On Laziness and Optimality in
Lambda Interpreters:
Tools for Specification and Analysis*

John Field

TR 90-1091
May 1990

Department of Computer Science
Cornell University
lthaca, NY 14853-7501

*This is a revised version of a paper presented at the Seventeenth ACM Symposium
on Principles of Programming Languages, San Francisco, January 1990. This
research was supported by NSF and ONR under NSF Grant CCR-8514862, and by
ONR under contract number N0O0014-88-K-0594.

On Laziness and Optimality in Lambda Interpreters:
Tools for Specification and Analysis*

John Field

Cornell University

Abstract

In this paper, we introduce a new formal system, ACCL, based on Curien’s
Categorical Combinators [Cur86a]. We show that ACCL has properties that
make it especially suitable for analysis and implementation of a wide range
of A-reduction schemes using shared environments, closures, or A-terms. In
particular, the term structure of ACCL is very closely related to the structure
of existing abstract machines for A-reduction. ACCL is powerful enough to
mimic arbitrary (strong) reduction in the A-calculus, yet in contrast to the
systems in [Cur864a] it is also confluent (on ground terms). As an example of the
practical utility of this formalism, we use it to specify a simple lazy interpreter
for the A-calculus, whose correctness follows trivially from the properties of
ACCL.

We then describe a labeled variant of ACCL, ACCLY, which can be used
as a tool to determine the degree of “laziness” possessed by various A-reduction
schemes. In particular, ACCLY is applied to the problem of optimal reduction
in the A-calculus. A reduction scheme for the A-calculus is optimal if the num-
ber of redex contractions that must be performed in the course of reducing any
A-term to a normal form (if one exists) is guaranteed to be minimal. Results
of Lévy [Lév78,Lév80] showed that for a natural class of reduction strategies
allowing shared redexes, optimal reductions were, at least in principle, pos-
sible. He conjectured that an optimal reduction strategy might be realized
in practice using shared closures and environments as well as shared A-terms.
However, using ACCLY, we show that the sharing allowed by environments
and closures in ACCL as implemented using standard term graph-rewriting
techniques [BvEG*87] is insufficient to implement optimal reduction.

*This is a revised version of a paper presented at the Seventeenth ACM Symposium on Principles
of Programming Languages, San Francisco, January, 1990. This research was supported by NSF
and ONR under NSF grant CCR8514862, and by ONR under contract number N00014-88-K-0594.

1 Background

There has been much recent interest in efficient implementations of lazy func-
tional programming languages whose semantics are based on normalizing reduction
schemes for the A-calculus [Pey87,FH88]. Most such implementations have made use
of some combination of the notions of graph reduction [Wad71,Aug84,Joh84], en-
vironments [Lan64,HM76,AP81, FW87] or combinators [Tur79,Hug84,Joh85]. The
first two are means to allow certain redexes to be effectively shared during reduc-
tion; the latter can be considered a restricted form of A-expression for which certain
implementation techniques are more efficient.

While all these methods are normalizing, that is, guaranteed to yield a normal
form! if one exists, all end up performing more §-contractions than are absolutely
necessary by effectively copying redexes. In some cases, this lack of sufficient lazi-
ness can result in considerable unnecessary additional computation. Concern for
this phenomenon led to the introduction of methods allowing “fully-lazy” reduction
(Hug84]. However, J.-J. Lévy’s analysis [Lév78,Lév80] made clear that there was a
wide range of laziness possible, ranging from profligate (simple leftmost 3-reduction
without sharing) to optimal, with full-laziness actually somewhere in between. Un-
fortunately, the exact nature of laziness in various implementation has apparently
heretofore been something of a mystery?.

The aim of this paper is twofold: first, to provide a formalism that accurately
reflects the reduction mechanisms in common use for implementation of languages
based on the A-calculus; second, to characterize precisely the behavior of such im-
plementations with regard to the issues of laziness and optimality and to investigate
their limitations.

This paper presupposes a familiarity with the A-calculus [Chu41,Bar84,HS86],
the de Bruijn A-calculus [dB72,dB78,Cur86a], and basic ideas from term-rewriting
systems [HO80,Hue80,Der87,K1080]. A brief review of some of the terminology for
these subjects is provided in Appendix B. An acquaintance with Curien’s Categori-
cal Combinators [Cur86a,Cur86b,CCM87], and with the work of Lévy on optimality
[Lév78,Lév80] would also be useful.

!Technically, implementations of functional languages generally yield weak head normal forms.

ZPeyton Jones [Pey87, p. 400] states that “...it is by no means obvious how lazy a function is,
and. ..we do not at present have any tools for reasoning about this. Laziness is a delicate property
of a function, and seemingly innocuous program transformations may lose laziness.”

2 Redex Sharing and Environments

Consider the A-term M = (Ay.(yy))(Iz), where I = Az.z. It may be reduced to a
normal form in any one of three ways:

Example 2.1

o1: M — (Iz)(Iz) — 2(Iz) — 22
oM — (I2)Iz) — (I12)z — 22
o3: M — (Ay.(yy))z — 22

o1 is a leftmost reduction—one where the leftmost redex is contracted at each step.
o3 is an applicative order reduction, where (informally) the argument part of a redex
is reduced to a normal form before the redex is contracted. It is evident that o3
reaches the normal form (zz) in the fewest steps. It would clearly be desirable to
have an optimal reduction strategy—one that always yields a normal form if one
exists (i.e., is normalizing) and is also guaranteed to do so using the fewest possible
redex contractions. Unfortunately, results of Barendregt, et al. [BBKV76], show that
no such (recursive) strategy exists. However, we can improve matters considerably
by extending the model of reduction a bit.

Note in the example above that the redex (Iz) of M is copied in reductions
o1 and o3, since it is substituted for two instances of y. A natural alternative to
copying expressions in arguments is to share them instead, using a graph-like data
structure. The idea is illustrated below:

Example 2.2

o1: (My.(yy))Iz) — (U_) (7)(T_L) =22

o1 proceeds from left to right, analogous to ;. In this case, however, the redex (Iz)
is shared, rather than copied, as a result of its substitution for the two instances of
variable y. The result of (Iz)’s reduction to z is shared as well. Using this method,
the normal form’s graph representation is reached after only two reduction steps.

Wadsworth’s graph reduction algorithm [Wad71] formalizes the idea of Exam-
ple 2.2. It combines a leftmost redex selection strategy with sharing of argu-
ment expressions. However, Wadsworth’s algorithm is not optimal. If we contract
non-leftmost redexes, shorter reductions (still using shared argument expressions)
can be achieved, as the following example illustrates: Let N = (NyN;), where
N = Az.(zw)(zz) and Ny = A\y.(I'y). Then the following are two gfaph reductions
of N: : .

Example 2.3

p1: N — (pw)(92) — (Tw)(pz) — w(p2)
T-_I/\y(fy) Ay(Iy) z\yIIy)

— w(lz) — wz

N — (ow)(9z) — (sw)(92) — w(92) — wz
& T_T. Ay.(Iy) Ay.y /\J.y

Wadsworth’s algorithm performs reduction p;, while p; reaches the normal form
in fewer steps by contracting the shared (I'y) redex inside N, before applying it to
either w or z (a minimal length reduction can also be achieved without any sharing
by contracting the (Iy) redex before N, is applied to N3).

Reducing inner redexes, as in py, seems to bring about shorter reductions in many
cases. Unfortunately, contraction of arbitrary inner redexes can sometimes lead to
unnecessarily diverging reductions, as is the case with the applicative order strategy.
Wadsworth’s scheme reduces only leftmost redexes in order to ensure normalizability
(although this is not by any means the only way to do so, see [BKKS87]).

There is evidently a subtle interplay among the issues of efficiency, normalizabil-
ity, and redex sharing. The quandary is then to find a way to edge closer to the
brink of optimality without plunging into the abyss of non-normalizability.

By examining the reductions above, however, we can see that Wadsworth left
the door open to further improvements by not taking advantage of all conceivable
opportunities for redex sharing. Note in p; that as N, is applied in sequence to w
and to z, the inner redex (Iy) is effectively copied (after each substitution for y). If
there were some means to parametrically share the (Iy) redex while still substituting
w and z separately for y, more efficient, and perhaps optimal reductions might still
be achievable. This suggests the use of the notions of environment and closure
familiar from implementations of programming languages.

2.1 Reduction Using Environments

A number of reduction schemes for the A-calculus have been proposed using envi-
ronments. These include that of Landin [Lan64] using applicative order evaluation,
and updated versions devised by Henderson and Morris [HM76] and Aiello and Prini
[AP81] to accommodate leftmost evaluation. Each of these systems avoids immedi-
ate substitutions for all instances of bound variables in the body of a /\ abstraction
after 3-contraction, constructing a closure instead.

To be more specific, an environment consists of sets of mappings between vari-
able names and values, or bindings. The result of a §-contraction is then a closure
consisting of the body of the abstraction part of the redex, paired with an envi-
ronment updated to contain the binding of the abstraction’s bound variable to the
argument of the redex. The idea is illustrated below:

(Az.(22))N — [(z2), (= := N))]

In general, [T, E] will represent a closure consisting of term T and environment E.
An environment is denoted thus:

(B, Bz, ...)

where By, By, etc. are bindings.
The following example (using the same term as in Example 2.2) shows that
sharing of A-terms can be achieved indirectly through shared bindings:

Example 2.4
(/\y.(yz/))&’ z) f [(3}/;1), {y == (I2)N]
— ([y, 9llv,
T—l {y := (I2))

—"([’][’])_’(zz)
’ Til((!/==z))

Use of closures obviates copying any part of the body of an abstraction after
[B-contraction. Wadsworth’s scheme, however, copies the parts of the body of an
abstraction containing the abstraction’s bound variable, in order to avoid incorrect
substitutions in pieces of the abstraction’s body that might be shared by other terms.
By using environments, the body of the abstraction term, and hence any redexes
contained therein, have the potential to be shared, avoiding redundant reductions.

