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Abstract. The Patricia trie is a simple modification of a regular trie. By eliminating unary branching 
nodes, the Patricia achieves better performance than regular tries. However, the question is: how much 
on the average is the Patricia better? This paper offers a thorough answer to this question by considering 
some statistics of the number of nodes examined in a successful search and an unsuccessful search in 
the Patricia tries. It is shown that for the Patricia containing n records the average of the successful 
search length S. asymptotically becomes l/h, Inn + O(l), and the variance of S, is either var S,, = 
c. Inn + 0( 1) for an asymmetric Patricia or var .S, = 0( 1) for a symmetric Patricia, where h, is the 
entropy of the alphabet over which the Patricia is built and c is an explicit constant. Higher moments 
of S,, are also assessed. The number of nodes examined in an unsuccessful search U. is studied only for 
binary symmetric Patricia tries. We prove that the mth moment of the unsuccessful search length 
EV; satisfies lim,, ECJ,“/logTn = 1, and the variance of U. is var U, = 0.87907. These results suggest 
that Patricia tries are very well balanced trees in the sense that a random shape of Patricia tries resembles 
the shape of complete trees that are ultimately balanced trees. 

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non- 
numerical Algorithms and Problems-computations on discrete structures, sorting and searching; G.2.1 
[Discrete Mathematics]: Combinatorics-generating functions; recurrences and dirference equations; 
G.2.2 [Discrete Mathematics]: Graph Theory-trees; H.3.3 [Information Storage and Retrieval]: 
Information Search and Retrieval-search process 

General Terms: Algorithms, Performance 

Additional Key Words and Phrases: Balanced trees, data structures, digital search trees, Patricia tries, 
probabilistic analysis of algorithms, random shape of trees, successful search, unsuccessful search 

1. Introduction 

Algorithms designed from the worst-case perspective often have to cope efficiently 
with quite unrealistic, if not pathological, inputs. Sometimes there exist simpler 
algorithms that perform just as well, or even better, in practice. For example, in 
the extendable hashing algorithm [5] digital search trees are used to access keys 
(records). This algorithm is usually accompanied with another procedure to balance 
the tree in order to achieve good worst-case performance. The balancing procedure 
often restructures the entire tree, so it is rather an expensive operation. Therefore, 
the question arises whether or not we really need the balancing algorithm. In 
general, we ask to what extent simpler and more direct algorithms can be expected 
in practice to match the performance of more complicated, worst-case asymptoti- 
cally better ones. These thoughts motivated our studies on the average complexity 
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of digital trees [22-241. In this paper, we concentrate on Patricia tries, and ask how 
well on the average the Patricia is balanced. In other words, we inquire whether we 
really need to balance Patricia tries. In addition, we consider a question of how 
much on the average the Patricia is better than regular tries. 

Digital searching is a well-known technique for storing and retrieving information 
using lexicographical (digital) structure of words. A V-my trie or radix search trie 
is a digital search tree in which edges are labeled by elements from an alphabet of 
cardinality V, and leaves (external nodes) contain the records (keys) [2, 7, 8, 10, 
12, 14, 191. A key consists of a (possibly infinite) sequence of elements from the 
alphabet that is used to access a record. The access path from the root to a leaf is 
a minimal prefix of the information contained in the leaf. The radix trie has an 
annoying flaw: there is “one-way branching” that leads to the creation of extra 
nodes in the tree. D. R. Morrison (cf. [ 191) discovered a way to avoid this problem 
in a structure which he named the Patricia trie. In such a tree, all nodes have 
branching degree greater than or equal to two. This is achieved by collapsing one- 
way branches on internal nodes, that is, by eliminating all unary nodes [8, 10, 14, 
191. The Patricia trie finds many applications [2, 10, 14, 191. Among others we 
mention here lexicographical sorting [2, 161, dynamic hashing algorithms [5, 61, 
polynomial factorization, simulation, Huffman’s algorithm, string matching [2, 
141, and most recently conflict resolution algorithms for broadcast communications 
[9, 211. 

In all searching algorithms, in particular those built over the Patricia tries, the 
main problem is to locate a record that contains given key. After the search is 
completed, two possibilities can occur: Either the search was successfuf and the 
record was located or it was unsuccessful and the record was not found. These two 
possibilities lead to two tree parameters that are of particular interest to us; namely, 
the successful search length and the unsuccessful search length. At this point, it is 
worth mentioning that the successful search length is equal to the depth of a leaf 
(external node) in the Patricia trie; that is, the number of internal nodes in the trie 
on the path from the root to a randomly selected external node that contains the 
chosen key. Some statistics of the depth are also used to assess the balancing 
property of the underlying tree [24]. An unsuccessful search also terminates at an 
external node, but the node does not contain the desired key. At last, we note that 
the unsuccessful search length is not simply related to the successful search length, 
since unsuccessful searches are more likely to occur at external nodes near the root. 

