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ABSTRACT
We present a design of a distributed publish-subscribe
system that extends the functionality of messaging
middleware with “relational subscriptions”, to support
timely updates to state derived from published messages
while preserving high throughput, scalability, and
reliability.
Critical to our design is our service guarantee of
“eventual correctness”. Eventual correctness is a weaker
guarantee than the ACID properties of conventional
databases, yet is useful enough to deliver state that is
“just consistent enough”.
A key component of our design is a monotonic type
system. All states delivered to clients represent facts that
are permanently true, that may be refined by future
updates, but will never become false. The monotonic
type system is used both to formalize eventual
correctness, and as a basis for our implementation,
which generalizes the “Guaranteed Delivery” protocol
previously implemented in the Gryphon system.
We discuss: (1) our monotonic type system and
relational subscription language; (2) eventual
correctness; (3) the architecture of our implementation;
(4) potential optimizations that form a basis for future
studies.

Categories and Subject Descriptors
D.3.3 [Distributed Systems]: Publish-subscribe

General Terms
Design, Reliability, Languages, Event Distribution Systems

Keywords
Relational subscriptions, continuous queries, monotonicity

1. INTRODUCTION
With the proliferation of computers and communication

networks, timely access to information is fast becoming a reality.
A growing number of applications, such as stock trade
monitoring, sports reporting, traffic condition monitoring, etc.,
require the system to push information to users based upon a
subscription, rather than reacting to repetitive polls. Content-
based publish-subscribe systems support efficient and scalable
message delivery for those cases where the subscription specifies
a filtered subset of the published messages. We propose an
approach to extending publish-subscribe middleware to include
subscriptions to changes to state derived from event histories.

1.1 Why “stateful” middleware?
Consider a user who is monitoring stock market trades and

wishes to be notified of changes to the hourly low, hourly high
and current price of a selected set of issues as soon as such
information is known. Suppose that publishers publish stock
quote events following the schema: [time, issue, price, volume].
In a pub-sub system like Gryphon, the middleware filters and
routes events, but cannot derive new events.  We call this type of
pub-sub system stateless, because the processing of each event
depends only on the data in that event. Any additional state
derivation would have to be performed either by publishers prior
to generating events, or by subscribers in response to receiving
events.  In this example, the client would need to respond to each
stock quote event by updating the relevant state: the high, low,
and latest price for each hour. In contrast, in a stateful pub-sub
system, the middleware would incrementally maintain the states
and deliver the updates, in response to multiple client
subscriptions each having a form such as “notify me of changes to
the hourly max, hourly min, and current of selected issues”.

There are a number of situations where a stateful system
would be more efficient than the stateless one:
• Reconnection. In a distributed pub-sub system, messages can

be intermittently dropped due to transient failures or
congestion. With “best-effort” delivery, there could be
inaccurate state if the lost message happened to be either a
high, a low, or the last trade of the same issue. A more reliable
quality of service supported by Gryphon, namely “guaranteed
delivery”, assures that messages are delivered exactly once and
in publishing order. Although “guaranteed delivery” quality of
service may be appropriate for dealing with transient losses of
messages, it can be very inefficient when dealing with a longer
outage. Suppose, for example, that a client disconnects for 30
minutes. Then upon reconnection, the client would be flooded
with 30 minutes worth of missing messages. A stateful
middleware, knowing how the messages are used, would just
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deliver a fresh update to the high, low, and current price of each
issue. A similar problem arises if a client joins the system with
his subscription in the middle of the trading day and needs to
“catch up” the state.

• Alerts. In a related application, suppose a client needs to
maintain a list of “high traders” � stocks that have traded over
500,000 shares in the last hour. Now even in the failure-free
case, the client will be receiving unnecessary messages that do
not change the subscribed state. Instead of sending all the stock
quotes, a stateful middleware reduces message traffic by
sending only the information that a new issue has become a
high trader or that an existing issue is no longer a high trader.