Below is another reduction using the term of Example 2.3, showing that shared
environments can be used to minimize the number of redex contractions performed
in a nominally leftmost strategy: Once again, let N = (NyN;), where N; =
Az.(zw)(zz) and Ny = Ay.(Iy). Then, using shared environments, we have:

Example 2.5

N — [(zw)(z2), {2 := Na2))]
— (([=, T][w, T]) [(22), T])

{(z == Na)

— ((¢ [w, 9)) [(z2), ¢])
I T—T_((x = 9)

)
T Ay.(Iy)

— (([9, (y = [w, 9I)]) [(z2), 9])

I T—I_ {z := Ay. T»
— (([%, (v := [w, I]»]) [(z2), ID

[{(z == Ay. T»

—_— e

(Iy)

y

Note that the (Iy) redex in N, is reduced in a shared environment, independently
of the substitution for free variable y in closures that refer to N,

The question then arises as to whether some combination of shared environments,
closures, and terms could be used to achieve an optimal reduction scheme, or at
least improve on Wadsworth’s method. To proceed any further, we will need a more
formal system to study reduction using environments and closures.

3 ACCL

In [Cur86a], P.-L. Curien defines a number of equational theories based on Carte-
sian Closed Categories (CCCs) using terms from the Pure Categorical Combinatory
Logic, CCL. Curien observed that the CCC axioms could model reduction in the A-
calculus, i.e., its operational semantics as well as its denotational semantics. Treated
as combinators, Curien’s axioms have the advantage of avoiding the difficulties with
variables and substitution normally encountered in the A-calculus, and thus has
aspects in common with the de Bruijn A-calculus [dB72,dB78].

One set of equational axioms, deemed Weak Categorical Combinatory Logic, is
the basis for the Categorical Abstract Machine ([CCM87]). However, Curien pro-
posed no confluent system strong enough to simulate arbitrary (-reductions in the
A-calculus that could itself be simulated using only B-reduction. Ifisuch a system
were available, it would provide an immediate proof of correctness for any reduction

scheme for the A-calculus based on it (since any combinator reduction would cor-
respond to a (-reduction). A-reduction methods based on Categorical Combinators
proposed thus far, such as the Categorical Abstract Machine and schemes by Lins
[Lin87], have heretofore required ad-hoc proofs of correctness.

To provide a more sophisticated tool for modeling and analyzing A-reduction
using environments, we will define a new 2-sorted equational theory, ACCL, akin
to Curien’s theory CCLS. Its sort structure makes possible relatively simple proofs
of close correspondence between (-reduction and ACCL reduction not possible in
Curien’s original theory. More importantly, ACCL has a very natural interpretation
in terms of structures and operations commonly used to implement A-reduction, as
well providing a sound framework for entirely new reduction strategies.

In the sequel, we will assume that any A-terms under consideration are actually
terms of the de Bruijn A-calculus (see Appendix C for a brief review), although we
will feel free to give examples using named variables.

3.1 Term Structure

Definition 3.1 The terms of ACCL are built from a set of variables and construc-
tors over a two-sorted signature. The sorts are as follows:

— L, the sort of lambda-like expressions
— &, the sort of environments

The constructors are listed below. Each constructor is given with the sort of the term
constructed and the sorts of its argument(s) specified in the corresponding argument
positions.
Var : L (variable reference)
Apply(L, £): L (application)
A(L): L (abstraction)
(L, €): L (closure)
0:& (null environment)
& (shift)
(€, L):E (ezpression list)
:€ (environment composition)

The terms of ACCL will be denoted by Ter(ACCL) and the closed terms, those
terms containing no variables, by Terc(ACCL).
The following notation (for “de Bruijn” numbers) will be used: s

Definition 3.2

nl = Var n=20
"7 [Var,O"] >0
where
O n=1
O"={ Oo(Oo(---(O00O)---)) n>1

n t;mes
The intuition behind the term structure of ACCL is fairly straightforward:
Terms of sort £ are analogous to terms in the de Bruijn A-calculus, after variable
numbers are encoded as above. Closures are created by the ACCL equivalent of
[-contraction. Environments are essentially lists of terms, the association between
bound variables and the terms to which they are bound being represented implicitly
by position in the list. An environment informally presented as

(z1:= My,22:= Ms,...,z, := M,))
is represented in ACCL as

<<< o (0, Mn) o ')’ M2>7 Ml)'

“o” allows separate environments to be merged. The only perhaps mysterious term
present is “0O0”, which when composed on the left with an arbitrary environment
effects the “shifting” of de Bruijn numbers required when environments are moved
inside abstractions, and when composed on the right with an environment causes
the outermost piece of the list to be stripped away in the course of variable lookup.
All these operations are embodied in the axioms below:

3.2 Axioms

Definition 3.3 The azioms of ACCL are as follows:

(Beta) Apply(A(A), B)=[4, (9, B)]

(ASSC) [[A1 El]’ EZ] = [A’ Eyo E2]
(NullEL) PoE=E

(NullER) Eod=FE

(ShiftE) Do(E, A)=E

(VarRef) [Var, (E, A)]=A

(DA) [A(4), E]=A([4, (E 0O, Var)))
(DE) (El, A) o E2 = <E1 (o] Ez, [A, EQ])
(DApply) [Apply(4, B), E]=Apply([4, E], [B, E])
(AssE) (E10 E;)o0 E3=FE; o(Ejo0 Ej)
(NullC) [4,0]=A

We define a related equational theory, ECCL, as follows:
Definition 3.4 The azioms of ECCL are those of ACCL without rule (Beta).

It will be useful to consider ACCL as the union of two systems intended for dif-
ferent purposes: ECCL, which governs manipulation of environments, and (Beta),
which models 3-reduction.

3.3 ACCL as a Rewriting System on Closed Terms

By orienting the equations of ACCL from left to right, they can be treated as a term-
rewriting system. The notation —ssccr, will be used to denote the application of a
rule of ACCL in some context, i.e., A —ccL B if and only if A = C[X], X may be
rewritten to Y using one of the oriented axioms of ACCL, and B = C[Y] (contexts
are defined in Appendix B). We will use similar notation for the subsystem ECCL
and applications of single rules of ACCL, e.g. —(Beta), However, we will restrict
ourselves in the sequel to the closed terms of ACCL, Ter¢c(ACCL). Since we are
interested in using ACCL to model A-reduction rather than to prove theorems, this
restriction will be of no concern. More importantly, in conjunction with the 2-sorted
term structure of ACCL, the restriction to closed terms makes it possible to prove
properties of ACCL that did not hold for arbitrary terms of Curien’s system CCLS.
We will refer to the formal theories and their corresponding rewriting systems by
the same name. We first show that ECCL and (Beta) each yield ngetherian term-
rewriting systems: o

3.3.1 Noetherian Subsystems
Theorem 8.1 ECCL is noetherian (strongly normalizing).

Proof We can orient the rules of ECCL using Kamin and Lévy’s extended recur-
sive path ordering technique (described in [Hue86, p. 56]).
We first define an ordering >, on the operators of ACCL as follows:

0 R [+] o (- *) >0 APDly (-, -) =0 A(+) o Var =, O >, 0

Next, we define |T|, to be the number of A(-) operators in T.

Let A = f(s1,...,8m) and B = g(ty,...,t,) be terms of ACCL (where f and ¢
are the outermost operators of the terms). We use the definitions above to define a
“basic” quasi-ordering >; on terms as follows:

A>: B
if
f>o g
or
f=og9 and lAIA > IBIA

In other words, >, is the lexicographic combination of the ordering >, on operators
and the number of A(-) operators in the terms. >, is clearly a well quasi-ordering.

Finally, following Kamin and Lévy, we extend >, to a simplification ordering
(see [Der87, p. 80]), >, as follows:

A= f(s1,...,8m) = B=g(t1,...,tn)

if
si= B, forsome i=1...m
or
A>B and A>t; forall j=1...n
or

A~y B and (S1,...,8m) =« (t1,...1n)

where >, is the standard lexicographic extension of > to sequences (see [Der87, p.
97] for details of this extension).

It is easy to show that that >, and >. verify the 11 axioms of Kamin and Lévy
that must be satisfied to ensure that > is indeed a simplification quasi-ordering. For
each ECCL, axiom of the form L = R, it is straightforward to show that L > R.
Since > is a simplification ordering, this implies that if A —gccy, B ‘A > B and
thus that ECCL is noetherian. O :

10

We also have the following:

Theorem 3.2 (Beta) is noetherian (strongly normalizing).

Proof Trivial, since each application of (Beta) in a term reduces the number of
(Beta) redexes in that term by one. O

3.3.2 Normal Forms

It will be useful in the sequel to define several subsets of ACCL terms:

Definition 3.5 The set of lambda normal forms (LNF) is a subset of the terms of
ACCL, defined inductively as follows:

n! € LNF
A€ LNF = A(A)€ LNF
A€ LNF,B € LNF = Apply(A, B) € LNF

Lambda normal forms are intuitively those terms that “look like” terms of the
(de Bruijn) A-calculus.

Theorem 3.3 All lambda-like expressions (terms of sort L) of ACCL are reducible
to a lambda normal form, using the rules of ECCL, 1i.e., for all A: C, there ezists
B € LNF such that A —»gccL B.

Proof Simply note that any term of sort £ that is not in LNF contains an ECCL
redex. Keep reducing such redexes using rules of ECCL until a term in LNF is
reached, which must happen eventually since ECCL is noetherian. O

For any term A: £, we will refer to its corresponding term B € LNF by Inf(A).

Definition 3.6 The set of partial environment normal forms (PENF) is a subset
of the terms of ACCL defined inductively as follows:

0 € PENF
0" € PENF
E € PENF = (E, A) € PENF

Theorem 3.4 All environments (terms of sort £) of ACCL are reducible to a
partial environment normal form using the rules of ECCL, i.e., for'all Ey: £, there
exists E5 € PENF such that E; —»gccL Ea. '

11

Proof Once again, we can observe that every term of sort £ that is not in PENF
must contain an ECCL redex. Such redexes can be reduced until the normal form
is reached. O

The following two definitions allow us to define the ACCL analogue of a weak
head normal form (whnf) in the A-calculus:

Definition 3.7 The set of abstraction forms (AF) is a subset of the terms of
ACCL, defined inductively as follows:

A(A) € AF
A€ AF = [A, E]€ AF

Definition 3.8 The set of weak head normal forms (WHNF) is a subset of the
terms of ACCL, defined inductively as follows:

n! € WHNF
A€ AF = A€ WHNF
A€ WHNF,A¢ AF = Apply(4, B) € WHNF

3.3.3 Confluence of Subsystems

We are now in a position to show that both ECCL and (Beta) are confluent
subsystems.