The performance evaluation of the Patricia is very scarce (see [S], [ 131, [ 141 and 
[ 171) and in fact restricted to the binary symmetric Patricia; that is, all letters from 
the alphabet occur with the same probability. In most analyses, only average values 
were studied, with the exception of [ 131, where Kirschenhofer and Prodinger 
computed the variance of the successful search length for the binary symmetric 
Patricia. These simplifications are dropped in this paper, and we shall analyze a 
general V-ary Patricia trie, that is, each element from the alphabet occurs indepen- 
dently and with different probability. Under these assumptions, we study all 
moments of the successful search length S,, where n is the number of records 
stored in the tree. We prove that the average length ES, of a successful search is 
equal to llhI f Inn + O(l), and the variance of S, is either c . In n + 0( 1) for the 
asymmetric Patricia or 0( 1) for the symmetric one, where h, is the entropy of the 
alphabet and c is an explicit constant. In addition, we show that the mth moment 
ES; of S, satisfies the following lim,,, ES,“/ln”n = l/h?. These results extend 
the works of Knuth [ 141, Flajolet and Sedgewick [8], Jacquet and Regnier [ 121, 
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and Kirschenhofer and Prodinger [ 131. They also suggest that the symmetric 
Patricia is very well balanced, since it achieves the asymptotically optimal value 
for the depth of a randomly selected leaf, and the variation of the depth is very 
small (see Remark l(iii) for more details). 

The results for the number of nodes inspected in an unsuccessful search U, are 
even more scarce, and to the author’s knowledge only the mean value of U, was 
obtained by Knuth [ 141. The problem is also much more intricate, and therefore 
only symmetric binary Patricia tries are analyzed. However, asymptotic analysis of 
all moments of the unsuccessful search length is discussed. It is proved that EU, = 
log,n + O(l), the variance of U,, becomes var U,, = 0.8790, while higher moments 
satisfy lim,,, EU,“/logzn = 1. 

The paper is organized as follows: In the next section, we present our main 
findings concerning the lengths of a successful search and an unsuccessful search 
in a form of two propositions. In Section 3, we derive these results for the successful 
search length using a unifying approach through some general recurrences. In a 
similar way, we organize Section 4, where unsuccessful search for binary symmetric 
Patricia tries is investigated. 

2. Main Results 

Let us consider a family 7, of Patricia tries with n keys (records) built over an 
alphabet d = (w,, . . . , wv). A key is a (possible infinite) string of elements from 
&, such that the ith element wi E &’ occurs independently of other elements, and 
with probability pi. The keys are stored in external nodes, while internal nodes 
determine branching strategy. The degree of each internal node is greater than or 
equal to two; that is, one-way branches are collapsed on internal nodes by including 
in the nodes the number of bits to skip over before making the next decision (for 
details, see [lo], [ 131, [ 141, and [ 191). 

We study properties of successful and unsuccessful searches, as defined above, 
in a family of random Patricia tries Yn. Let S,, and U,, (random variables) denote 
the successful search length and the unsuccessful search length in Yn. The mth 
factorial moments of S,, and U,, are defined as 

sf Ef E(S,(S, - l)(S, - 2) ... (S, - m + I)), (2-l) 

2~: zf E(U,(U, - l)(U, - 2) . . . (U, - m + l)), (2.2) 

where the expectations in (2.1) and (2.2) are taken over all tries in Z, and over all 
external nodes in a given trie L E Yn. It is shown that these moments (as well as 
regular moments) are related to the mth derivatives of the generating function 
H,(z) with the coefficient at .zk being the expected number of external nodes at 
level k in our family of trees (cf. [ 14, 241). There is no explicit formula for H,(z), 
but a rather sophisticated recurrence, as shown in Lemma 1 below. Let j = 
(j,,j,, . . . ,jV)beavectorsuchthatjl+j2+ ... +jv=n,and 

i’l def 

0 

n! = 
j j!j,! . . . jv! 

be a multinomial coefficient. By C Ik=n, f( j) we denote a sum over all j such that 
j,+j,+ . . . + jv = n for a given functionf( .). Then, the following recurrence on 
H,,(z) may be established. 
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LEMMA 1. For any natural n, the generatingfunction H,,(z) of the random family 
of Patricia tries 7, satisfies the recurrence 

Ho(z) = 0, H,(z) = 1 

i’ *** &‘[H~,(z) + .** + H,,,(z)] 

- (z - l)[p; + p; + ... + p”v]H,(z) (2.3) 

PROOF. Consider V subtrees of the root, each with j,, j,, . . . , j, keys and 
j, +j2 + . . . + j, = n. Then, for a given trie t E Yn the generating function 
H’,(z) for that particular trie satisfies 

H;(z) = [H;,(z) + . . . + H;,(z)] 
. [Z + 6j,,,(l - Z) + SjZ,,( 1 - Z) + ’ * * + Sj,,,( 1 - Z)], 

where Sj,, is the Kronecker delta. In the second expression enclosed in square 
brackets, the first z represents the subtrees that are one level below the root, 
and the other terms are responsible for avoiding one-way branches (cf. [14]). 
Taking the expectation of the above recurrence over all tries in S,, we finally 
obtain (2.3). 0 

Now we are in position to present our main results for the number of inspections 
made in a successful search, that is, the depth of a randomly selected leaf in the 
Patricia trie. We start with a lemma that shows a relationship between the mth 
derivatives of HLm’(z) of the generating function H,(z) and the mth factorial 
moment of SF of the successful search length. 

PROPERTY 1. For integers n and m, the following relationship holds 

H’“‘( 1) s; = n 
n ’ (2.4) 

where Hkm)( 1) is the mth derivative of H,(z) at z = 1. 

PROOF. The same relationship holds for regular tries, and was proved in 
Szpankowski [24]. 0 

We note that a simple relationship holds also between the factorial moments 
and the regular moments. In particular, the variance var S,, of the successful 
search length can be computed from the first two factorial moments, as follows: 
var S,, = si + st - (~f)~. In Section 3, we prove the following proposition. 