• Dynamic Subscriptions. In another application, suppose the
client needs to track the stock quotes of issues on the ‘buy’ list
of another organization, where insertions and deletions from
this ‘buy’ list are published as events from a separate topic.
Expressed as a stateless pub-sub application, this would be a
rather complex program. One subscription would be needed to
obtain the events that determined the current ‘buy’ list. Each
time the content of the ‘buy’ list changed, the subscription to
the stock quote topic would be dynamically withdrawn and a
modified one issued. Extra care is needed to make sure that no
events were lost or duplicated during this change. In a stateful
pub-sub system, dynamic subscriptions of this sort are simple
applications of joins of events from multiple publishers.

If the service boundary between client and middleware were
moved so that the responsibility for computing derived state falls
to the middleware, there are multiple benefits:
• There can be reduced message traffic to clients.  Depending

upon the application, these benefits either apply during normal
operation or during recovery.

• Client applications have less complexity with regard to
initialization, recovery, or dynamic subscription changes.

• There are more opportunities for the middleware to optimize its
workload based upon the consolidated set of subscriptions
issued by all clients.

We therefore propose an extension to the Gryphon content-
based pub-sub system to support relational subscriptions. A
relational subscription is a continuous query over the event
streams, expressed in a declarative relational subscription
language. In addition, we propose techniques for our relational
subscription middleware to carry over the design requirements of
the original Gryphon system, namely, high data rates, many
publishers and/or subscribers, widely distributed over an overlay
network of brokers, and tolerance of broker and link failures.

1.2 Overview of Key Concepts
The key features of our model are: (1) our model in which

published event histories are base relations and subscriptions are
views; (2) a service guarantee called “eventual correctness” that
maximizes the flexibility of the implementation by weakening
ACID transactional properties yet promising just enough precision
for the client; (3) relation values that represent monotonic
knowledge. We give an overview and motivation for these key
concepts in our design.

1.2.1 Relational Model
In our proposal, we formalize each publisher topic as a

“source” relation representing an event history, where each tuple

corresponds to an event. Each event represents a change to our
knowledge of the world.  Each source relation is keyed by ticks of
“time.”1  Our type system is rich enough so that tuples can contain
structured data such as nested embedded relations. Each
subscription is a request to receive incremental updates to a
derived view defined by a relational expression on one or more
base relations or other views.

1.2.2 Eventual Correctness
Although some of the original published events in a pub-sub

system may come from database systems (others may come from
direct input from humans or sensors), the pub-sub system itself is
not a database system.  We do not want the system to implement
heavyweight protocols in support of more consistency than the
subscribers need. However, we want to promise enough reliable
semantics so that applications can confidently react to the states
they receive.

Consider an illustrative application – a sports scoreboard.
(We have chosen hockey as the example; any sport with
monotonically increasing score and some concept of “periods”
will do for this example.) Reporters at each site distribute updates
of game events; fans sitting in one stadium see a scoreboard in
which the approximately current score of all games being played
that day are available. Scores of different games may possibly be
reported with different delays.  This level of imprecision is
acceptable to most fans, and is expected. However, some strong
properties typical of database systems are not guaranteed:
• Scoreboards at different stadiums are not necessarily consistent.

• Scores of different games as seen on a single scoreboard are not
necessarily synchronized.  For example, if the NY-Detroit game
score appears as 4-2, and the Chicago-Boston score as 5-3,
there may never have been a time at which Boston had more
goals than Detroit (because Detroit’s third goal may have
happened before Boston’s third goal and its notification was
received later).

• Not every intermediate state is guaranteed to be seen. For
example, if the NY-Detroit score was 4-2, and I later see it as 5-
4, I may not be able to answer the question of whether Detroit
ever tied NY.

What this implies is that the full atomicity and consistency
properties of database systems do not hold, and additionally that
the properties of some continuous query systems such as the state
as of each instant of time must be seen do not hold either.
However, there are some properties that can be guaranteed in this
application:
• The knowledge I receive is monotonic. For example, I know

that if I see a score of 4-2, then at least 6 goals must have been
scored in the game.

• Some scores may be labeled final and I will know that they will
never change.