In order to show ECCL confluent, the following definition and lemma will be
required:

Definition 3.9 The terms Null' are defined by

0
(("'((Dia 7")a (1' - 1)!)" "1!)a 0') (2 > 0)

The terms Null"a,re behaviorally equivalent to @, in the sense that for any context
C[): L, C[Null'] is reducible to the same term as C[@]. In particular, we have the
following:

Null’
Null’

Lemma 3.1 For all A: L and n, there ezists B such that

[4, Null"] —sgcc, B «—pccL 4 °

12

Proof By Theorem 3.3, we know that there exists A’ € LNF such that
A —»gcoL 4

We can then show
[Al, Null"] —»ECCL A’

by structural induction on A’. Since A’ € LNF, there are only three cases:
Case 1: A’ = Apply(B, C). We then have
[Apply(B, C), Null"] —gccL Apply([B, Null"], [C, Null"])

and use the induction hypothesis on [B, Null?] and [C, Null"].

Case 2: A’ = A(B). It is then easy to see that
[A(B), Null"] —»gccr, A([B, Null**1])

We then use the induction hypothesis on [B, Null"*!].

Case 3: A’ =i!. We then have
(¢!, Null"] —»Egccr ¢!
by a simple induction on n.

We thus have
[A, Null"] —»gccr (A4, Null"] —»gcc A’ «—EpcoL 4

which completes the proof. O

Theorem 3.5 ECCL is confluent (thus Church-Rossser) on closed terms, i.e., if
A —»gocL B1 and A —sgccy, Ba, then there ezists C such that By —»gccL C and

B; —»gccL C.

Proof Since ECCL is noetherian (by Theorem 3.1), to show confluence, we need
only prove that it is locally confluent. It then suffices to show that each critical pair
(see [Hue80] for a formal definition) has a common reduct. This is straightforward,
except for the critical pair induced by the rules (DA) and (NullC), for which we

must show
(4, (O, Var)] —»gccL B «—EccL A *

for some B. This follows from Lemma 3.1 above (since (O, Var) = Null'). O

13

We also have the following:

Theorem 3.6 (Beta) is confluent, i.e., if A — (Beta) B1 and A —(Beta) B2, then
there ezists C such that By — (Beta) C and Bz —» (Beta) C-

Proof (Beta) has no critical pairs, thus it is trivially locally confluent. Since it is
also noetherian (by Theorem 3.2), it is confluent. O

3.3.4 ACCL is Confluent

We can now show ACCL confluent by a technique similar to the Tait/Martin-Lof
proof of the Church-Rosser property for the A-calculus. The following reduction
relation will be useful:

Definition 3.10

—Dev = —»ECCL * —(Beta) ° —»ECCL
where .’ denotes relational composition.

—pev is intended to correspond roughly to the notion of a development in the
A-calculus. As usual, —»pey represents the reflexive, transitive closure of —pey -
First, we need the following sequence of lemmas, each represented as a com-
muting diagram (dotted arrows denote reductions existentially dependent on the
arbitrary reductions represented by solid arrows).
The proof of the theorem hinges on the following lemma:

Lemma 3.2 (given by the diagram below)

el
P :
ECCL . ECCL
. o
----- > IR U IIIR
ECCL (Beta) ECCL

Let p and T be the (Beta) reductions as marked in the diagram above. Then if the
redezes in p are disjoint, the rederes in T are also disjoint.

Proof See Appendix A.1. O

The folldwing lemma states that (Beta) and ECCL almost cominite, however,
the intervention of additional ECCL reductions may be required:

14

Lemma 3.3 (given by the diagram below)

pP
ECCL . ECCL
.)
..... > RIS, PP,
ECCL (Beta) ECCL

Let p and T be the (Beta) reductions as marked in the diagram above. Then if the
redezes in p are disjoint, the redezes in T are also disjoint.

Proof Follows by noetherian induction (see [Hue80] for a complete exposition of
this induction principle) on the left-hand ECCL reduction using Lemma 3.2 and
Theorem 3.5. The required construction is given by the following diagram:

(Beta)
g
ECCL Lemma 3.2 : BECCL
ECCL (Beta) ECCL v
cecsccc e U cccosssessccscssccsccs s O

eccy | Thm. 3.5 ;ECCL Induction ECCL; Thm. 3.5 EECCL

......... R PP SO |

ECCL ECCL (Beta) ECCL ECCL

a

The following lemma is also needed:

Lemma 3.4 (given by the diagram below)

ECCL (Beta) ECCL
- g
ECCL . ECCL
..... > g .--..»..-..J
ECCL (Beta) ECCL

Proof The required diagram is constructed as follows:

ECCL (Beta) ECCL
S o g

gcct| Thm. 3.5 ecc. Lemma 3.3 BCCLE Thm. 3.5 ‘ECCL

15

The next lemma shows that ECCL-(Beta)-ECCL sequences commute:

Lemma 3.5 (given by the diagram below)

ECCL (Beta) ECCL
ECCL . ECCL
(Beta) . (Beta)
ECCL . ECCL
' S e oo e S R J
ECCL (Beta) ECCL

Proof Follows by noetherian induction on the left-hand ECCL reduction, using
Lemmas 3.3 and 3.4 and Theorem 3.5 as base cases. The following construction is
required:

ECCL (Beta) ECCL
S

ecct | Thm. 3.5 : ecc. Lemma 3.3 ecce: : BECCL

' J o R S e oo J v

ECCL . ECCL (Beta) ECCL | .

. ECCL ECCL | N
v vLemma 3.4: (Beta)

(Beta) |[Lemma 3.3: (Beta) Induction (Beta): v
: . . ECCL

* ECCL ECCL ! :

" ECCL ! ECCL (Beta) ECCL y ECCL !
ECCL Lemma 3.4 " BecL
' ’ :J .
............. D I, h ;

ECCL (Beta) ECCL

16

We then have:

Lemma 3.6 —pe, 18 confluent on closed terms, i.e.,

Proof The reductions used in Lemma 3.5 are —pey contractions, and the the-
orem thus follows by induction on the lengths of the reductions in the premise.
O

Theorem 3.7 ACCL is confluent on closed terms.

Proof —spey and —»pccL are relationally equivalent. Thus from Lemma 3.6,
we must conclude that —»pccr, is confluent. O

The principal idea used in the proof above is that one can always find a common
reduct for two diverging (Beta) reductions surrounded by ECCL reductions by
using reductions of the same sort. Intuitively, new (Beta) redexes can only be
created by intervening ECCL reductions. Infinite ACCL reductions can thus only
occur when an infinite number of (necessarily) finite ECCL or (Beta) subreductions
are alternated.

Theorem 3.7 is a principal result; Curien did not exhibit a confluent system
strong enough to model arbitrary reductions in the A-calculus. However, indepen-
dent work of Hardin [Har87,Har89] and Yokouchi [Yok89] has led to a characteriza-
tion of subsets of Curien’s original CCL terms for which confluence of the system
CCLg can be proven. By contrast, the 2-sorted term structure of ACCL rules out
the construction of “uninteresting” terms that Hardin and Yokouchi’s CCL subsets
explicitly omit.

Yokouchi’s technique for proving the confluence of CCLS on subsets of terms
is similar to the confluence proof given here. Lemma 3.3 was used in an earlier
version of this paper to prove a somewhat stronger intermediate result than Lemma
3.5; the proof used here was simplified upon observing that Yokouchi’s proof of
confluence essentially used Lemma 3.3 directly, without resort to a more complicated
intermediate lemma. Hardin’s proof of confluence relies on the confluence of a
subsystem of CCLQ that simulates 3-reduction. ‘

17

Hardin and Yokouchi’s proofs of confluence both rely on the fact that a “sub-
stitutive” subset of CCL similar to ECCL is noetherian. This was shown to be
the case by Hardin and Laville [HL86] using an ingenious, but complicated term
ordering. The proof of Theorem 3.1 is considerably simpler.

3.4 Translation

We can now show state the translation between terms of the de Bruijn A-calculus
and terms of ACCL.

Definition 3.11 For any term M € APB, we can define a corresponding term
[M]accL € ACCL inductively as follows:

[iJaccL = ¢
[(A-NM)acc = A([N]accL)
[(NiN2)lacc = Apply([Ni]laccL, [N2]laccr)

The reverse transformation, [-], is defined in the obvious way on members of
LNF.
3.5 Equivalence

We now claim that there is an equivalence between B-reduction and reduction of
terms of sort £ in ACCL. The following two lemmas are required:

Lemma 3.7 Let M and N be arbitrary terms of the (de Bruijn) A-calculus such
that M —g N. Then

[MJaccL —»accL [N]accL

Proof A construction isomorphic to that used by Curien in [Cur86a] to prove a
similar result for CCLg suffices, and is omitted here. O

The ACCL equivalent of Curien’s simulation of §-reduction in CCLg3 has the
following property:

Corollary 3.1 If M — 3 N, then there ezists B such that
p:[M]accL — (Beta) B

and
0: B —»gccL [N]accL

18

o effectively carries out the substitution required by a (-contraction.
We then have the following:

Lemma 3.8 Given A,C € LNF and B such that
p:A —(Beta) B

and
o:B —»ECCL C

where the redezes in p are disjoint, then
[Alx —>5[CIx
Proof Let Ry, R,,...,R, be the set of redexes contracted in p. Consider the set
of simulated (-reductions v; = p; + 7; carried out on (Beta) redexes R; as follows:
R.
pi: Aisi —(Beta) DBi
Ti: B —»EccL Ai

where Ag = A and 7; is the ECCL reduction given by Lemma 3.1 that simulates
the substitution operation within R;.
So we have for all ¢

[Aim1]x —p [4:]x
Concatenating the reductions gives us

ﬂA]],\ -3 [[An]]A

Since the reductions «; are disjoint, we can trivially reorder their components as
follows:
Let r=7m+ 71+ --+ 7,. We then have

T:B —»ECCL An
Recalling that p = p; + p2 + - - - + pn, we have

p: A —»(Beta) B
T B —»ECCL A,-,

We now note that the final term C of reduction ¢ in the premise of the lemma and
the final term A, of reduction 7 above are terms in LNF. Thus, since ECCL is
confluent and o and 7 are coinitial, we must have ' .