PROPOSITION 1 

(i) The average ES,, of the successful search length asymptotically becomes 

ES,, = L [inn + p + FI(n>] + O(n-I), 
1 

(2.5) 

where ln( . ) denotes the natural logarithm, 

hk = (-l)k i pilnkpi and hk = (-l)k i pihk(l -pi), 
i=l i=l 

while p ef y - & + h2/(2hl ) and F,(n) is a fluctuating function with a small 
amplitude (see Section 3 for explicit definition of F, (n)), y = 0.57 1 . . . is the 
Euler constant. 
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(ii) The variance var S,, of S,, for large n satisfies 

vay S, = 9 Inn + (Y - 2/3 + F,(n) + O(n-‘), 
I 
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(2.6) 

where Fz(n) is a fluctuatingfunction with a small amplitude (see Section 3 for 
details), and 

7r2 3 h: 2-h 2 h 
x+Y2+zG+h,-jSI; + h2 + h2 + 2h,& 1 

- 2(h + k) rh, + h2 h3 
I 

with 

. In 1 + px( 1 - py) . (1 - pi)-’ i pk . 
p=l 

In particular, for V-ary symmetric Patricia tries h2 = h: and (2.6) reduces to 

var S, = $-& + A - &v In [i, + F*(n) + O(n-‘). (2.9) 

(iii) The mth moment ES,” of the successful search length satisfies 

Es,m 1 
!!!!i In”n = 2 

(2.10) 

forallmr 1. 

Remark 1 

(i) Comparison with Regular Tries. We first compare the successful search 
length for regular tries and Patricia tries. Let SL’] and Svl denote the lengths of 
successful search for the regular tries and the Patricia tries, respectively. Then, by 
Proposition 1 and the results from [23], we easily see that ES!‘] - ES:‘] = KI/hl > 
0. For example, for binary symmetric case ESi’] - ES:‘] = 1. On the other hand, 
in the symmetric case, the average height of the Patricia is logvn + 0( 1) [ 171 
whereas, for the regular tries, the height becomes 2 . logvn + 0( 1) [6], so it is twice 
as much. The variance of the depth, that is, the length of a successful search, for 
regular tries was derived by Szpankowski in [24] (for binary symmetric case, see 
also [ 131, and for binary asymmetric case, see also [ 121) who proved that it satisfies 
our formula (2.6) with /3 = 0. In particular, for the symmetric case 

1 - 
var SA’l - var $.‘I = - In n 

In V ( 1 
1+1 

I=1 v’ * 

Table I compares these two variances. For small values of V the variance for the 
Patricia is substantially smaller than for the regular tries (for consequences of this, 
see Remark l(iii)). Finally, these two data structures can be compared in terms of 
the number of internal nodes (i.e., the storage requirements). Naturally, the number 
of internal nodes in the Patricia is exactly equal to n - V + 1. In regular tries, the 
number of internal nodes may vary, and in general, it is a random variable. We 
can easily prove that the average number of internal nodes is asymptotically equal 
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V var SATI var Sj? 

2 3.507 1 .ooo 
3 1.446 0.630 
4 0.939 0.500 
5 0.718 0.430 
6 0.596 0.387 

to n/h, + 0( 1). For example, a binary symmetric regular trie has on the average 
1.4 1 . n + 0( 1) internal nodes. But, every node in the Patricia contains a counter 
that indicates the number of digits to skip over before making the next test. 

(ii) The Successful Search Length S,, Converges in Probability to ES,, ! Applying 
our Proposition 1, we can show that SJES,, + 1 in probability as n + ~0. Indeed, 
by Chebyshev’s inequality, 

Note, however, that in the symmetric case the rate of convergence is better and 
equal to O(l/ln*n). Moreover, using the external path length approach and more 
sophisticated probabilistic tools (i.e., Borel-Cantelli lemma), we can prove that for 
the symmetric case the convergence in probability can be replaced by stronger 
convergence with probability one (see also [ 171). 

(iii) How Well Is the Patricia Balanced? A tree that is ultimately balanced is 
called a complete tree [2], and its depth is equal to log,n. Therefore, any tree with 
good balance property should have average depth equal to logvn + O(1). For 
example, in a binary search tree, the depth is 1.41 . logzn + 0( 1) [2, 141, while for 
binary digital search trees (i.e., regular tries and Patricia tries) the successful search 
length, that is, the depth is log2n + 0( 1). Hence, digital search trees are better 
balanced than binary search trees. For the Patricia, even the height (maximum 
over all depths) is logvn + O(l), so the shape of the Patricia resembles, on the 
average, a complete tree. In the asymmetric case, however, the situation is slightly 
different. The constant at Inn in formula (2.5) on the average successful search 
length is the reciprocal of the entropy h, of the alphabet, and the more asymmetric 
the alphabet is, the more skew the Patricia is. This can be even better characterized 
by considering the limiting distribution of the depth. Using the ideas of Jacquet 
and Regnier [ 121, one can prove that the limiting distribution of S’, is normal for 
the asymmetric case, but not for the symmetric one.’ This proof and our discussion 
in Remark 1 (ii) suggest that fluctuation of S,, around ES, is bounded in probability 
in the symmetric case, and unbounded, with magnitude In ‘12n, in the asymmetric 
case. In conclusion, the Patricia is a well-balanced tree, and this is especially true 
for the symmetric alphabet. Therefore, in the asymmetric case, one may consider 
(efficiently) preprocessing the alphabet, before constructing the tree, in order to 
obtain a symmetric one. In this case, the Patricia will not need any additional 
construction to keep it balanced [2, 51. 0 

Now, we turn our attention to the number of nodes examined in an unsuccessful 
search. The unsuccessful search length U,, is much harder to analyze, and, except 
for the average value of U,,, nothing is really known about the behavior of 

’ See Note Added in Proof. 
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unsuccessful search. Below, we present our results on U,, in the case of binary 
symmetric alphabet. To derive them, we shall use our unifying approach through 
the generating function H,,(z) defined above in Lemma 1. We need the following 
property that couples the mth factorial moment of the unsuccessful search length 
and the mth derivatives of HAm)($) of the generating function H,(z) at z = 4. 

