 9.

9. Possible Harmful Specific Attacks
The considered signature embedding and extraction methods dis-
arm the general attacks considered in Sec. 7. We now consider spe-
cific attacks against the protocol as described in [3, 6] that might
be harmful. Obfuscation methods are obvious candidates for pre-
venting signature extraction by making static analysis difficult, if
not impossible. First note that if the protection is required at the
method level we might be happy to consider only attacks which
affects a method at a time. Otherwise the method is no longer ex-
tractable from the whole program, which can be considered as a
form of protection against illicit use. However most attacks aims at
hiding the copyright so that masked signature redistribution in the
large should be considered harmful.

Counter-attacks may be classified as follows:

Light-weight counter-attacks essentially consist in improving the
general-purpose abstract signature extractor for routine use (or us-

ing several ones with different analysis strategies according to the
possible obfuscation strategies).
Heavy-weight counter-attacks may need human help and the sub-
ject program in order to built a specific abstract signature extractor
for a case study (e.g. to prove copyright infringement).

9.1 Subtractive Attacks and Tamper-Proofing
Counter-Attack

One can easily design a dependence analysis to discover which lo-
cal variables of the method will have no effect on the method com-
putation. The auxiliary variables W and T could be located in this
way and the corresponding embedding instructions eliminated by
program dependence analysis and slicing.

Classical tamper-proofing methods can detect if the program has
been altered and cause the program to fail when. tampering is evi-
dent [4]. They can therefore be used to prevent subtractive attacks.
A simple tamper-proofing method to avoid automatic subtractive
attacks consists in creating dependencies between the subject pro-
gram and the inserted code. We consider three examples:

1. values can be allocated on the heap instead of in variables which
make live/dead variable analysis much more difficult;
2. one may, on one hand, have the random values a and b be chosen
as values of the program integer constants, have c be computed in
terms of a and b and then a recomputed back in terms of b and c
and b recomputed back in terms of a and c. This false dependency
could only be discovered by symbolic computation which is beyond
the scope of most compilers and obfuscators;
3. since the static analysis does not take tests into account, opaque
predicates [1, 6, 14] can be used to anchor the stegomark statements
inlaid in the stegoprogram by creating interferences between the
two which spuriousness or genuineness is computationally difficult,
if not impossible to detect. Let W be an integer variable used in the
stegomark, V be a variable used in the subject program, let B(V, W)

be an opaque predicate which is always false (like B(x, y) = 7y2−
1 = x2 where x , y ∈ Z [1]) and g(V, W) be any integer expression
depending upon V and W. Then a stegomark statement of the form W
= f (W) can be anchored in the stegoprogram in the form:
if (B(V, W)) { W = f (W); V = g(V, W) }

Since the value of the subject program variable V depends upon the
value of the stegovariable W, it is hardly possible for an obfuscator
to determine that the opaque predicate B is always false and so the
value of W is thought to be indispensable so that the stegomark can-
not be eliminate. If this unexecuted code can be located by run-time
observations, then variants can use an opaque predicate B which is
not identically false as in:
if (B) { V′ = V; W = f (W); V = g(V, V′, W) }
...
if (B) { V = V′ }

Just in case, we propose a more advanced and original method to
create a dependence between the stegomark and that of the subject
method. For that purpose, we can use properties of the stegovariable
W which hold in the standard semantics (more precisely signed 32
bits arithmetic). This is possible, for example, when the stegokey n
is a power of 2. Indeed, assume that n = 2k . Then, we have:

W= v+a.2k in Z .

We also have, always in Z, that, for all j 6 k :

W% 2 j = v % 2 j

where x%y denotes the operation returning the rest of the euclidean
division of x by y. Observe that this property remains trivially

182

true in Z/232Z which is the domain of value of integer variables
in JavaTM. We can therefore use these arithmetic properties to mod-
ify the computations of the subject method in which the stegomark
is inlaid. For example, assume that n = 216 and that v = 18. Then
whichever the value of the variable W is, we always have:

W% 4= 2 .

If, for example, the constant 1 appears explicitly in the subject pro-
gram, then it can be replaced by W% 4−1. Now, if the variable W is
dynamically modified using the techniques developed in Sec. 4, the
variable W takes values during program execution which apparently
stochastic, but have a hidden invariant which is used for stegomark
anchoring. The stegoprogram thus modified preserves its original
concrete semantics but would be irreversibly damaged if the stego-
mark is eliminated. An involved static [11] or dynamic analysis of
the behaviour of the variable W is necessary to detect the invariant
on which relies the dissimulation. Moreover, such constant dis-
simulations can be automatically generated at random points of the
program.