A, =C

19

from which we get
(Al —>5 [CIA
O

We can now prove the converse of Lemma 3.7:

Lemma 3.9 Let A: L —»ccr, B. Then
[Inf(A)]r —»ps [Inf (B)]Ia

Proof Let Ag = A and A,, = B. Divide the ACCL reduction into subreductions
alternating (possibly null) ECCL reductions and (Beta) contractions as follows:

A = Ay —»gcoL 4o — (Beta) A1 —(Beta) "
—(Beta) An—1 —"ECCL An-1 —(Beta) 4n = B

Note that since ECCL is confluent,
Inf(A;) = Inf(A;)
We can then show that

IIlnf(A)]],\ = [[Inf(Ao)l])‘ —»g ﬂInf(Al)]],\ —»g -
—»g [Inf(An_1)]x —> g [Inf(An)]r = [Inf(B)]a

using Lemma 3.3, Lemma 3.8, and the construction in the following diagram:

Ana &_1 A, =B

(Beta)

ECCL ECCL ECCL

Lemma 3.3

1nf(A0) - Inf(A.l.). .. Inf(An_l) T .I;lf(An)
Lemma 3.8 - Lemma 3.8 —
[Inf(Ao)]a A [nf(A)]x [of(An_)ln P [Inf(An)]
= [Inf(A)]a . = [Inf(B)]x

Putting the results from Lemma 3.7 and Lemma 3.9 together yields: -

20

Theorem 3.8 Given M € Ter(APB),

M —»g N if and only if [M]accL —>accL [V]accL

This result shows that any reduction of a ACCL term A € LNF simulates a reduc-
tion in the A-calculus.

In [Har89], Hardin proves a similar result for Curien’s Categorical Combinators.
However, the proof there is considerably complicated by the presence in CCL of
computationally uninteresting terms. Hardin was, however, able to show that in
fact such terms do not arise in the process of simulating (-reduction.

The construction of Lemma 3.9 shows that a single (Beta) contraction can
effectively simulate multiple §-contractions. It is this property, together with the
fact that the substitution operation can be deferred except when necessary to yield
an outermost redex, that makes an environment-based interpreter an attractive
implementation tool for the A-calculus.

Any reduction scheme for the A-calculus implemented using ACCL would have
to perform ECCL reductions as well as (Beta) contractions, but it is not unrea-
sonable to count the former as “overhead,” if we ensure that the number of ECCL
reductions required is at worst proportional to the number of (Beta) reductions
and the size of the initial term (which is not difficult to do).

3.6 Example and Applications
Let M = Ay.((Az.z)y). We then have

M —»gAy.y
The equivalent term in ACCL after encoding variables, is given by
[MTaccL = A(Apply(A(01), 0)) = A(Apply(A(Var), Var))

We then have
A(Apply(A(Var), Var))
—(Beta) A([Va‘r’ (07 Var)])
—(VarRef) A(Va‘r)

and
[A(Var)]a = Ay.y

In essence, ACCL is just a formalization of the informal notions of closure
. ! R .
and environment given in the introduction, coupled with a mechanism for indexing
environments. ‘

21

3.7 Term Rewriting and Graph Rewriting
3.7.1 Implementation of Term Rewriting

In order to implement the rules of a term-rewriting system efficiently, it is useful
to treat the rules of a term-rewriting system as transformations on trees or, more
generally, graphs. We assume that graphs are constructed in the conventional way
using nodes and pointers. Thus when a meta-variable X appears on both sides of
a rule, instead of copying the entire subtree or subgraph to which X refers when
constructing an instance of the right-hand side of the rule, the value of the pointer
to the subgraph may be copied instead. Moreover, when a meta-variable is repeated
on the right side of the rule, (as with rules (DApply) and (DE) in ACCL), an
instance of the right-hand side of the rule may be constructed in which each pointer
corresponding to a repeated variable points to the same subgraph. Thus sharing
arises in a natural way.

When rewriting a subgraph S to S’, we have the option of redirecting all pointers
to S to point to new subgraph S’, or overwriting the topmost node of S with the
contents of the topmost node of S’. The latter strategy, while generally desirable,
is complicated in the presence of projection rules whose right-hand sides contain a
single meta-variable: one must either copy the topmost operator of the subgraph
to which the right-hand side refers, or use an indirection node of some sort. In
the sequel, however, we will be concerned primarily with the efficiency gains made
possible through sharing of subgraphs, rather than the details of the sort outlined
above.

The natural correspondence between a term-rewriting system and the graph-
rewriting system induced by the presence of repeated right-hand side pattern vari-
ables has been formalized by Barendregt, et.al. [BVEG*87] and Staples [Sta80a,
Sta80b,Sta80c,Sta81], among others. Following [BvEG*87], we will refer to graph-
rewriting systems of this sort as term graph-rewriting systems. We will not, however,
pursue further the formal characterizations of term graph-rewriting systems here;
an informal approach suffices for the purposes of this discussion.

3.7.2 Graph Rewriting as Parallel Reduction

Contraction of a shared redex can be viewed as parallel contraction of the set of terms
which the shared graph represents. The sort of parallel contraction implemented by
the term graph-rewriting mechanism outlined above can be described as parallel
contraction of identical, disjoint terms, and it is the capabilities and limitations of
this sort of parallel contraction with which we will be concerned. *

We will use the following notation:

22

Definition 3.12 The simultaneous contraction of sets of identical, disjoint ACCL
redezes is represented by the relation —accL -

Since the redexes contracted by —|accL are assumed to be disjoint, instances
of —»accL (0r —»(Beta) O —»EcCcL) in theorems of Section 3.3 may be uni-
formly replaced by —»|accL - This fact will be important in the sequel. Parallel
reduction in the A-calculus and its relationship with the question of optimality will
be discussed in Section 4.2.2.

3.8 A Simple Lambda Interpreter

To illustrate the utility of ACCL both as a notation for specifying manipulations
of environments, closures, and A-terms and as a vehicle for implementing graph
reduction, we present in Figure 1 a simple interpreter for the A-calculus: rwhnf().
rwhnf() is an algorithm that transforms a term of the form [4, E] to the ACCL
equivalent of weak head normal form, WHNF (Definition 3.8). It is quite similar
to the interpreters of Henderson and Morris [HM76]) and Aiello and Prini [AP81].
Figures 2, 3, and 4 consist of algorithms for normalizing environments (to PENF).

The algorithm is specified using rules of ACCL (with the exception of a derived
rule, (Beta’), discussed below), a recursive redex selection strategy, and shared
terms. The functional notation used in the algorithm should be reasonably self
explanatory for someone familiar with a functional language such as ML or Miranda.
However, the algorithm should be considered a recursively specified sequence of
transformations on the term given as argument, not a true function, since no value
is to be returned. The case statement executes various statements depending on
a pattern to be matched. Subpatterns within larger patterns are named using the
notation “subpat: A” Pattern variables represent pointers to terms, and if a pattern
variable appears on the right side of a pattern, the pointer to the term represented
by the variable, not the term itself, is copied. “:=” causes a term to be overwritten
according to some rule of ACCL; only those parts of the overwriting term not
named by pattern variables are newly allocated. Statements inside “seq...endseq”
are executed in sequence. CopyTop(A) copies the topmost operator of A4; all of A’s
subterms are referred to by pointers in the new term.

Our goal is to use rwhnf() to effectively reduce a term M € Ter(APB) to yield a
term N such that

M —»g N € whnf

if N exists. . _ ,
rwhnf() is limited to reducing only closure terms, which has the éfféct of greatly
simplifying the interpreter’s structure. This design is accomodated by introducing

23

rwhnf([L, E]:C) =
case L of
Apply(4, B): seq
C := Apply([4, E]: 4, [B, E]: B');

{rule (DApply)}

rwhnf(A4");

if A’ = [A(A"), E']

then seq
C :=[A", (E', B')]; {rule (Beta’)}
rwhnf(C);
endseq

else skip;

A(A): skip; {C € WHNF}

[Lla El]: seq
C :=[L, E 0 EJ; {rule (AssC)}
rwhnf(C)
endseq;

(Var: Ly): seq {C =0}
rpenf(E); {transform E to PENF}
case E of

0: C := Ly; {rule (NullC)}
O": skip; {E = 0", thus C € WHNF}
(E, A): seq
rwhnf(A);
C := CopyTop(A); {rule (VarRef), C € WHNF}
endseq
endcase
endseq
endcase

endfn

Figure 1: Algorithm rwhnf()

24

rpenf(E) =
case E of
@: skip;
an: skip;
(Ey, A): rpenf(E,);
E, 0 E;: seq
rpenf(E,);
rpenf(E,);
composeEnvs(E)
endseq
endcase
endfn

Figure 2: Algorithm rpenf()

composeEnvs((E; 0 E;): E) =
case FE; of
0: E := Ey;
O: distribShiftL(E);
((O: Es) 0 E4): seq
E := E30((E40 E,): E);
composeEnvs(E");
distribShiftL(E)
endseq
(Es, A): seq
F .= ((E3 (o] Eg):E’, [A, Eg]);
composeEnvs(E’)
endseq
endcase
endfn

Figure 3: Algorithm composeEnvs()

25

{E € PENF}
{E € PENF}

{E:, E, € PENF}

{rule (NullEL)}

{rule (AssE)}

{rule (DE)}

distribShiftL(((D: E1) 0 Eq): E) = {E; € PENF}

case F, of
0: E := Ey; {rule (NullER)}
on: skip; {E = O0"t! € PENF,n > 0}
(E3, A): E := E3 {rule (ShiftE)}
endcase
endfn

Figure 4: Algorithm distribShiftL()

a modified version of the rule (Beta), (Beta’), which operates directly on redexes
containing closures and is derivable in ACCL:

(Beta') Apply([A(4), E], B) = [A, (E, B)]
We must also construct an initial term A having the form of a closure:
A= [[[MI]ACCL, 0] € Ter(ACCL)

A is thus a closure whose term part is the translation of M to ACCL and whose
environment part is the null environment. This has no effect on the outcome of the
reduction since

[4, B]=AccL4
Applying rwhnf() to A then yields B € WHNF, from which we can extract N:

N = [Inf(B)]]x» € whnf

Since rwhnf() simply applies ACCL rules to a term in a fixed order, Theorem
3.8 shows it to be correct, that is, given M, N, A, and B as above, we have

rwhnf(A) = B € WHNF
implies
M —»g N € whnf

The normalization properties of reduction schemes using ACCL depend on
whether or not applications of the rule (Beta) are needed; this property is dis-
cussed in section 4.2.3. rwhnf() can be shown to be weak head normalizing. Though
rwhnf() is not fully-lazy in the sense of Wadsworth, it illustrates the simplicity with

26

which interpreters can be specified using ACCL, and functions as a starting point
for much “lazier” interpreters that can be analyzed using ACCLL.