PROPERTK 2. For any integer m, the following holds 

where H,(t) = 1. 

PROOF. Let us set I/ = 2 and pI = p2 = 0.5 in Lemma 1 formula (2.3). Then, 
putting z = 3 in (2.3), one proves H,(i) = 1. On the other hand, the average value 
of the unsuccessful search length, uf is C& 1H,2-’ = iHi”( since we end up at 
a given external node on level I with probability 2-’ (by Ht we denote the number 
of external nodes at level I). For m = 2, we have 

u: = ,% l(1 - l)H,2-’ = (;)‘H$), 

and so on. This proves Property 2. 0 

Now we can present our main results on the unsuccessful search length U,,. We 
prove them in Section 4. 

PROPOSITION 2 

(i) The mean of the unsuccessful search length is 

EU,, = lgn - 8 + G,(n) + O(n-‘), 

where lgx = log2x and 

(2.12) 

0 in 7T- Y 1 = --= 
ln2 2 

0.3 1875, 

and G,(n) is a fluctuatingfunction with a small amplitude (see Section 4 for 
details). 

(ii) The variance var U,, of U, satisfies 

var U,, = 4(a - p - 0 - 2) - 0 - (I2 + G2(n) + @n-l) 

= 0.87904 + G,(n), 

where 

(2.14) 

(2.15a) 

with cZ being half of the second derivatives at zero of the Riemann zeta 
function T(z) [ 11. Ramanujan proved that (see [3, p. 2041) 

1 y2 Cl 7r2 ln2(27r) 
‘i=5{“‘0’=4+5-48- 4 ) (2.15b) 
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with cl = -0.0728158. Finally 

p=s+; 

+-LiF 
k 2 

k{~~2~k(‘~‘)[2~~‘ik-~+~]-2(k~ I,> 

=: 0.48738, (2.15~) 

and G2(n) is a fluctuating function with a small amplitude. 
(iii) The mth moment EU,” of U,, satisfies 

(2.16) 

forallm r 1. 

Remark 2 

(i) Comparison with the Successful Search. In Propositions 1 and 2, we have 
found evidence that the unsuccessful search is more likely to occur near the 
root since ES, - EU, = p + 0 = 0.65 15 and var S,, - var U,, = 0.12 1. 

(ii) Convergence in Probability. As in Remark l(ii), we can prove that U,,/EU,, 
converges in probability to one as n + ~0. Indeed, again by Chebyshev’s 
inequality and Proposition 2(i), (ii) we find 

therefore, U,, = EU,,(l + o(l)) in probability. 

3. Successful Search 

In this section, we prove Proposition 1. To simplify the analysis, we shall consider 
only a binary model, that is, for V = 2 we set p1 = p and p2 = q = 1 - pl. By 
Property 1, the successful search length is related to the mth derivatives HLmlm,( 1) of 
the generating function H,(z), and one can find a simple physical interpretation of 
H$@( 1). Indeed, let L, denote an external path (i.e., sum of all paths from the root 
to all external nodes) in a family of tries Yn, and S,(i) be a path from the root to 
the ith external node. For a given integer m, we define 

L; = i: S,(i)[S,(i) - l][S,(i) - 21 afe [S,(i) - m + 11, 
i=l 

and let 1F = ELF. We call 1: the mth semifactorial moment of the external path 
length. Then, it is easy to show [24] that also IF = HLm)( 1). Therefore, by Property 
1 SF = Lf/n, and for simplicity we work on l? instead of SF. Lemma 1 and the 
above lead to the following recurrences for the first two semifactorial moments 1; 
and 1; 

1; = n( 1 - p” - q”) + i n k=O k pkq”-k[li + l&k]. 

0 

1; = 2(1 - p” - q”)[l; - n] + i pkq”-k[li + l;i-,]. (3.2) 
k=O 
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Note that (3.1) and (3.2) is a system of recurrences, that is, to find 12 we need 1;. 
Generalizing the above, we can prove the following lemma for general I/-ary 
Patricia tries. 

LEMMA 2. For any integers m and n, the mth semifactorial moment 1: satisfies 
the following recurrence 

(3.3) 

where by definition 1: = n for n I 2. 

PROOF. The proof uses induction arguments applied to (2.3), and is left to the 
reader. 0 

As noted before, the recurrence established in Lemma 2 is a system of recur- 
rences. To compute lr we need lj, lt, . . . , le from the previous recurrences. 
But, the recurrences (3.3) just derived in Lemma 2 have a common pattern and 
they differ only by the first term, which we call the additive term and denote by 
a,,. This type of recurrence has been extensively analyzed by Szpankowski [2 1, 241 
(see also [ 14]), and since we shall often use these recurrences we quote below some 
of the results of [21] and [24] but without proofs. 