9.2 Subtractive Attacks on Low Stealthiness
and Counter-Attacks

Static Attack on Low Stealthiness: As shown in the example
of Sec. 5.2, this watermarking scheme often results in very unusual
integer literal constants being inserted into the program. Literal
constants with 5 or 6 digits as in the example can be extremely rare
in real programs. An anonymous referee collected and classified all
the integer literals from some 600 Java programs, 1.4 million lines
in all and observed that 80% of all literal integers are between 0-
99, 95% are between 0 and 999, 92% are powers of two or powers
of two plus or minus 1. Because of this lack of stealthiness, the
anonymous referee suggested that an attacker could expect to be
able to locate the watermark code simply by looking for large literal
constants. A light-weight counter-attack would be to compute large
constants in term of small ones privileging powers of two or powers
of two plus or minus 1 in this computation. A diversion would
consists is spreading large integers elsewhere in the code, may be
with dependences so that there elimination would make the code
inoperative.

In the same line one can try to detect the iterations of polynomials
of degree greater than or equal to 2, which are operations rarely
occuring in practice.

When the stegokey n= 2k is a power of 2, a static attack consists in
extracting modulo n′ where n′ is is the greatest power of 2 dividing
i = Q′(P(1)). This yields c′ = P(1) mod n′ such that the value of
the signature c corresponds to the k lower bits of c′. Since k is un-
known, this provides only partial information on c, maybe too much
for this choice to be considered safe. This shows that in all cases
the stegosignature c should be an encryption of the information not
to be revealed.

In all cases, an obvious counter-attack on low stealthiness would be
to hide the stegomark using a non-standard concrete semantics for
signature extraction.

Dynamic Attack on Low Stealthiness: In Sec. 4.2, we observed
that the variable W will take on values that are “stochastic”. An
anonymous referee suggested to monitor the program execution
to look for integer variables updated within loops whose values
are random. A light-weight counter-attack consists in making the
stegomark seldom executed together with pseudo-random number
generators spread in the program for diversion. Other appropriate
datatype obfuscations are considered in Sec. 9.5, including using a

nonstandard semantics of (e.g. heap-allocated) floating point num-
bers for which such dynamic attacks would be much harder.

Dynamic Attack on Unusual Variable Values: An anonymous
referee suggested to monitor the execution to keep track of the se-
quence of values i0, i1, . . . , ik successively taken by all integer
variables I of the program. If I is a watermark variable then n j |g
for some j ∈ [1,`] where g = gcd(i1− i0, i2− i0, . . . , ik − i0). A
large g is an indication that I might be a watermark variable and
provides information on n j for factoring.

A light-weight counter-attack consists in exploiting the random-
ness in tests so that some assignments to watermark variables are
rarely executed whence leading to a small k. Extraction is un-
changed since tests are ignored. Another counter-attack is to rely on
a non-standard semantics for the static analysis as considered e.g.
in Sec. 5.3 since the above reasoning assumes the concrete values
of watermark variables that are abstracted for extraction to be their
execution values.

9.3 Reinterpretation and Counter-Attack
Reinterpretation or table interpretation consists in reencoding the
program for a different virtual machine code. If the virtual machine
specification is secret then again signatureless redistribution is im-
possible in the large whence might be considered harmless.

Otherwise this may require the redesign of the abstract interpreter
used for signature extraction in order to take the virtual machine
code into account. This might require rewriting the abstract signa-
ture extractor for all (known) JavaTM virtual machines, an obviously
heavy weight counter-attack.

9.4 Control Obfuscation and Counter-Attack
The objective of control obfuscation is to obscure the control flow
without changing what the code does at runtime. Typically, selec-
tion and looping constructs are changed so that they no longer have
a direct JavaTM source code equivalent. Let us consider several clas-
sical such transformations.

Sequential Code Reordering and Counter-Attack: Reorder-
ing of the code sequential composition, test and loop statements
must preserve the order in which the elementary statements are ex-
ecuted in a method (unless this order is irrelevant) and so the static
analysis of Sec. 5.1, which does not take the control structure of the
method into account, is insensible to this transformation. If neces-
sary, goto statements can easily be handled in static analysis.

Proceduralization and Counter-Attack: Conversion of static to
procedural data (make a procedure to compute a value instead of
original constant).