                                                                
1 This time typically represents the time at which the event

becomes known to the system. When the events are themselves
the result of transactions, they are typically the transaction
commit times; for externally generated events, the times are
assigned at the point of publication.  The events might
additionally contain attributes referring to other times.



• There may be some local consistency. For example, it may say
that as of period 2, the score of the NY-Detroit game is (at
least) 4-2, and I can rely on the fact that NY’s fourth goal came
at or before the second period.

• I will never see anything false. For example, I will never see a
game go into overtime if it never did, or a score of 4-3 if the
final score is 4-2.

• I will eventually see a state consistent with everything that
happened. For example, if the score of the actual game now is
4-2, I will eventually see either 4-2 or some higher score.  As a
corollary, if the actual state is a final score, I will eventually see
exactly that final score.

These properties promised to the viewer of a hockey
scoreboard are called “eventual correctness” and will be
formalized in a later section. Many stateful pub-sub applications
have requirements similar to that of the sports scoreboard. (In
fact, sports score reporting is one of the current applications of
Gryphon.) For applications requiring more refined knowledge, it
can be obtained by writing more refined queries. This is because
all of the original events with their timestamps are in the source
relations and can be extracted with an appropriate query. Usually
such queries involve making explicit reference to time. For
example, suppose that I actually did need to know whether there
was a time when Boston had more goals in its game than Detroit
had. Although the more usual “latest score of each game” query
will not derive this knowledge, a more specific query “tell me at
which times t (or at how many times t) was it true that Boston’s
latest score as of t exceeded Detroit’s latest score as of t” will do.

1.2.3 Monotonic Knowledge Model
The monotonic type system is the key component of our

design and the basis for establishing the eventual correctness
guarantee. All source relations, and all views derived from source
relations are monotonic.  In our model, monotonicity means
monotonic knowledge, not necessarily arithmetic monotonicity.
Relations and views represent eternally true facts, some of which
are currently unknown because the future has not happened yet.
Values of relations and views begin in a state of total ignorance
and evolve towards a state of more precise knowledge. In the case
of source relations, initially each tick has an “unknown” value for
each non-key column of its schema.  As time passes, the tuple at
each tick evolves from “unknown” to either a “silence” tuple
(meaning nothing happened at that tick) or to an “event tuple”).
That tuple is now “final”, meaning it does not evolve further.  But
in derived views, it is possible for values to evolve multiple times.
Consider the application that tracks the hourly high, low, and
current price of various stock issues. The column representing the
“high” price is a simple monotonic type: each value has either the
form “≥x” or “=x”.  For example, a value of the first form “≥80”
means that the high price is at least 80 (but might be higher later).
It represents the result of the aggregate operator max applied to
the prices in less than an hour’s worth of ticks, some of which
have an unknown value (because they lie in the future or have not
been delivered yet). A value of the second form “=80” represents
the result of max when the hour has ended and all ticks have a
known value (either some price or silence). This second type of
value is a final value, analogous to a final hockey score.
Applications may need to distinguish the cases of “the high is at
least 80 but possibly higher” and “the high is exactly 80”. The
column representing the “low” price is a similar type, where the

values have the form “≤x” or “=x”. Finally, the column for the
“current price” is the value of the aggregate operator latest. It has
a special form “x@t”, which is ordered by t and means “last
changed at time t and had value x.” In our system, the relational
subscription compiler computes the type of each column of each
view based upon the expressions used to derive these views.

Notice that Boolean predicates (e.g. max(price) < 100) on
monotonic values can change from being temporarily true (e.g. a
current high of at least 80 is temporarily less than 100) to finally
true (when the final value is less than 100) or finally false (when
the final value winds up being 100 or more).

Rather than thinking of views as tables that change through
time, it is preferable to model them as increasingly precise views
of information that will not be known until the infinite future.

Representing actions for deletion of rows (modeled as a
query over two relations such as finding the available flights if
they are in the Booked relation and not in the Cancelled
relation”) or subtraction of integers requires computing a value
that must be interpreted mathematically as monotonic. This turns
out to be non-trivial and is not discussed here for space limitation.
For more detail, please refer to our technical report [19].