Let x0, xl, . . . , x, be a sequence of numbers satisfying the following linear 
recurrence: x0 = x1 = 0, and for n 2 2 

p(I . . * p+[Xj, + * ” + Xj,], (3.4) 

where a, is any sequence of numbers. To solve this recurrence we introduce the 
so-called binomial inverse relations [ 14, 181. We define a new sequence I?,, as 

6, = i (-l)k ak a,, = f) (-l)k n Lik. 
k=O k=O 

0 k 
(3.5) 

(The second equation justifies the name binomial inverse relations.) For more 
details, see Riordan [ 181. In particular, we note that [ 141 

where r is an integer, and c is a constant. In fact, in our entire analysis we shall 
deal only with additive terms of the above form. In general, however, the solution 
to the recurrence (3.4) is derived in Szpankowski [21], and we repeat it below. 

THEOREM 1. The recurrence (3.4) possesses the following solution 

(--1y 
n Cik+kal-a0 

k=2 0 k 1 - xi”=1 p; 
(3.7a) 
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for all n 2 2. In addition, the inverse & becomes 
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(3.7b) 

forallnz2. 0 

Now, a direct and simple application of Theorem 1, together with the fact that 
for a,, = n( 1 - CL, p?) the inverse becomes ri, = n CL, p:-’ for n 2 2 (cf. (3.6)) 
lead to the following solution for the first semifactorial moment 1; of the external 
path length 

If = g (-l)k n k C,“=I pi(l - pi)k-’ 
k=2 00 k 1 1 - ci”=,p; . (3.8) 

The second moment Z,’ for binary asymmetric case satisfies recurrence (3.2), 
which falls into our general recurrence (3.4) with a,, = (1 - p” - q”)(li - n). By 
(3.6), the inverse sequence ri,, is 

6, = 2iA + 2(6,,, - npq”-’ - npq”-‘) - 2Z(p”lA) - 2Z(q”lA), 

where Z(p”lL) is the inverse relation to p”/f. To compute ?A, we use Theorem 1 
formula (3.7b), and then simple algebra reveals 

fi = k CL* Pi(l - Pijk-’ 
1 - XI”=, pf 

k 2 2. (3.9) 

To estimate Z(p”fA), we need the following lemma 

LEMMA 3. Let a,, and 4, are given, and let 6, = p”a,, where 0 I p < 1. Then 

PROOF. Using well-known relationships for binomial coefficients (see Riordan 
[24]) we find 

j. (-l)*(i)P* j% (-I)‘( :) 4 

= j% 7 fijPj(l - PY’3 
0 

and this completes the proof. 0 

Then, Z(p”li) follows from (3.9) and (3.6). This leads to our final results of this 
subsection. 
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THEOREM 2. The second semifactorial moment l;i2 becomes 1: = 2 ’ A, - 2 . B,, 
where 

A, = i (-l)k Iz k (Xi”=1 ~i(l -piY-‘](CiV=l p:I 
k=2 00 k 1 (1 - I,“=, p;)* 

(3.1 Oa) 

B, = 

PROOF. The details of algebraic manipulations are left to the reader. 0 

The explicit formulas derived above for the first two moments of the successful 
search length suggest that we need only asymptotics of the following two alternating 
sums 

and 

T,,,(c) Ef i (-l)k ’ k 
00 

Ck 
k=2 k r 1 - CjLlpf (3.1 la) 

(3.1 lb) 

where r is an integer, and c is a real number. Let hk = (- l)k 2 Iv_, pilnkpj. Then, in 
[21] and [24] (see also [23]), we have proved the following asymptotics for T,.,(c) 
and TL2’(c). 

THEOREM 3 

(i) For any r, c and large II, the following holds 

nc Mnc) + Y - ho h2 
h 

+ 2h: + (-l)‘fi(nc) + O(l) r=O, 1, 

Tn.,(c) = (3.12) 

(- 1)‘nc 
1 

r(r - l)h, +.L(nc) + O(l) r> 2, 

wherer=0.571 . . . is the Euler constant, andfr(n> is a fluctuatingfunction with a 
small amplitude defined as 

(3.13) 

and z;, (k = 0, kl, k2, . . . ,) are roots of the following equation 

1 - ; pi-2 = 0. (3.14) 
i=l 

It is shown in [6], [8], [lo], [14], and [21] that thefunction& has a very small 
amplitude and may be safely ignored in practice. 
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(ii) For large n the alternating sum TL2’(c) becomes 

T:*‘(c) = $ f (In2nc + c fnnc + 6 + f(‘)(nc)j + O(l), 
I 

where 

~ = rh + h2 
h: ’ 

k#O 

-A h3 
+h,-3hl’ 1 

and f (‘)(x) is a fluctuating function with a small amplitude [2 I]. 

Using the above theorem, it is easy to establish our Proposition l(i). We note 
only that the fluctuating function F,(n) in the formula (2.5) on the average value 
of the successful search length becomes Fl(n) = xi”=, pJ [n(l - pi)], and this 
completes the proof of Proposition 1 (i). 

The asymptotics for the second moment and the variance of the successful search 
length are more intricate. According to Theorem 2, we must analyze A, and B, 
given in (3.10). Using Theorem 3, we easily prove the following lemma: 

LEMMA 4. The coeficient A,, given in (3.10a) for large n becomes 

A.=n{&In’n+[e-v]lnn+n+I-,(n))+@I), (3.15) 

where 

77 = $ (h2 + & + 2h,&) - e(h, + &) + 6, 
1 

F,(n) = i i PiPJC2)[nPj(1 - Pi)], i=l j=l 

where h, is defined in Proposition l(i). 