Constant propagation can be trivially extended from the intrapro-
cedural case considered here for stegosignature extraction to the
interprocedural case [18], in which case the extraction technique
remains the same.

Outlining and Counter-Attack: Splitting a method into several
disjoint methods (e.g. by inlining and different reproceduraliza-
tion).

Again the counter-attack is interprocedural constant propagation.

Parallelization and Counter-Attack: Conversion of sequential
to parallel programs.

183

Again the transformation must preserve the order in which the ele-
mentary statements are executed so the static analysis of Sec. 5.1 is
insensible to this transformation. Otherwise, the static analysis can
be extended to parallel programs (see e.g. [8]).

9.5 Data Obfuscation and Counter-Attack
Another form of obfuscation is data obfuscation where the program
global, local and heap data are reallocated in more complex struc-
tures. We now consider a few examples.

Globalization and Counter-Attack: Replaces all or some local
variables into global variables.

This might be easily taken into account by the analyser which could
also consider global integer variables, either all possible global vari-
ables or only the necessary ones, which may not be very difficult to
detect for those possessing the subject code (the list of such global
variables might be a parameter of the static analysis).

Built-in Datatype Reallocation and Counter-Attack: Put all
data in arrays or heap allocated structures. First note that the ab-
sence of simple datatype variables is quite suspect. But not moving
all simple variables means that the ones used to hide watermarks
might be omitted. Using arrays means that constant propagation
can detect indices designating simple variables so heap allocated
structures should be preferred. But then note that if the obfuscator
is likely to create a small dynamically allocated structure so that
its shape might be easily determined by analysis algorithms using
a threshold widening [17]. Otherwise cache behaviour and addi-
tional garbage collection might severely worsen the program per-
formance.

Then note that this idea might be used to hide the stegovariables in
dynamically allocated data structures which could hardly be modi-
fied by obfuscating by fear of modifying the program semantics but
for which the signature extraction would be possible by designing
analysers specifically for the type of structure which is used (e.g.
balanced trees [9]).

Built-in Datatype Obfuscation and Counter-Attack: Obfus-
cating built-in datatypes (such as integers and strings) by variable
splitting and merging. To do so, obfuscators routinely use the alge-
braic law of integer arithmetic to transform the code. For a trivial
example, consider the assignment:

e=35538;

which can be transformed into:

f=71077; e=(f-1)/2;

Since the integer division is not used in the stegomark, the static
analyser need not implement the abstract version of integer divi-
sion, which will be simply ignored, whence obliterating the signa-
ture extraction.

An obvious riposte is for the static analyser to anticipate all such
possible obfuscating transformations and to:

1. use non-standard semantics which are invariant under such
transformations (which, e.g. might not be the case when interpret-
ing modulo arithmetic as integer arithmetic);
2. implement all abstract operators corresponding to the concrete
operators that can be used for program transformation by obfusca-
tors;
3. obfuscate the code in order to prevent further obfuscations.

A complementary solution consists in relying on program con-
structs for which data and operation transformation is very difficult.
This is the case for example for floating point arithmetic which does
not satisfy the usual mathematical identities (such as associativity,
commutativity, etc) which are valid for the reals. It follows that
obfuscators will have more difficulties to modify all floating point
operations, except trivially.

Consequently, a simple riposte to obfuscation is to implement the
stegomark with floating point arithmetic. Care must be taken to
prove the absence of overflow (since floating point arithmetic is
not modular) or to catch all potential exceptions that can be raised
in the stegomark and to annihilate their effect. It follows that the
stegomark does not perturb the normal stegoprogram execution.

Now in the non-standard semantics which is used for signature ex-
traction, and therefore in the abstract semantics for the static anal-
ysis, all floating point operations of the stegoprogram can be inter-
preted as integer operations. The translation is simply one to one
for arithmetic operators. Floating point constants must be converted
into integers (may be up to some secret factor).

10. Implementation
The abstract software watermarker that we have designed and used
for our experimentation is based on SOOT [20] which is a static
analyser generator for JavaTM itself written in JavaTM.

The SOOT optimizing framework offers different possible interme-
diate representations of JavaTM source programs. For simplicity,
we assume that the subject program P ∈ P is represented in Jim-
ple style [20] , that is unstructured stackless 3-address code using
typed auxiliary variables. Moreover, we can also assume that the
jsr bytecode has been eliminated and the intermediate code is or-
ganized as a control flow graph of basic blocks. A decompiler is
necessary to see the Jimple code in JavaTM form.