Another ACCL-based A-interpreter is described in [Fie90], where it is used to
perform incremental A-reduction.

4 Optimality Criteria

In [Lév78,Lév80], J.-J. Lévy studied the issue of optimal reduction in the A-calculus
in light of the previous work of Wadsworth on graph reduction. Lévy noted that by
sharing redexes through graph structures, Wadsworth was essentially contracting
multiple (-redexes in parallel. Lévy was able to define a natural class of parallel
reductions on redexes that are essentially copies of one another, and specify criteria
that would have to be satisfied by any optimal parallel reduction of sets such copies.
The notion of copy Lévy had in mind was sets of identical terms, modulo substitu-
tions for free variables. Such copies are exactly the terms created by the process of
substituting the argument term for multiple instances of the binding variable in the
body of a A-term, and are formally known as residuals.

His critical observation was that by examining a term and the reduction that
produced it (its “history”), it is decidable which sets of redexes in the term are
copies of some redex, or more importantly, could have been copies in an alternate
reduction (beginning and ending with the same term). He noted that by reducing
maximal sets of such copies in parallel, an optimal reduction could be achieved. The
question was then whether any practical reduction scheme could be implemented
that would ensure that all such copies are shared, and thus for which contraction of a
single term would effectively contract all copies. Lévy speculated that some scheme
using shared closures, which permit contractions independent of substitutions for
free variables (i.e., environments) might allow optimal reduction.

[Lév78] makes use of an extension to the A-calculus that allows terms to be
labeled. Such annotations allow specific terms to be “traced” as a reduction pro-
gresses, and provides means to compare different reductions. In addition, the label-
ings are modified during the course of a reduction in such a way that the reduction
“history” of a particular term is evident on inspection. An alternative analysis in
[Lév80] avoids labelings, and instead allows reductions to be compared using the
idea of meta-reduction, or reduction on reductions to certain canonical forms. The
analysis using labels provides a greater intuitive feel for the problem, and, more to
the point, will simplify the proofs to follow. Therefore, We will review the analysis
using labelings here. e

27

4.1 Lévy’s Labeled Lambda Calculus

Lévy’s labeled \-calculus was first introduced in [Lév75]. We will use a slightly
simplified version proposed by Klop [Klo80], in which an extensive investigation of
properties of reductions is made, much of which nicely complements the work of
Lévy. A concise summary of Lévy’s labeled A-calculus is given in [Bar84, p. 382,
Ex. 14.5.5], and a summary of a number of useful properties is given in [BKKS87,
Appendix].

First we must define what constitutes a label:

Definition 4.1 The set of Lévy-labels, designated L, is defined inductively as fol-
lows:

leS = Il€eL
w,weEL = wveEeL
weL = weL

where S = {a,b,c,...} is an infinite set of symbols) and wv is the concatenation of
labels w and v.

An atomic label is a label consisting of a single symbol. Note that nested underlin-
ings, e.g. abed, may occur.

The set of labeled A-terms consists of the regular A-terms and terms annotated
with labels:

Definition 4.2 The set of terms in Lévy’s labeled A-calculus, designated Ter (\),
is defined as follows:

Me Ter(\) = M € Ter(\l)
Mg Ter(\'),we L = (M")e€ Ter(\})

where w is an arbitrary variable.

If M is a meta-variable referring to a labeled term, M denotes the concatenation
of w to the label of the term to which M refers. We will often refer to terms “with”
or “having” label w. A term M has label w if M is of the form N* and N is not of
the form P* for non-null label u. The parentheses surrounding a'labeled term will
often be omitted for the sake of clarity if no confusion would arise. (If, however, a
parenthesized term is itself labeled, a formal reduction rule is required to eliminate
the parentheses; see below.)

28

In contexts where a labeled term is expected, unlabeled terms will be treated as
having the null label, e. We define label concatenation and underlining to behave
on the null label as follows:

€ew = w
we = w
€ = €

The label of the abstraction part of a redex is called the degree of the redex.
Thus the degree of the (Iz) redex in ((Az.(I°z)%)42°)f is a (not c).
The B-contraction rule is now defined for labeled terms as follows:

Definition 4.3 Labeled 3-contraction, denoted by — L, is a relation on members
of Ter (\L')defined by:

C[((Az.M)“N)"] — 4. C[(M*{z := N*])"]
where C is an arbitrary contezt and M and N are arbitrary members of Ter (AL).

Note that with the null label convention, labeled §-contraction is exactly the same
as regular (-contraction on unlabeled terms.

Though the labeled 3-contraction rule looks a bit formidable, the idea is quite
simple: Whenever a redex is contracted, the underlined form of the label of the
redex’s abstraction (w) is attached both to the body of the abstraction (M) and
to all instances of the argument (V) substituted into the body. Any label attached
to the application term (v) is left intact. The attachment to a label of an under-
lined substring, say (w), is an indication that the term was effectively generated
by contraction of a redex having degree w (this assumes, as we always will, that
any labeled reduction has an initial term with no underlined labels). One can thus
view labels as a sort of genetic code, in the sense that by knowing the labels of the
initial term (“matriarch”?) of a reduction, the lineage of a subsequent term in the
reduction may be traced by inspection of the labels.

The formation rules of Ter(AL) allow multiple labelings of parenthesized terms,
which can be created as a resulted of labeled 3-contraction. This requires an auxil-
iary reduction rule for labels:

Definition 4.4 The label simplification rule, —a}, is the fdllbwing relation on
members of Ter(\):
| C[(M*)"] —1ap C[M™] o

where C is an arbitrary contezt and M" is a term of Ter (AL).

29

We then have:

Definition 4.5 Labeled S-reduction, —» 4L, is the reflezive, transitive closure of
’ B
(—1ab U — gL), where ‘U’ denotes relational union.

The label simplification rule is a technical necessity, but a practical nuisance.
Without loss of generality, when referring to a labeled term, we will assume it has
been simplified as much as possible using — 4. . This assumption is technically
justified by the following theorem:

Theorem 4.1 ([Lév75]) —» s has the Church-Rosser (confluence) property,
i.e., if M —» g Ny and M —» 50 N3, then there ezists P such that Ny —» g P
and Nog —» gL P.

Thus labeled A-reduction is as “well-behaved” as its unlabeled counterpart, and,
in a sense, is a strict refinement of the regular A-reduction. Ignoring the labels, it is
simply regular A-reduction. Depending on the initial labeling, however, it can give
a great deal more information about the reduction process.

We can now define transformations from the unlabeled to the labeled world and
vice versa:

Definition 4.6 Let M! be a term of Ter(A\l). Then the erasure of M!, Er(M?") is
the same term with all the labels erased.

Definition 4.7 Let M be a term of Ter()\). Then M' € Ter(\") is a labeling of
M if and only if Er(M') = M.

We can also define the erasure of a reduction (overloading the meaning of ‘Er()’):

Definition 4.8 Let o' be a labeled reduction. Then the erasure of o', Er(a'), is the
unlabeled reduction obtained by erasing the labels of all the terms in the reduction
and replacing all labeled (3-contractions by unlabeled 3-contractions.

Finally, we can “lift” reductions on unlabeled terms to their labeled counterparts:

Definition 4.9 Let M be a term of Ter()\), M' be some labeling of M, and
0: M —»g N. Then the lifted reduction Lift(o, M') is defined as the labeled reduc-
tion with initial term M' in which the redezes contracted are the labeled counterparts

of those contracted in o.
| []

30

4.2 Optimality
4.2.1 Labels and Residuals

With the machinery of the labeled A-calculus at hand, certain definitions that are
rather complicated without it become straightforward. Labelings can be used to
divide all the redexes in a reduction into equivalence classes based on their label.
Such equivalence classes are deemed redex families:

Definition 4.10 ([Lév78]) Let
p:M—ngN

be a reduction. Let | be a labeling of M such that each subterm of M' has a unique
atomic label. Let
p': M' — 5 N' = Lift(p, M")

be the labeled version of p. Then a redez R; in any term of p (not necessarily a redex
contracted by p) is a member of family class F. if and only if the corresponding redezx
R;- in p' has degree w.

Rather remarkably, it turns out that family classes can consist not only of sets of
redexes that are effectively copies (i.e., residuals) of terms in the current reduction,
but also may consist of sets of redexes that are not residuals of any redex in the
current reduction, but would be residuals in a different reduction with the same
initial and final terms. Thus labeling makes evident on inspection a property that
might seem to require enumeration of all reductions.