1.3 Structure of the paper
The rest of the paper is structured as follows. Section 2 gives

a more rigorous description of the relational subscription model,
including the monotonic type system, the subscription language,
and the definition for eventual correctness. Section 3 presents the
architecture and summary of the protocols of the implementation.
Section 4 describes related work, and Section 5 concludes with
future work.

2. RELATIONAL SUBSCRIPTION MODEL
We formalize the relational subscription model as follows.

Each publisher corresponds to a source relation representing an
event history. An event history is an append-only relation keyed
by ticks of real or virtual “time”.  As time passes, the unknown
value will change either to a silence or to some event value. A
subscription is a request to receive incremental updates to a
derived view defined by a relational expression on one or more
source relations and/or other views.

2.1 Relations
All relations in our model are (following Darwen and Date

[11]) relation variables, i.e., entities containing relation values
that can change over time. All relation variables are statically
typed.  A relation type determines:
• A schema: a collection of column names associated with

column types.  Each row of a relation is a tuple consisting of
one value of the appropriate type for each column. Some types
may include one or more special values with interpretations
such as “unknown”, “silent” or “deleted”. The algebraic
operations on all types are fully defined over all values
including these special values.

• Key and non-key columns: The columns defined by the schema
are partitioned into a set of key columns and a set of non-key
columns. Non-key columns may be of relational type (that is,
there is no “first normal form” requirement).

• Optional other constraints. Type analysis may impose
additional constraints on values of a relation variable. An
example of a constraint is the history constraint, obeyed by all
source relations. The history constraint specifies that if the non-



key values keyed by time tick t are “unknown”, so are the non-
key values at all ticks keyed by tick t’ where t’ > t.

Mathematically, values of a relation variable are total
functions from the Cartesian product of the domains of the key
columns to the Cartesian product of the domains of the non-key
columns. A consequence of totality is that there exists a tuple for
every possible value in the domain of the key columns. What is
normally thought of as an “absent row” is just a row all of whose
non-key columns have values such as “unknown” or “deleted”. In
our formalism, insertions are modeled as the replacement of an
unknown value with an actual event; and deletions are modeled as
the replacement of an actual event with a deleted value. At the
implementation level, special data structures are used to avoid
physically storing these unknown or deleted values.

2.2 Relational Expressions
The relational subscription language is derived from

traditional relational algebraic operations (select, project, join,
extend, etc., together with usual aggregation operators such as
sum, max, min, count, etc.) We also support specialized
operations such as merge (a kind of union), and a selector for the
“best-k” elements.

2.3 Subscription Graphs
In our relational subscription model, a set of relational

subscriptions can be represented logically as a subscription graph
– an acyclic directed hypergraph where each node is a relation and
each hyperedge represents a view operation – a relational
expression with one or more relations as input, and a single
relation as output. The leaves of this graph represent the
subscribed views. Figure 1 illustrates a subscription graph for a
simple airline reservation notification application with two

subscriptions, together with typical values of the relations. (In this
picture, we depart from the usual depiction of relations, in which
rows that are not present are not shown, in order to distinguish
between “silent” rows � shown with gray shading, and
“unknown” rows � shown with ‘?’.  The invisible silent and
unknown values have different mathematical treatments: for
instance, an unknown value can evolve, whereas in this example a
silent value cannot.)

In this example, there are two source relations: Flights gives
various information about today’s flights including the maximum
seating. Booked shows the flight name and number of booked
seats for each booking. A hyperedge connects Flights and
Booked to the intermediate view Available. Its operation joins
Flights and Booked, computing the number of available seats,
and selecting flights that have at least one available seat.  Notice
that the flight NW44 has been “deleted” from Available because
all 10 of its seats have been booked. Two hyperedges connect
Available to subscribed views: Cheapest is a subscription for the
3 cheapest available flights to London Heathrow (LHR) –
currently there is only one flight available. Planned is a
subscription tracking the availability of flights AA141 and UA23.