PROOF. To prove (3.15), it is enough to note that the first term A, of 1: can be 
equivalently represented in terms of T:‘(c) defined in (3.11 b) as 

Applying Theorem 3 one immediately proves the lemma. Cl 

To evaluate the second-term B, in the formula on 1: we express B, in terms of 
T,,,,(c) defined in (3.1 la) and studied in Theorem 3. Let 

where, after some simple algebra, one obtains 

B; = k ; i P.PX i C ’ 
0 

Ci([CipX(l - pu) + 1 - PX]k-’ - (l - PX)k-*l> 
A=, u=l I=O Ii,=/1 i 
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where i = (i,, iz, . . . , iv) such that i, + iz + . . . + iv = 1 (1 is an integer) and 
ci = n ,“=, pk. Putting everything together, we show that B, can be represented as 

Bk= i i P~Px i C ’ G 
0 1 

Tk,l[CiPx(l -Pv>+ 1 -PA]- fi,l(l -Pi) 
x=1 u=l I=0 li,=Il i CiPh(l -PY) + l -PA 

Hence, by Theorem 3, we finally obtain 

where 

Ci(fi[n(CipA(l -Pv) + l -PA)1 -fi(n(l -PA)))> 

and the constant p is defined as B,/n. Summarizing, by Property 1, Lemma 4 and 
the above we have just proved 

THEOREM 4. The second factorial moment st of the successful search length S, 
is given by 

,z=&iL2B, n n n 

Inn + 27 - 2p + 2F,(n) - 2FB(n) + @n-l) 

where 7, p, and FA(n), FB(n) are defined above. 

To compute the variance of S,,, we note that var S, = si + ES,, - (ES,,)*; 
hence, the Proposition l(ii) follows with (Y = 277 + p/h1 . (1 - p/hi), and F*(n) = 
2F,(n) - 2F,(n) + F,(n) - [Fl(n)12. Note also that for the symmetric Patricia trie 
h, = In V and hk = h’f, so the coefficient at Inn in the variance disappears. The 
higher moments of the successful search length are analyzed in a similar manner. 
Details are left for the reader, and they can also be found in [20]. 

4. Unsuccessful Search 

In this section, we prove Proposition 2. The unsuccessful search is neither simply 
related to the external path length of Patricia tries nor to successful search, since 
unsuccessful search is more likely to occur at external nodes near the root. This 
makes the analysis much more difficult, and hence we consider only binary 
symmetric Patricia tries (pI = p2 = 0.5). However, we derive asymptotic approxi- 
mations for all moments of the unsuccessful search length. The organization of 
this section follows the pattern adopted in Section 3. 

Property 2 and Lemma 1 proved in Section 2 imply, in particular, that the first 
two moments of the unsuccessful search length satisfy the following recurrences: 
U; = of = of = uf = 0, and for n 2 2 

n-1 

z&2” - 2) = 2” - 2 + c 0 n 
k=l k 

Lli, 

uf(2n - 2) = 2(2” - 2)(& - 1) + (4.2) 
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Generalizing the above, we find 

LEMMA 5. For any integers II and m, the mth factorial moment of U,, satisfies 

uF(2” - 2) = m(2” - 2) up + 5 (-l)k(m - k)up 
k=l 

and uf s 1. 

PROOF. The proof uses induction arguments and is left to the reader. Cl 

Note that (4.3) is a system of recurrences, as in the case of successful search; 
however, this new recurrence is much harder to deal with (cf. [ 14, 221). We note, 
that to compute uz, we need u;, uf, . . . , ue. But, recurrences of type (4.3) have 
been extensively studied by Szpankowski [22], and we summarized these results 
below. 

Letxo,xI,..., x, be a sequence of numbers such that 

given x0=x,=0 and x2,...,xN 
(4.4) 

solve x,(2” - x > N, 

where N is an integer, and a,, is a given, but otherwise arbitrary, sequence. It turns 
out that the solution of (4.4) depends on the so-called BernouNi inverse relations 
(see Riordan [24]). Define for an a,, a new sequence 6, as 

Bkan-k --, a, = i n an-k = - 
0 - k=O k k + 1 fik, (4.5) 

where Bk are the Bernoulli numbers defined as the coefficients of the Taylor 
expansion of z(e’ - l)-’ [ 1, 15, 18, 211 (see also (4.9)). The sequence 6, and a, are 
called inverse pair since 8, = a,. Then, 

THEOREM 5. Our general recurrence (4.4) possesses the following solution 

(4.6) 

where 

k= 1,2,.. .,N, 

b, = an + gn x(nah’), 

and xCnJNj is the indicatorfunction. In addition, the inverse solution Z,, ofxn satisfies 

^ hl 
-%=b,+2,p,- 1 

for n 2 2. 
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Application of Theorem 5 depends on the satisfactory computation of the 
Bernoulli inverse relations. In particular, we need the following, which is proved 
in [ 181 and [22] 

where r is an integer, and 0 < q < 1, while B,(q) denotes the Bernoulli polynomial 
defined as [l, 15, 221 

ze" m Zk 
-= 
ez - 1 

c Bk(f)E. 
k=O 

(4.9) 

Now we are ready to compute the first two moments of the unsuccessful search 
length U,. In particular, recurrence (4.1) and Theorem 5 lead directly to 

4 4=2-.- 
n+ 1 

+ 2&o + (4.10) 

CA = 4B, + 26,1 - 46,o + (1 - 6,o - 6,,) 24, _ 
2” ’ - 1’ 

(4.11) 

where (4.11) is used in the evaluation of the second moment. 
The second factorial moment u$, satisfies recurrence (4.4), and can be equivalently 

represented as 

U1 = u(1) _ p n n n ? 

where UL’) is defined by the following recurrence 

n-1 

(2” - 2)UL” = 2” f 2[& - 1 + 21-n] + c 
0 

n ul” 
k=l k 

and Uf’ satisfies similar recurrence with the additive term equal to 4~;. By 
Theorem 5 (see in particular (4.1 l)), the solution to the above is 

Bk +&,% 2k-1 - 1 
(4.12) 

The analysis of UL2) is much more intricate. Note that the recurrence for Ui2) 
does not fall into our general recurrence (4.4) since the additive term is 4~: (not 
2”a, as required). But ui = 2”(2-“ui), and for the solution, we need the inverse 
sequence to 2-“2~:. But 

LEMMA 6. Let A,, = qna,, and kin is given. Then 

Bn+l-j(q) Bn+l-j 
n+l-j . 