4.2.2 Redex Sharing and Parallel Reductions

Having demonstrated the usefulness of the labeled A-calculus, we can now formalize
the notion of sharing of terms. Lévy noted that the reduction of a shared redex
could be viewed as a parallel reduction of all the redexes represented by the shared
term in its “flattened,” non-graphical form. For instance, in Example 2.2 above, the
shared contraction of the (Iz) redex may be viewed as the parallel contraction of
the two terms that share it:

Example 4.1

o1 (A\y.(yy))(I2) —p (12)(I2) —p 22

where ‘ —3’ represents parallel 3-contraction. Note that paralle] B-contraction
subsumes ordinary 0 or 1 step 3-reduction (—s =g), which is a development of 0 or
1 redexes. ' -

31

Parallel reductions are represented thus:

C C C
. Mo—I)”[;Ml-——Z)”ﬁ s —")“ﬁMn

where the C; are the sets of redexes in M; contracted in parallel at each step.
Defining a consistent notion of parallelism for overlapping redexes requires a bit
of care. Formally, Lévy defines a parallel reduction as the complete development of
a set of redexes. See [Lév78] or [Lév80] for more details.
We can now define parallel reductions that reduce entire family classes at once:

Definition 4.11 (Lévy) A parallel reduction

F, F, F,,
o: Mo-—ﬂ”ﬁMl —’3”[3 e —)”ﬂMr.

is family-complete if and only if for each M;, F,, is the set of all members of some
redez family F,, in M;.

4.2.3 Call-By-Need Reductions

In order to ensure that an optimal reduction does no unnecessary work (although
perhaps does it quite efficiently), we need to ensure that any optimal reduction, like
leftmost reduction, reduces no unneeded redex. This leads to the following formal
definitions:

Definition 4.12 (Lévy) A redez R in some ezpression M € Ter()\) is needed if
and only if, for all terminating reductions o with initial term M, either R or one
of its residuals is contracted in o.

Definition 4.13 (Lévy) A parallel reduction

. Cl CZ Cn
P Mo—=6M1 =55+ - =S Mn

s a call-by-need reduction if and only if there is at least one needed redezx in each
C;.

The leftmost redex in a term is always needed, although there will often be more
than one needed redex in a hterm (see [BKKS87] for a detailed analysis of the

phenomenon of neededness).

32

4.2.4 Optimality Theorem

We will consider here various classes of parallel reductions. A reduction strategy
that contracts redexes from a given class may produce shorter reductions of a given
term than may be possible in another class of reductions. This leads to the following
definition:

Definition 4.14 A reduction strategy S is optimal for a class of parallel reductions
C if the number of (parallel) contractions required in the reduction of an arbitrary
term T using strategy S is less than or equal to the number of contractions required
by any reduction of T in class C.

Thus, for instance, S may at each step contract sets of redexes from a class larger
than C.

Wadsworth’s graph reduction technique allowed members of some (but not all)
residual classes (i.e., sets of residuals of some redex in a previous intermediate term
of the reduction) to be shared and thus contracted simultaneously. We define such
reductions as follows:

Definition 4.15 A parallel reduction
p: M __””ﬂ N

1s residual-parallel if the set of redezes contracted at each step consists only of mem-
bers of some residual class.

Wadsworth’s technique made possible reductions that are shorter in many cases than
reductions on conventional terms. The question then arises as to whether parallel
reductions of large enough sets of redexes (through sharing) are optimal. Lévy’s
optimality theorem answers this question in the affirmative:

Theorem 4.2 ([Lév78,Lév80]) A parallel reduction
p: M — 5 N
1s optimal for the class of residual-parallel reductions if
— p 1s family-complete.

— p 1s call-by-need.

33

Since reductions performed on non-shared terms are degenerate parallel reductions of
members of residual classes, a family-complete, call-by-need reduction is also optimal
for the class of all non-parallel reductions, that is, traditional term reduction.

Note that the theorem does not require that an optimal strategy always use
shared redexes—if all family classes have one member, a family-complete reduction
requires contraction of only one redex at a time. However, in general, families will
have more than one member and a practical implementation that allows unit-time
parallel contraction of a complete family will require some form of sharing.

Since the members of a family class may consist of different substitution instances
of the same term, it is essential that a practical reduction scheme allow such sets
of differing terms to be effectively shared. ACCL provides a means to do this: the
closure. Two closures with different environment subterms (representing different
free variable substitutions) may share a common subterm: e.g., [A, Eq] and [A, E,],
where the two instances of A are shared. This idea is exploited in Example 2.5.

5 Labeled ACCL

To make a precise connection between redex families in the A-calculus and shared
terms with closures and environments in ACCL, we will define a labeled variant of
ACCL, ACCLY. ACCLY is intended to be analogous to Lévy’s labeled A-calculus.

Definition 5.1 The azioms of ACCLY are as follows:

(Beta) Apply(A(A)*, B)* =[A"2, (0, B¥)]

(AssC) (4, E1]%, E;]’=[A", E; o E,)
(NullEL) 0oE=E

(NullER) Eod=FE

(ShiftE) Oo(E, A)=F

(VarRef) [Var¥, (E, A)]" = A%

(DA) [A(A)*, E]*=A((4, (E 0D, Var)])*
(DE) (El, A) o Eg = (El o Ez, [A, Eg])
(DApply) [Apply(4, B), E]'=Apply([4, E], [B, E])*™
(ASSE) (El o Eg) (o] E3 = E1 o (E2 (o] E3)
(NulIC) [AY, 0]V = AW

(DLabel) [A, E]*=[A%, E]

Note that the (DLabel) has no analogue in unlabeled ACCL. It Is the ACCLF
equivalent of the the convention allowing the removal of parentheses in multiply-

labeled parenthesized terms of AL. By analogy with the labeled A-calculus, the

34

degree of a labeled (Beta) redex is the label of its abstraction term; e.g.,
Apply(A(A¥)¥, B*)

has degree w. As with the labeled-lambda calculus, we can define the erasure of
labeled ACCLY terms and reductions, yielding their unlabeled counterparts. Like-
wise, we can define the lifting of unlabeled terms and reductions to labeled versions.

The translations [-]yv and [-], oL are defined in the obvious way analogous to
their unlabeled counterparts. Theorems 3.7, 3.3, 3.9, and 3.8 all apply to ACCLY
and AL; the proofs are analogous and are omitted.

We also wish to consider parallel labeled reductions, in which sets of identical
(including labeling) terms are contracted at each step. The parallel analogues of
the aforementioned theorems are straightforward to define. We will make use in
particular of the following refinement of Lemma 3.9:

Lemma 3.9’ Let A: L be a term of ACCLY such that
p:A—»rcoLt B

Let R; be the set of redezes contracted in the ith parallel (Beta) contraction of p,
w; be the degree of the redezes contracted in R;, and L, be the multiset consisting
of the labels w;.

Then there exists reduction o such that
o: [Inf(A)a — g [Inf(B)]x

where all the members of the set S; of redezes contracted in the jth parallel (-
contraction of o have the same degree, v;.
Furthermore, if we let L, be the multiset consisting of the labels v;, then we have

L,=1L,

Proof Since the redexes in each parallel (Beta) contraction of p are by definition
disjoint, we may use a construction analogous to that used in the proof of Lemma 3.9
to yield o, where the reduction of disjoint 3-redexes at each stage of the construction
is replaced by a single parallel 3-contraction.

We note that the degrees of the (Beta) redexes in the premise of the labeled
analogue of Lemma 3.3 are preserved in the degrees of the (Beta) redexes in its
conclusion. From this we can conclude that L, = L,. O !

We can then make the following definitions:

35

Definition 5.2 Let A contain (Beta) redez R and let p be the reduction
p: A—»pccL B

Let A be a labeling of A such that R has degree w and all other subterms of A' have
the null label. Finally, let p' be the labeled counterpart of p such that

I, 4l l
p.A _»ACCLLB

Then (Beta) redez S in B is a A-residual of R (relative to reduction p) if its labeled
counterpart S' in B' has degree w.

If R is a (Beta) redex in A: L, we will refer without ambiguity to the residuals of
R in Inf(A), since ACCLY is confluent and any ECCL reduction of A to Inf(A)
must yield the same set of residuals.

Definition 5.3 Let p be the following parallel reduction of A: L:
p: A—»rcoL B

Then p is A-optimal if the number of (parallel) (Beta) contractions in p is less than
or equal the number of parallel 3-contractions in an optimal (in the sense of Lévy)
A-reduction from [Inf(A)]x to [Inf(B)]x.

Definition 5.4 A (Beta) redez R in a term A: L is A-needed if and only if some
A-residual of R in Inf(A) is needed in the sense of Definition 4.12.

We can now apply Lévy’s optimality criteria directly to reductions in ACCL,
using ACCLL. The idea is to consider each (Beta) contraction in a term A as
representing a parallel 3-contraction on the corresponding A-term [Inf(A)]x.

Theorem 5.1 Let p be the following parallel reduction of A: L:
p: A—rcoL B

Let A' € ACCLY be a labeling of A such that all of A’s subterms have unique labels,
and let p! be the labeled counterpart of p such that

1, 4l {

Let S; be the set of (identical) (Beta) redezes contracted in the ith parallel (Beta)
contraction in p and w; be the degree of the redezes contracted in by the labeled
counterpart of S; in pt, S f Then the reduction p is A-optimal only if

36

— Foralli,j, w; # w;.
— For all i, some redezx in R; is A-needed.

Proof Consider the reduction p! constructed in Lemma 3.9’ such that
: [inf (A —p [Inf (B]

If a redex with degree w is contracted twice in p, a (-redex with degree w must
be contracted at least twice in 4! (since the multisets of redex degrees in the two
reductions are are equal). But then there must be some shorter family-complete
parallel S-reduction o such that

o: [Inf(A")]xe —» 5 [Inf(B')]r

in which the redex labeled w is reduced only once (since o is family-complete), thus
p is not A-optimal. Similarly, if p contracts an unneeded (-redex, then an unneeded
B-redex is contracted in p‘, and there is a shorter reduction in which no unneeded
[B-redex is contracted. O

If we construct a A-interpreter whose action can be expressed in terms of some
application of the rules of ACCL, we can determine how close to optimality any such
interpreter can come by showing how many (Beta) redexes in the corresponding
labeled reductions have the same label.