The execution paradigm for the relational subscriptions is as
follows. Initially, the value of each column of the tuple for each
tick in which the value of the row for every tick is “unknown”. As
time goes on, tuples in each source relation evolve from an
unknown value to a known value – either silence or an event. The
derived views are then incrementally re-evaluated to reflect the
new events, and these changes are propagated down towards
subscribed views at the leaves.

6NW448

??9

7

4AA1416

5

4NW444

3

2

2AA1411

HeldFlightt

?

DET

LAX

JFK

From

?

10

50

120

Seats

?

$220

$329

$884

Rate

?

CHI

IND

LHR

To

8

??9

7

830NW446

1530UA235

830AA1414

3

2

1

DepartFlightt

114$884830LHRJFKAA141

LAX

From

50

Avail

$329

Rate

IND

To

NW44

1530UA23

DepartFlight

114$884AA141

Rate Avail

NW44

UA23

Flight

114AA141

50

Avail

NW44

UA23

Flight

Booked Flights

Available

Cheapest Planned

Figure 1. A subscription graph showing two source relations, an intermediate view, and two subscriptions



2.4 Monotonicity
Monotonicity is central to the design of the language, the

type system, and the correctness specifications in our model.  The
underlying definitions and principles are the following:
• Any column of any tuple that can change value over time

belongs to a monotonic type. The domain of every type
includes a partial order relationship î, interpreted as “may
evolve to”. Types whose values can’t change are non-evolvable
types. For these types, v î v' iff v = v'.

• Each scalar monotonic type is defined with its own partial order
î, and with a unique bottom value, the “unknown” value.

• Any value v in the domain of a type T, with the property that
there exists no distinct value v' in the same domain such that v
î v' is called a final value in T.  A domain may contain many
final values.

• A value v can only change by evolving to a higher value v'.
Final values never change.

• Every relational type is monotonic.  Given two values R and R'
of a relation variable, R î R' iff for each tuple r in R, r î r',
where r' is defined as the tuple in R' with matching key to r.
The algebraic operations that derive views from relations
preserve monotonicity.

• Every relation with an evolvable key column is also a
monotonicity-preserving function.  That is, if k and k' are
values of a key column and k î k', (and all other key columns
are identical), then for each non-key column, if v (respectively
v') is that column’s value in the row with key k (respectively
k'), then v î v'.

Because values evolve only in a single direction, and only to
those values related by the partial order î of the type, it becomes
possible for external observers of the system to interpret the tuples
as “persistent knowledge”.

Here are examples of some simple monotonic types:
Figure 2(a) shows a type of a column in a source relation that

takes on a value from 0 to 3. The unknown value is represented as
“?”; and the silence value is represented as “S”.

Figure 2(b) shows a type of applying the max operator to a
column whose type is shown in Figure 2(a). As each of the
column values evolves from “?” to “S” or a number in [0..3], the
result of max evolves monotonically. For example, the result is
“≥1” if one of the values evolves to 1, and there is at least one
other row whose for which the column values is still unknown;
the result is “=2” when all the values are evolved to known values
and at least one of them is 2. Notice that although conventionally,
silent tuples and unknown tuples are both considered “absent”
tuples, yet the result of max(“S”, “?”, 2) is “≥2,” while the result
of max(“S”, “S”, 2) is “=2.”

Figure 2(c) represents the monotonic “integer range” type
between 0 and 3. More specifically, this is the result type of
applying the count operator to a column whose type is similar to
the type shown in Figure 2(a); and where we know from the key
that there are three rows in the group to be aggregated. For
example, the bottom value [0..3] is produced when all three
values are “?”; and the value [1..3] results from one of the values
evolves from “?” to any non-silent value. The value [1..2] results
if a second value evolves from “?” to “silent”.

All relational operators F are monotonicity-preserving, that
is, for any input v and v, if v î v’, then F(…, v, …) î F(…,v’,

…). Details about the formal representation of the monotonic
types can be found in [19].