(4.13) 
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PROOF. In the proof, we use identities from [ 11, [24], and (4.5). We have 

=~o(~)Bnpkqk~o(:)k+~ -j’J 

=i,(:)~jqi~~~(n,‘)~B,,kqk 

Bn+l-j-kqk 

Bn+l-j(q) - Bn+,-1 

n+l-j ’ 

and this proves the lemma. 0 

Let now A, = 2Y’uA. Then, using the above one shows 

d,=2[B,(;)-B,]-8Bn+1(lnl:);B’+1+2V,, 

where 

Bn+,-j(l/2> - Bn+I-j 

n+l-j ’ 
(4.14) 

Finally, applying Theorem 5 and the above, we obtain 

THEOREM 6. The solution to uf given by recurrence (4.2) is us = U$? - Ugj, 
where L$” is evaluated in (4.12) and 

(4.15) 

for n 2 2. 

In the next analysis, we need the asymptotics of the following intricate alternating 
sums 

&J(q) = -!- 
i n + 1 k B,+,(q) 

n + 1 kz2 ( )O k r 2k-1-l’ (4.16) 

& 
(2k-’ - 112 * (4.17) 
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In [22] (see also [23]), we have proved the following asymptotics for R,,(q) 
and R’,Z). 

THEOREM 7 

(i) For large n onefinds 

+ !?(I - q + b1) + go(n) + 
ln2 

O(n-l) 5 

R,,(q) = lsn - ; + & - $(I - 4 + &?,I) 
ln2 + g, (4 + OW’>, 

(4.16a) 

(4.16b) 

Rn,r(q) = h T(r, 1 - 4 + 6.1) + -!g g&) + o(n-‘1, r 2 2, (4.16~) 

where G(x) is the psi function, f(z, q) is the generalized Riemann zeta function 
(l(z) = Jc(z, 1)) [I, 4, 11,251, and 

g&z) = i-$ ,- {(r + $$)r(r + z)exp[-2niklgn]. 
kZOrn 

The function gJn> is a fluctuating function with a small amplitude and may be 
safely ignored in practice [ 14, 221. 

(ii) For large n, we have 

Ri2) = $@n - ;[2.5 + fI]lgn + 6 + Go(n) + go(n) + @n-l), (4.17a) 

where 

Gob> = (4.17b) 

. exp[-27riklgn], 

and 3; = ${“(O), where the second derivatives at zero of the zeta function, C”(O), 
was computed by Ramanujan [3, p. 2041, and it is repeated in (2.15b). 

Using Theorem 7, we easily evaluate the asymptotics of the first moment, namely 

U,!, = 2R,,o( 1) = lgn - 0 + g,(n) + O(n-‘), 

as needed in Proposition 2(i). Now, we shall concentrate on the second moment 
of U,,. As before, we evaluate it into two steps. First, we deal with Uy’, defined in 
(4.12). But, V$,‘) = 8R&l) + 4RL2); hence, 

R&l) = tlgn - +0 - 1 + g,(n) + O(n-I). 

The asymptotics for Uk2’ is harder to compute, but using Theorem 7 we can 
easily find tight upper and lower bounds for it, namely 0.48701 5 UL2) 5 0.48748 
(see Appendix). Nevertheless, it is interesting to see if exact asymptotics for Ui2) 
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are available. This interest is motivated not only by a “pure mathematical whim,” 
but such a solution extends the analysis of our general recurrence (4.4) to the case 
when the additive term is any sequence of numbers, not particularly 2”an. Such an 
extension will generalize the analysis from [22], and in addition, it finds substan- 
tially many applications in practice. 

An asymptotic approximation of Up’ depends on finding an appropriate repre- 
sentation on 

(4.18) 

where Vk is given by (4.14), that is, 

Bk+l-j( l/2) - Bk+l-j 

k+l-j ’ 

Note that Vz) is the last term of UA2’ in Theorem 6. In order to obtain the 
asymptotics for V,,, we must express it in terms of Bernoulli polynomials B,(q), so 
we can apply the asymptotics for R,,(q) (see (4.16)) found in Theorem 7. Devel- 
oping the denominator (2’-’ - 1) in a geometric series, we obtain another form 
for V,, namely, 

v, = 5 i ? Bjpi-u 
0 

Bn+l-j( l/2) - Bn+l-j 

x=2 I=2 / n+l-j . 

Then, 

LEMMA 7. Let q = t and define 

Bn+l-j(q) - B”+l-j 
?Z+l-j ’ 

(4.19) 

(4.20a) 

Then 
9-l-, 

Tf = 2 B,(lq’) + B,. 
I=1 

(4.20b) 

PROOF. Let T,(z) be the exponential generating function for T;t. Then, multi- 
plying both sides of (4.20a) by zk/k!, one finds 

212 - 1 
T,(z) = $q e:2-~ _ 1 . 