6 Non-Optimality of Reduction with Shared Closures

We can now show that there is no A-optimal reduction possible in the term graph-
rewriting system corresponding to ACCL in the sense discussed in Section 3.7,
and formalized in [BvEG*87]. We do so by exhibiting a A-term @ for which every
ACCL term graph-reduction causes more than one (Beta) redex to be contracted
in the corresponding labeled form. The term Q is as follows:

(Az.((2A%)(2B%))) (My-((Az.(2°8)(2"w)) (Aw.y*v)))

where A and B are arbitrary A-abstractions. Not all subterms are given labels for
the sake of clarity. ‘

We will not enumerate all possible reductions of @’s corresponding ACCLY
translation. However, the crux of the matter is embodied in the following term,

37

which must be produced in any reduction of the ACCL equivalent of @ if no prior
(Beta) redexes with the same label are to be reduced twice:

(([T, (y:= Ad))]=Cl)([T, (y := B°)]: C2))
[((z°)(z%w)), (2 := dw.(y°0)}): Cs

As before, ((-)) represents a ACCL environment with bound variables indicated
explicitly. The notation T: N is used to give names to subterms. One is forced here
to choose between reducing closure C3 or one of closures C; or C;. Choosing C3
yields:

(([T, (y:= A"))]=Cl)([T, {(y := B°)): C2))
((y°v)(y°v))

which reduces to
(((Adcv)(Ad°v))([T,_((y = B°))]: C2))
((y°v)(y°v))

in which two redexes of the form (A%wv) are created, thus yielding a non-optimal
reduction (since they have the same degree and are no longer shared).

To avoid the copying that occurs above, one could alternately first reduce closure
Cj (or Cy, for which the argument to follow is symmetric), which would eventually
yield a term of the following following form:

(([T, (z:= /\W-(Ad°v)))]=Cl')([T, (7 := Aw.(B*v)}]: C7))
((z°t)(z*w))

which reduces to

((w. 9)°)((Aw. 9)°8)(Mw. 9)°t)((Aw. 9)°t)
T__L (A%0) T—T_ (B*v)

The term above has two (actually, two sets) of unshared redexes with the same
degree, e.g., ((Aw.(A%v))%) and ((Aw.(B®v))t). If both are needed (which depends
on the particular abstractions chosen for A and B), a non-optimal reduction will once
again result. In the end, no matter what choice is made, a non-optimal reduction
occurs.

The informal observation that term graph-rewriting implementations of closures
and environments are inadequate for implementing optimal reduction schemes was
also made independently by Curien in [Cur86¢|. He did not, however, provide a
formal connection (such as that made above using labels) between redex families in
the lambda calculus and their equivalents in a formal system using environments,
nor was the system he was using as general as the one proposed here.

38

7 Related Work

A system almost identical to ACCL has been independently proposed by Abadi,
et.al. [ACCL90]. Its term structure is isomorphic to that of ACCL, and its axioms
are the same with two minor exceptions. They propose to use their system to study
properties of substitutions, to describe type-checking algorithms, and as the basis for
machine-oriented implementations of reduction schemes. They have not, however,
proposed a labeled system for the study of the optimality problem.

[AKP84] provides an analysis of the differences between various lazy and fully-
lazy A-interpreters without examining the issue of optimality.

There have been several proposed implementations of optimal A-reduction: by
Staples [Sta82] and more recently by Lamping [Lam90] and Kathail [Kat90]. These
schemes seem to allow more terms to be shared than are possible using traditional
environment or substitution mechanisms. However, they are notable for their ex-
treme complexity, and it is not clear that the overhead incurred by these schemes
in order to ensure that family classes are always shared is not prohibitive. Such
complexity may be inherent, however, in the peculiar nature of redex families.

8 Conclusions

We have chosen here to investigate the limitations of term graph-rewriting imple-
mentations of ACCL. An alternative (and perhaps slightly more precise) formu-
lation of the problem could be made by first defining the notion of ACCL redex
families, beginning, e.g., with the idea of residual for term-rewriting systems defined
by [Klo80]. We could then show that no ACCL-family-complete reduction yields
a corresponding family-complete reduction in the A-calculus, as well as show that
term graph-rewriting in fact implements ACCL-family-complete reductions.

We note from the counterexample of Section 6 that sharing of redex families
requires that existing sharing in a graph be respected during the process of substi-
tution, in addition to being created as a a consequence of the application of rewrite
rules with multiple instances of meta-variables. In order to implement optimal re-
duction, it thus seems that more powerful rewriting systems (i.e., non-left-linear
systems that can “test” for equality of subterms) or graph rewriting systems with
capabilities beyond those of term graph-rewriting are required.

In summary, we have described a new formal system, ACCL, with which one can
describe a wide variety of reduction methods for the A-calculus using environments,
closures, and shared terms. We have shown that terms and reductjons in ACCL
correspond in a natural to their counterparts in the A-calculus; A-reduction schemes

39

using ACCL may thus be proved correct trivially. However, by making the “micro-
manipulations” required to implement substitution explicit, ACCL makes evident
a broad range of options for implementation of efficient interpreters. We have also
described a labeled variant of ACCL, ACCLY, which can be used as a precise
tool to analyze environment and closure-based implementations of the A-calculus to
determine the extent to which the implementation is lazy. We have shown, however,
that the standard term graph-rewriting implementation of ACCL is insufficient for
implementing optimal reduction schemes.

9 Acknowledgements

I would like to thank Tim Teitelbaum for his support, encouragement, and produc-
tive discussions during the genesis of these ideas. I am also grateful to Pierre-Louis
Curien for his comments on an earlier version of this paper and to Martin Abadi for
supplying me with an unpublished version of his joint paper. Finally, I would like
to thank especially Thérése Hardin and Jean-Jacques Lévy for fruitful conversation,
providing helpful comments, and pointing me toward related work.

A Supplementary Proofs

A.1 Proof of Lemma 3.2

In this section, we give the proof for Lemma 3.2, which will require some preliminary
lemmas and definitions.
We first define two subsystems of ECCL that will be useful in the sequel.

Definition A.1 The azioms of FCCL consist of those of ECCL without rule
(DApply).

Definition A.2 The aziom (VarRef’) is as follows:
[Var, (Ela [A, E2])] = [A, E2]
Note that (VarRef’) is simply (VarRef) restricted to a smaller set of terms.

Definition A.3 The azioms of GCCL are as follows:
(AssC), (DE), (AssE), (ShiftE), (NullER), (VarRe‘f')

Using these new systems, we now obtain the following results:

40

Lemma A.1 FCCL and (Beta) commute, i.e.,

(Beta)

FCcCL

Proof FCCL and (Beta) have no critical pairs and therefore commute weakly.
Since both are noetherian, the result follows by noetherian induction. O

Lemma A.2 Let GCCL™! be the rewrite system obtained by orienting the equa-
tions of GCCL from right to left. Then GCCL™! and (Beta) commute, i.e.,

(Beta)

Proof GCCL™! and (Beta) have no critical pairs, thus commute weakly. The
result follows by noetherian induction on the (Beta) reduction. O

Lemma A.3 GCCL and (Beta) reductions may be permuted, that is, the follow-
ing diagram holds:

GCCL (Beta)

.
Gccere +({Beta)
. .

N

Proof Simply reverse the arrows of the GCCL™! reductions used in Lemma A.2
to obtain GCCL reductions and the desired result (this technique was suggested
by Proposition 5.5 of [Klo80, p. 46]). O

We are now in a position to prove Lemma 3.2:

Lemma 3.2 (given by the diagram below)

41

Let p and T be the (Beta) reductions as marked in the diagram above. Then if the
redezes in p are disjoint, the redezes in T are also disjoint.

Proof Let o and p be the ECCL contraction and (Beta) reduction, respectively,
in the premise of the lemma as shown in the diagram above.

We first note that if neither o nor any of its residuals (relative to p) creates an
instance of a critical pair with one of the redexes in p, then the diagram can be
closed trivially (using residuals), which must also be disjoint if the (Beta) redexes
in p are disjoint. Otherwise, the only rule that can create an instance of a critical
pair is (DApply).

Since rule (Beta) can create no new (Beta) redexes, the redexes in p can be
permuted arbitrarily. Thus if o is an application of rule (DApply) that creates an
instance of a critical pair with some redex in p, we can reorder the redexes in p so
that the contraction of the overlapping redex occurs first.

Therefore, we assume the following without loss of generality:

1. o is an application of rule (DApply).

2. There is an instance of a critical pair between the first redex contracted in p
and o.

Given the assumptions above, we can construct the following diagram using
previous lemmas.

(Beta) (Beta)

ECCL * rccL ;. Lemma A.1 : rccL
ECCL (Beta) GecL ! (Beta)
A F PSS AA

) ., Lemma A.3 .-
(Betaf. ,*GceL

N -

42

The square in the diagram marked ‘*’ is easy to construct using rules of the ap-
propriate sort starting from the critical pair of terms created by an overlap of rules
(DApply) and (Beta). By treating rules of FCCL and GCCL as ECCL rules, we
obtain the required diagram. We finally note that the constructions in ‘*’; Lemma
A.1, and A.3 each yield (Beta) reductions in their conclusions with disjoint redexes
if the redexes in the (Beta) reductions of their premises are also disjoint. O

B The Lambda Calculus and Term Rewriting Systems

This section contains a brief review of selected terminology from term-rewriting
systems and A-calculus used herein. The conventions will generally follow those of
[Bar84], to which the reader is referred for details, although a few are taken from
[K1080, Section 5], [Hue80], or [BKKS87].

B.1 Notation and Terminology

C[M] denotes a contezt containing M, i.e., C[M]is a term with designated subterm
M. M need not be a proper subterm of C[M]. Contexts may be defined similarly
for other rewriting systems.

M|z := N] denotes the result of substituting N for all free occurrences of z in
M.

B-contraction is denoted by — 4.

The reflexive, transitive closure of — g, B-reduction, is denoted by —»4.

Other notions of reduction for term-rewriting systems will be defined using anal-
ogous notation: if — g is a reduction relation, then —» g will denote its reflexive,
transitive closure, and =g the induced equivalence.