2.5 Eventually Correct Delivery
The eventual correctness property is a separate promise to

each subscriber, not a global consistency property.  Suppose S is a
subscribed view, and its subscription depends on source relation
variables R1, ... Rn via a relational expression F (F is a composite
expression from the expression for S and all the intermediate view
expressions). We express eventual correctness in a distributed
manner, i.e., in a way that does not require knowing a single time
at two distinct sites.  Let ri(ti) denote the value of relation variable
Ri at some local time ti.  Then the following properties hold:

Safety:  The subscriber never learns anything false. Let
s(seen) be a value seen at S. As the set of source relations
continue evolving, applying F to the source relations will always
yield a value that implies s(seen), i.e., a value higher than or equal
to s(seen). In Figure 2(c), if s(seen) is [1..2], these values are in
the shaded area constituting the “future light-cone” of [1..2].
Formally, there exist t1, … tn, such that for all t1' > t1, … tn' > tn,
s(seen) î F(r1(t1'), ... rn(tn')).

Liveness: The subscriber eventually learns everything that is
true. As before, let r1(t1), ... rn(tn) be values of relation variables
R1, ... Rn when it is time t1 at R1, ... tn at Rn. Let s = F(r1(t1), ...
rn(tn)). Then eventually, there will exist a value s(seen) at the
subscriber in the “future light-cone” of s, that is,  s î s(seen).

A consequence of the above rules is that if the publishers
quiesce, (i.e., their values stop changing), all subscribers will
eventually see the correct result.

3. ARCHITECTURE AND PROTOCOLS
The architecture for a relational subscription system is a

generalization of the architecture of the Guaranteed Delivery (GD)
service in the Gryphon system. The system is implemented on an
overlay network of brokers. Although any broker may play any
role, we distinguish the roles of publisher-hosting broker (PHB),
subscriber-hosting broker (SHB), and intermediate broker. Events
published at any of the PHB’s are propagated through knowledge
graphs where the resulting states are derived and delivered to the
interested subscribers.

A knowledge graph is created after compiling the
subscriptions. It serves as the execution plan for the subscription
graph. A relation object corresponds to a node of the subscription
graph, a transform object corresponds to a hyperedge. Figure 3
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illustrates the relationship between two upstream view objects, a
downstream view object, and a transform, for a subset of a
knowledge graph (e.g. the derivation of Available from Booked,
Flights in Figure 1). In our prototype implementation, we used
JavaCC to generate a compiler that reads a set of relational
expressions, analyzes their types, and produces the knowledge
graph.  Because views and transforms communicate via
asynchronous messages and the protocols tolerate loss and reorder
of messages, these objects can be distributed across brokers
without affecting the correctness of the protocol, although some
placements will be more efficient than others.

The protocol for the relational subscription system consists
of two parts: the basic protocol adapted from the GD protocol and
an extended protocol addressing the broader set of relational
operators.   Guaranteed delivery for stateless subscriptions can be
thought of as a special case of relational subscriptions in which
the only operations are select and merge.

3.1 The Basic Protocol
At execution time, published messages enter the system at a

publication endpoint in the PHB. Each message received from a
publisher is assigned a tick number at the PHB. Adjacent ranges
of silence ticks before and (optionally) after this tick are also
generated. After logging the value to stable storage, each message
is delivered to the source relation object associated with the
event’s topic.  PHBs do not need to share a common clock,
although it is advantageous for the clocks to be approximately in
step.  If events from multiple PHBs are merged, the merged
relations might contain a range of unknown ticks between ranges
of known ticks.  This could cause delay in delivering messages to
those clients that require messages in tick order, but will never
cause safety or liveness violations.

Within the knowledge graph, view objects hold the state of
derived relations (“knowledge”). Knowledge increments are
passed downstream in the knowledge graph, incrementally
updating downstream view objects according to the transform
associated with each operator. Since in GD the only operations are
select and merge, it follows that the only knowledge increment is
to replace an unknown tick with a silence or a value tick, and that
all views deriving from a source relation or from several merged
source relations have the same signature. The transforms are
straightforward: select is a filter, and merge simply passes value

ticks through, but delays passing silence until all inputs have sent
silence.