The easiest way to show the above is by using the so-called generalized Bernoulli 
polynomials, as defined in [ 151. Then, by consecutive applications of the following 
identity (e”* - 1) = (eZi4 - l)(e”” + 1) = (e”’ - l)(e”” + 1)(eZ’4 + l), we can 
obtain 

TX(Z) = fi ki2 (1 + ezqk). 

Inverting this formula one proves the lemma. 0 

Now, applying Lemma 7 to our expression (4.19) on Vn, we show that 

&+,(1/2) - &+I 
+ 

47(W) - 4 
n+l I 2 . 
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This allows us to represent Uk*’ = 4/I as 

709 

where r,(q) is defined as 

1 
r,(q) = - i 

n + 1 
n + 1 k=O ( ) 

&+1(q) - &cl 
k (k + 1)(2k-’ - 1). 

The asymptotic analysis of R,& q) is given in Theorem 7; hence, to compute P we 
need only asymptotics for r,(i) given in the lemma below. 

LEMMA 8. For large n, the following holds 

{‘(l - t) dt + ; go(n) + @n-l), 

where [4] 

PROOF. Using some well-known identities for Bernoulli polynomials [ 1, 41, we 
come up with 

r,(q) = ,$-:‘I’ 1 dt = s oq &o(t) dt, 

and then Theorem 7 proves the lemma. 0 

Applying Lemma 8, one finally proves the formula on p established in Proposi- 
tion 2(ii) eq. (4.15~). The Proposition 2(ii) follows from the above and (4.18), if 
one notes that var U, = ui + ut - (uk)‘, and the fluctuating function G,(n) in 
(2.14) becomes G*(n) = 12,,(n) and 4Go(n), where go(n) and Go(n) are computed 
in Theorem 7. Finally, to prove the asymptotics for the higher moments, we 
proceed in the same manner as above. Details are left to the reader. In fact, the 
reader can find this derivation, and some others omitted in this paper, in [20]. 

Appendix. Upper and Lower Bounds for CT;*) 

We estimate UC*) defined as n 
n-1 

(2” - 2)UK’ = 4u; + c 
0 
n up nz-2 

k=l k 

with Us) = Ul*’ = 0. This recurrence is not of type (4.4), and in this appendix, we 
give a tight lower bound and a tight upper bound on U3. In fact, we prove that 
ui*) = O( 1). 

Note that by Proposition 2(i) uh = lgn + 0( 1); hence, we can find such constants 
lo, El and t2 that lo 5 ut 5 t;r n + 12. This implies that upper and lower bounds for 
ut might be established through Theorems 5 and 7, since for the lower bound we 
assume a,, = [,2-” while for the upper bound we set a, = [, n2-” + t22-“, and these 
fall into our recurrence for (4.4). The accuracy of our evaluation depends on a 
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good approximation of u: for small values of n, say n 5 N. In fact, we assume that 
we know U; = U; = 0 and u$, . . . , z&,. Then 

LEMMA Al. For n > N, the following holds 

&I I uf % &n + [2 642) 

with [,I = uL+~, [, = [(N+ l)In2]-I, .$ = &, - l/ln2. 

PROOF. The proof uses induction applied to recurrence (4. I), and is left to the 
reader. 0 

Let us now define two sequences x,, and J?,, as 

&J = Xl = 0, 
u$” up 

&=---, . . ..m&=---. 
4 4 

(2” - %I = t0 + n > N, 

and 

(2” - 2)j& = [2 + (It? + II > N. 

(A3) 

(A4) 

Note that by Lemma 7 4&,, 5 Ui2) I 4c?,,. The asymptotic approximations 
for (A3) and (A4) are available by Theorems 5 and 7 with a,, = to2-” and a, = 
t;1 n2-” + t2 2-“, respectively. 

THEOREM Al. For large n, the following holds 

N iWG ?c, = 0.5&@ + 0.51 + & c - + O(n-‘), 
r 2 r (A5) 

with 

and 

with 

G, = X, - 2-’ xk + 40 + i 
0 I- 

’ &i 
i=l k 

, r= 1, 2, . . . . N 

N iTrkr zn = [, + 0.5&(8 + 0.5) + & ; y + O(n-‘), 
r 2 

646) 

gr = Xv - 2-’ r=l,2 ,..., N. 

Note that by Theorem A 1 we have proved that Up = O( 1). Let lJL2’ = 4/3, and 
fi, p be the lower and the upper bound for p, that is, z,, = g and ,-?,, = p. The 
accuracy of /3 evaluation depends on N. Table II contains g and pfor 2 5 N 5 6. 

In Section 4, we have proved that /3 = 0.487385, which confirms the above 
approximations. In fact, the method established here can be used to solve the 
recurrence (4.4) in the case when Theorems 5 and 7 are not applicable; that is, 
when the additive term is not of the form 2”a,. For example, if the additive term 
in (4.4) is log2n, then using our approach, we can prove that 0.4997 I X, 5 0.5001. 
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TABLE II 
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2 0.46574 0.49869 
3 0.48020 0.4903 1 
4 0.48479 0.48824 
5 0.486411 0.48766 
6 0.4870 1 0.48748 

NOTE ADDED IN PROOF. Recently, this was formally proved by B. Rais, P. Jacquet, and 
W. Szpankowski, A limiting distribution for the depth in Patricia tries. Tech. Rep. CSD TR-954. Purdue 
Univ., West Lafayette, Ind., 1989. 
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