The stegosignature embedder is implemented as specified in Sec. 4.
The implementation of the extractor essentially amounts to that of
the basic abstract domain, as well as the abstract environments, of
the corresponding basic abstract operations and those used in the
abstract transformer in SOOT. Then SOOT can generate automati-
cally the static analyser described in Sec. 5.1. Finally, the abstract
software watermarker has essentially to maintain a database of own-
ers of stegokeys and corresponding stegosignatures and provides an
elementary user interface.

11. Experiments
Efficiency: The abstract software watermarking takes no addi-
tional developer time (but to choose which methods should be wa-
termarked, to choose a stegosignature and to submit the subject
software to the automatic stegosignature embedder). The recogni-
tion time to extract the stegosignature is comparable to compilation
time and so is efficient.

The runtime costs are also negligible since for medium and large
programs we could not observe significant modifications in the re-
quired memory and computation time resources.

Robustness: We have conducted several experiments which con-
sist in watermarking one method in a class, then in obfus-
cating the class with JavaTM obfuscators (JcloakTM and Zelix
klassmaster) and then in extracting the signature from the ob-
fuscated class. After a few improvements of the static analyser as
described in Sec. 9, these obfuscators mainly using name obfusca-
tion, flow obfuscation and string encryption could not disarm the

184

stegosignature extraction. Consequently, obfuscators can be used
after signature embedding to obscure the work of stegoanalysts.

12. Conclusion
We have proposed a new class of software watermarking and fin-
gerprinting methods called abstract software watermarking. The
key idea is to anchor a stegomark in the program, that is state-
ments which static analysis will reveal the stegosignatures. We
exemplified an instance based on modular constant propagation
parametrised by a secret stegokey, which is equivalent to infinitely
many distinct instances of the abstract watermarker. The key idea
is that the stegosignature extraction is neither static (it is based on
the semantics of the program not on its syntax), nor dynamic (pro-
gram execution does not reveal the stegosignature) but abstract (the
stegosignature is revealed by abstract interpretation of a (may be
non-standard) state or trace-based collecting semantics of the pro-
gram). Since static analysis is undecidable (even for simple anal-
yses like constant detection), the static analyser which is used for
extraction can be designed to be involved enough so that extrac-
tion is impossible if the extraction algorithm is not perfectly known.
Even if the signature extractor is made public, it is still possible to
use abstract domains parametrised by secret stegokeys which make
signature extraction computationally hard, if not impossible.

It is clear that stegoanalysis against this new class of abstract soft-
ware watermarkers will improve. In response, the abstract soft-
ware watermarking framework allows considering more sophisti-
cated abstract interpretation-based static analysers thus making ste-
goattacks even more difficult. As is the case in cryptography, the
rivalry between watermarkers and attackers may be endless and the
source of much progress.

Acknowledgements: This work was supported by the RNRT
(“Réseau National de Recherche en Télécommunications” of
the french “Ministère de la Recherche” and the “Ministère de
l’Économie, des Finances et de l’Industrie”), project n◦ 95
“Tatouage électronique sémantique de Code Mobile Java”, 1999–
2002. We thank J. D. GUTTMAN for his help with Sec. 6.1 and
for inspiring Sec. 6.2, M. RIGUIDEL for bringing our attention to
software watermarking, A. VENET for his participation in the early
stage of the project, the Sable Research Group at McGill Univer-
sity, Montreal, Canada, in particular L. HENDREN, P. LAM and
F. QIAN, for their help in the use of SOOT, especially during P.
COUSOT’s visit at McGill in September 2000, B. BLANCHET, J.
FERET, A. MINÉ, D. MONNIAUX, X. RIVAL and the anonymous
referees for their shrewd comments.

13. References
[1] ARBOIT, G. A method for watermarking JavaTM programs via

opaque predicates. In Proc. Int. Conf. Electronic Commerce
Research (ICECR-5) (Montreal, CA, 23–27 Oct. 2002).

[2] BARAK, B., GOLDREICH, O., IMPAGLIAZZO, R., RUDICH,
S., SAHAI, A., VADHAN, S., AND YANG, K. On
the (im)possibility of obfuscating programs. In Proc.
CRYPTO’2001, Santa Barbara, CA, LNCS 2139 (19–23 Aug.
2001), J. Kilian, Ed., Springer, 1–18.