View objects also keep information about how urgently they
need to receive knowledge. This information is called curiosity:
positive curiosity indicates that there is or may be lost, missing, or
incomplete information that is needed from upstream; negative
curiosity indicates that certain kinds of information is no longer
needed, or is temporarily not needed. Curiosity is passed upstream
in the knowledge graph. An upstream object satisfies curiosity by
delivering the requested state if it has it, or else by propagating the
curiosity further up. Ultimately the logged source relations can
always satisfy curiosity.

Because value ticks are sparse relative to silence ticks, each
knowledge increment message consists of either a range of silence
ticks, or of a single value message coupled with ranges of past and
future silence ticks. A doubt horizon separates past ticks (all
values or silence) from future ticks (all unknown). Because
messages can be lost or reordered, gaps (unknown ticks between
value or silence ticks) can appear. The protocol will initiate
positive curiosity when gaps are detected, or whenever the doubt
horizon has not advanced for a designated period of time. As
values are delivered and acknowledged by subscribers, they are no
longer needed, and negative curiosity is passed upwards. The data
structure for storing value, silence, and unknown ticks is
optimized for the case where gaps are infrequent and located close
to the doubt horizon time.

3.2 The Extended Protocol
In a relational subscription system, the protocol becomes

richer. Specifically:
• The relation objects can have different schemas. This is because

we not only support select and merge, but also join of multiple
relations or views.

• The transform objects need to be stateful or else need to read
state from relations. The compiler generates the “partial
derivative” for each expression relative to changes to the
relevant columns of its input.

• Because we have to tolerate lost or duplicate messages, the state
kept by the transforms needs to account for not only the current
partial results, but also the input state that it reflects. For
example, if a transform is tracking the sum of some column
from a source relation, it needs to track which range(s) of rows
are being summed over, so that: (1) it knows where gaps are,
and (2) it can ignore retransmissions of rows that have already
been included in the sum.

• The incremental changes to knowledge may be not only
replacing unknown values with silence or data, but also
advancing values along the monotonic partial order. They are
often, but not always O(1).

• Curiosity and negative curiosity can pertain not just to time
ticks, but also to values satisfying predicates.  Changes to
values of a relation can cause it to need to receive changes to
only certain changes to upstream relations.  For example, if all
seats on a flight are booked, then the Available view does not
need to track changes to other parameters of the flight.

• Negative curiosity can be temporary. For instance, in the
predicate ‘a and (b>0)’, if ‘a’ is temporarily false, then changes
to the value of ‘b’ are temporarily irrelevant and optionally may
be suppressed by negative curiosity to save message traffic, but

Figure 3. View and Transform Objects and the flows
between them
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then re-requested if ‘a’ should later become true. For this
reason, the system needs to be tuned to provide an appropriate
balance between the costs of wasted messages that will be
ignored versus the delays of having to pull for information
when it is not readily at hand.

• Some operations, e.g. “cheapest 3”, will use a combination of
push and pull strategy when distributed, because the algorithms
that implement them “guess” that certain values will not be
needed, and pull for them when they are later needed. The
implementation of the view might decide to track changes to
the cheapest 5 flights, for example, so that if two of the
cheapest 3 become unavailable, it can immediately display the
next two in order. But if a third flight becomes unavailable, it
then will need to “pull” to find a new third-cheapest flight.

4. RELATED WORK
The work described in this paper extends our previous

research on the Gryphon content-based pub-sub system with
continuous queries over streaming data

The Tapestry system [20] introduces the notion of standing
queries with continuous semantics. Continuous semantics is a
stronger notion than the one presented here: under this semantics,
a query is treated as if it were re-executed at every instant of time.
Tapestry also introduces the notion of monotonic relations and
monotonic queries based upon an ordering with the subset
relationship. This is a more specialized definition of monotonicity
than ours. They transform queries into a “standard form” and then
convert queries that are non-monotonic to the narrowest query
that is monotonic. This differs from our system in which the type
system is expanded so that all queries are monotonic using a more
generalized partial order. Their standard form involves selections
without aggregations.

The Chronicle model [13] introduces the view update
problem for views derived from append-only ordered sequences
of tuples (chronicles) and traditional relations. Chronicles
correspond to the source relations of our model. The emphasis is
not so much on timely or fault-tolerant delivery as on accuracy
and incremental computational complexity.

Recently, there are an increasing number of continuous query
systems being designed and implemented. The OpenCQ system
[14] explores system support for efficient evaluation of
continuous queries driven from event streams. The NiagaraCQ
system [9] allows a very large number of continuous queries
registered over distributed XML data and apply dynamic re-
grouping to share computation and provide scalability.

The CACQ system [18] extends an adaptive query
processing framework called Eddies [6] to execute the disjunction
of all continuous queries posed by the clients of the system.
Psoup[8] extends the mechanisms developed in CACQ, allowing
queries over historical data and intermittent connections. The
idea is to treat query processing as a symmetric join between data
and queries. The focus of both systems is main-memory query
optimization under failure-free conditions.

The STREAM project [15] aims at developing a general-
purpose Data Stream Management System (DSMS). Its focus has
been resource allocation to approximate the answers under limited
resources and algorithms to determine the memory requirement of
queries.

The Aurora system [7] is designed to support stream
monitoring applications. A recent effort [10] extends the

centralized architecture of Aurora to distributed settings: the
Aurora* architecture addresses a small-scale distribution within a
single administrative domain; the Medusa architecture addresses a
large-scale distribution across administrative boundaries. The
optimization they proposed for load balancing is to repartition the
network by sliding and splitting the trigger boxes across different
machines.

The Cougar sensor database system [5] builds upon the
previous work on sequence query processing and view
maintenance over sequence data. Fjords [16] is an architecture for
building query plans for a sensor network with a mixture of push
and pull connections between modules, and provides a set of non-
blocking and windowed operators to execute the plans. Madden et
al [17] and Yao and Gehrke [21] propose algorithms and routing
protocols to support in-network aggregations. Partial aggregation
and packet merging are performed in a distributed yet
synchronized fashion to reduce communication cost and save
power.

In all the centralized continuous query systems studied so
far, there has not been an issue of a correctness specification for
query results – at the time of computing the updates, all the
relevant information to this time point is available to the system;
users either receive the precise answer or an approximation with a
provable bound. However, in a distributed setting, because
messages can be lost or out-of-order, a query at a site is not
guaranteed to see all the necessary input data at the time of
evaluation. Thus, an appropriate correctness guarantee such as
ours is essential to achieve high scalability.

Previous research on information dissemination and pub-sub
systems has been focused on content-based filtering of messages
or documents. Xfilter [2] is an XML document filtering system
that indexes XPath queries after converting them into a Finite
State Machine representation. Febret et al. [12] describe an
efficient algorithm that groups subscriptions based on their
schemas and re-optimizes the grouping dynamically upon changes
in subscriptions and event patterns. Finally, content-based pub-
sub systems such as Gryphon proposed an efficient matching
algorithm for event matching using a parallel search tree (PST)
[1]. In [3], a distributed extension of the matching algorithm is
discussed which serves as the basis of a multicast protocol for a
network of brokers.

5.  FUTURE WORK
A prototype implementation exists for a subset of our

relational language.  However, the interesting open questions
concern how to exploit the flexibility implicit in our weak
guarantee to enable the middleware to optimize delivery.  Here are
the main areas we are examining:
• Tradeoffs of pushing and possibly storing messages that may

not be needed versus pulling, e.g., the example of the cheapest-
3 transform in which a choice must be made to keep more than
3 rows and pull less often, or to keep 3 rows and pull whenever
any of the 3 cheapest rows is deleted.

• Consolidation techniques for large numbers of subscriptions.

• Placement of relation and transform objects on brokers.

• Exploiting “selective curiosity” to quench message streams, or
to convert stateful subscriptions to dynamic stateless
subscriptions.  (A typical example is: “show me events near my



current location,” which can be implemented as a stateless
subscription for events near my location until it changes.)

• Exploiting the ability to selectively checkpoint intermediate
views so that in cases of “catch-up” or recovery, the message
logs at the publisher are the last resort rather than the default.
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