[3] COLLBERG, C., AND THOMBORSON, C. Software water-
marking: Models and dynamic embeddings. In 24th POPL
(San Antonio, TX, 20–22 Jan. 1997), ACM Press, 311–324.

[4] COLLBERG, C., AND THOMBORSON, C. Watermarking,
tamper-proofing, and obfuscation – tools for software protec-
tion. IEEE Trans. Software Engrg. 28, 8 (Aug. 2002), 735–
746.

[5] COLLBERG, C., THOMBORSON, C., AND LOW, D. Break-
ing abstractions and unstructuring data structures. In Proc.
1998 ICCL (Chicago, IL, 14–16 May 1998), IEEE Comp.
Soc. Press, 28–38.

[6] COLLBERG, C., THOMBORSON, C., AND LOW, D. Manu-
facturing cheap, resilient, and stealthy opaque constructs. In
25th POPL (San Diego, CA, Jan. 1998), 184–196.

[7] COUSOT, P., AND COUSOT, R. Systematic design of program
analysis frameworks. In 6th POPL (San Antonio, TX, 1979),
ACM Press, 269–282.

[8] COUSOT, P., AND COUSOT, R. Invariance proof methods
and analysis techniques for parallel programs. In Automatic
Program Construction Techniques, A. Biermann, G. Guiho,
and Y. Kodratoff, Eds. Macmillan, 1984, ch. 12, 243–271.

[9] GHIYA, R., AND HENDREN, L. Is it a tree, a dag, or a cyclic
graph? a shape analysis for heap-directed pointers in C. In
23rd POPL (St. Petersburg Beach, FL, 1996), ACM Press, 1–
15.

[10] GOSLER, J. Software protection: Myth or reality? In Proc.
Advances in Cryptology — CRYPTO’85, LNCS 218 (Santa
Barbara, CA, 18-22 Aug. 1985, 1986), H. Williams, Ed.,
Springer, 140–157.

[11] GRANGER, P. Static analysis of arithmetical congruences.
Int. J. Comput. Math. 30 (1989), 165–190.

[12] GUTTMAN, J. D. Private communication. 21 Jan. 2003.

[13] KILDALL, G. A unified approach to global program opti-
mization. In 1st POPL (Boston, MA, Oct. 1973), ACMpress,
194–206.

[14] MONDEN, A., IIDA, H., MATSUMOTO, K., INOUE, K., AND
TORII, K. A practical method for watermarking JavaTM pro-
grams. In 24th IEEE Computer Software and Applications
Conf. , Compsac’2000 (Taipei, Taiwan, 25–29 Oct. 2000),
191–197.

[15] NAGRA, J., COLLBERG, C., AND THOMBORSON, C. A
functional taxonomy for software watermarking. In 25th Aus-
tralasian Computer Science Conf. (ACSC’2002) (Melbourne,
Australia, Jan. 2002), M. J. Oudshoorn, Ed., Conferences in
Research and Practice in Information Technology, ACS.

[16] PALSBERG, J., KRISHNASWAMY, S., KWON, M., MA, D.,
SHAO, Q., AND ZHANG, Y. Experience with software water-
marking. In Proc. 16th ACSAC’00, New Orleans, LA (11–15
Dec. 2000), IEEE Comp. Soc. Press.

[17] SAGIV, M., REPS, T., AND WILHELM, R. Shape analysis. In
Proc. Int. Conf. CC’2000, LNCS 1781 (Berlin, DE, 25 Mar. –
2 Apr. 2000), D. A. Watt, Ed., Springer, 1–17.

[18] SAGIV, M., REPS, T., AND HORWITZ, S. Precise interpro-
cedural dataflow analysis with applications to constant propa-
gation. Theoret. Comput. Sci. 167, 1&2 (1996), 131–170.

[19] STERN, J., HACHEZ, G., KOEUNE, F., AND QUISQUATER,
J.-J. Robust object watermarking: Application to code. In
Proc. 3rd Int. Work. on Information Hiding, IH’99 (Dresden,
DE, 29 Sep. – 1 Oct. 1999), A.Pfitzmann, Ed., vol. 1768 of
LNCS, Springer, 368–378.

[20] VALLÉE-RAI, R., HENDREN, L., SUNDARESAN, V., LAM,
P., GAGNON, É., AND CO, P. Soot — a JavaTM optimiza-
tion framework. In CASCON ’99 (IBM Center for Advanced
Studies Conference) (Toronto, Ontario, CA, 8–11 Nov. 1999),
125–135.

185