—sp and —g commute weakly if for all X, Y, and Z such that X —gpY
and X — g Z, there exists W such that Y —»gW and Z —p W.

—p and — 5 commute if for all X, Y, and Z such that X —»rY and
X —»g Z, there exists W such that Y —»gW and Z —»gp W.

— R is locally confluent if — p commutes weakly with itself.

— R is confluent (or Church-Rosser) if — g commutes with itself.

— g is noetherian (or strongly normalizing) if there is no infinite sequence of
the form

X1—RrX2—pR -+ —prXn—p

Since ‘=" will be reserved to represent equality induced by a reduction relation,
We will use ‘= to denote syntactic identity of terms. In the case ofsthe A-calculus,

43

we will identify on the syntactic level terms that are identical modulo changes of
bound variable and avoid the machinery of a-conversion, i.e., we will feel free to say

Az.z = Ay.y

M is a normal form (or M € nf) if and only if it contains no redexes.
M is a head normal form (M € hnf) if and only if it has the form

Azy- - Zn (Y Py Pr), n,m>0

where y and the z; are arbitrary variables and the P; are arbitrary A-terms.
M is a weak head normal form (M € whnf) if and only if it has either of the
forms
Ax.N

or
(¢P,---P,), n>0

for arbitrary variable x and arbitrary A-term N and terms P;.
R- Reductions, sequences of R-contractions, will be denoted as follows:

g: Moﬁ)RMlﬁ)RMzé)R' . -ﬁbRMn

o designates the the entire reduction sequence. The M; are the terms of the reduc-
tion. The P; denote the redexes contracted at each step. Where clear from context,
the P; may be omitted. Occasionally, it will be convenient to elide the intermediate
terms and denote the entire sequence by o: Mg —»gr M,,.

C The de Bruijn Lambda Calculus

The de Bruijn A-calculus [dB72,dB78] is a variant of the A-calculus in which variables
are replaced by de Bruijn numbers denoting their binding depth in the term in
which they are contained. This facilitates reduction without concern for variable
“capture,” which can occur during conventional A-reduction even when the initial
term of a reduction contains no bound variables with the same name. By providing
a variable substitution mechanism that appropriately adjusts the de Bruijn numbers
of substituted terms, the de Bruijn A-calculus eliminates the need for a-conversion.
The following definitions are from [Cur86a]

44

Definition C.1 The set of terms in the de Bruijn A-calculus, designated Ter (APB),
18 defined inductively as follows

neN = n¢€ Ter(A\PB)

M,N € Ter(A\PB) —» (MN) € Ter(\PB)
M € Ter(\PB) — XM € Ter(\PB)

where N is the set of natural numbers.

Definition C.2 For any M € Ter()\) such that FV(M) C {zo,...,zn}, define its
de Bruijn translation, Mpp(x,...x.) € Ter (APB), as follows:

TDB(xo,...xn) = & where i is minimum s.t. z = z;
(Ay.M)DB(XOy---yxn) = A'MDB(yszv'nxn)
(MN)DB(xo,...xa) = MDB(x0,...xn) N DB(x0,....xn)
(We will usually write Mpp rather than Mpp(x,,...x,) When the free variable ordering
is irrelevant).
Substitution, B-reduction, and 5-reduction can be suitably redefined on APBsuch

that M —»g, N if and only if Mpgp —»g, NpB. For a concise exposition of the
details of B-reduction and the substitution process, see [Cur86a]

References

[ACCL90] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substi-
tutions. In Proc. Seventeenth ACM Symposium on Principles of Pro-
gramming Languages, San Francisco, 1990.

[AKP84] Arvind, Vinod Kathail, and Keshav Pingali. Sharing of computation in
functional language implementations. In Proc. International Workshop
on High-Level Computer Architecture, Los Angeles, 1984.

[AP81] Luigia Aiello and Gianfranco Prini. An efficient interpreter for the
lambda calculus. Journal of Computer and System Sciences, 23:383—
424, 1981.

[Augs4] L. Augustsson. A compiler for Lazy ML. In Proc. ACM Symp. on Lisp
and Functional Programming, Austin, 1984. “

[Bar84] H.P. Barendregt. The Lambda Calculus, volume 103 of Studies in
Logic and the Foundations of Mathematics. North-Holland, Amster-
dam, 1984. : .

45

[BBKV76]

[BKKS87]

[BVEG+87]

[cCM87)

[Chu41]

[Cur86a]

[Cur86b]

[Cur86c]

[dB72)

[dB78]

[Der87]

H.P. Barendregt, J. Bergstra, J.W. Klop, and H. Volken. Degrees,
reductions, and representability in the lambda calculus. Preprint 22,
Department of Mathematics, University of Utrecht, The Netherlands,
1976.

H.P. Barendregt, J.R. Kennaway, J.W. Klop, and M.R. Sleep. Needed
reduction and spine strategies for the lambda calculus. Information and
Computation, 75:191-231, 1987.

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Ken-
naway, M.J. Plasmeijer, and M.R. Sleep. Term graph rewriting. In
Proc. PARLE Conference, Vol. II: Parallel Languages, pages 141-158,
Eindhoven, The Netherlands, 1987. Springer-Verlag. Lecture Notes in
Computer Science 259.

G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract
machine. Science of Computer Programming, 8:173-202, 1987.

A. Church. The Calculi of Lambda Conversion. Princeton University
Press, Princeton, NJ, 1941.

P.-L. Curien. Categorical combinators. Information and Control,
69:188-254, 1986.

P.-L. Curien. Categorical Combinators, Sequential Algorithms, and
Functional Programming. Research Notes in Theoretical Computer Sci-
ence. Pitman, London, 1986.

P.-L. Curien. De la difficulté d’implémenter le partage optimal au sens
de Lévy. Unpublished Note, Université de Paris VII, 1986.

N.G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
church-rosser theorem. Proc. of the Koninklijke Nederlandse Akademie
van Wetenschappen, 75(5):381-392, 1972.

N.G. de Bruijn. Lambda calculus with namefree formulas involving
symbols that represent reference transforming mappings. Proc. of the
Koninklijke Nederlandse Akademie van Wetenschappen, 81(3):348-356,

1978.

Nachum Dershowitz. Termination of rewriting. J. Sym"bol‘*ic Computa-

tion, 3:69-116, 1987.

46

[FH8S]

[Fie90]

[FW87]

[Har87]

[Har89]

[HLS6]

[HM76]

[HO80]

[HSS6]

[Hue80]

[Hue86]

Anthony J. Field and Peter G. Harrison. Functional Programming.
Addison-Wesley, Wokingham, England, 1988.

John Field. Incremental Reduction and its Applications. PhD thesis,
Cornell University, 1990. (Forthcoming).

Jon Fairbairn and Stuart Wray. Tim: A simple, lazy abstract machine
to execute supercombinators. In Proc. Conference on Functional Pro-
gramming Languages and Computer Architecture, pages 34-45, Port-
land, 1987. Springer-Verlag. Lecture Notes in Computer Science 274.

Thérese Hardin. Résultats de Confluence pour les Régles Fortes de la
Logique Combinatoire Catégorique et Liens avec les Lambda-Calculs.
PhD thesis, Université de Paris VII, 1987.

Théreése Hardin. Confluence results for the pure strong categorical logic
CCL. A-calculi as subsystems of CCL. Theoretical Computer Science,
65:291-342, 1989.

Thérése Hardin and Alain Laville. Proof of termination of the rewrit-
ing system SUBST on CCL. Rapports de Recherche 560, Institut Na-
tional de Recherche en Informatique et en Automatique, Domaine de
Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France,
August 1986.

P. Henderson and J.H. Morris. A lazy evaluator. In Proc. Third ACM
Symposium on Principles of Programming Languages, pages 95-103,
1976.

G. Huet and D.C. Oppen. Equations and rewrite rules: A survey. In
R.V. Book, editor, Formal Language Theory, Perspectives, and Open
Problems, pages 349-405. Academic Press, London, 1980.

J.R. Hindley and J.P. Seldin. Introduction to Combinators and Lambda-
Calculus, volume 1 of London Mathematical Society Student Texts.
Cambridge University Press, Cambridge, 1986.

G. Huet. Confluent reductions: Abstract properties; and applications
to term rewriting systems. Journal of the ACM, 27(4):797-821, 1980.

'G. Huet. Formal structures for computation and deductipn '(prelimina,ry

edition). Unpublished Course Notes, Carnegie-Mellon University, 1986.

47

[Hug84]

[Joh84]

[Joh85)

[Kat90]

[Kl080]

[Lam90]

[Lan64]

[LévT75]

[Lév78]

[Lév8o]

[Lin87]

R.J.M. Hughes. The Design and Implementation of Programming Lan-
guages. PhD thesis, Oxford University, September 1984. (PRG-40).

T. Johnsson. Efficient compilation of lazy evaluation. In Proc. ACM
Conf. on Compiler Construction, Montreal, 1984.

T. Johnsson. Lambda lifting: Transforming programs to recursive equa-
tions. In Proc. Conference on Functional Programming Languages and
Computer Architecture. Springer-Verlag, 1985. Lecture Notes in Com-
puter Science 201.

Vinod Kathail. An Optimal Interpreter for the A-calculus. PhD thesis,
Massachussetts Institute of Technology, 1990.

J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathemat-
ical Centre Tracts. Mathematical Centre, Kruislaan 413, Amsterdam
1098SJ, The Netherlands, 1980.

John Lamping. An algorithm for optimal lambda calculus reduction.
In Proc. Seventeenth ACM Symposium on Principles of Programming
Languages, San Francisco, 1990.

P.J. Landin. The mechanical evaluation of expressions. Computer Jour-
nal, 6:308-320, 1964.

Jean-Jacques Lévy. An algebraic interpretation of the AGK-calculus and
a labelled A-calculus. In C. Bohm, editor, Proc. Symp. on A-Calculus
and Computer Science Theory. Springer-Verlag, 1975. Lecture Notes in
Computer Science 37.

Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-
calcul. PhD thesis, Université de Paris VII, 1978. (These d’Etat).

Jean-Jacques Lévy. Optimal reductions in the lambda-calculus. In J.P.
Seldin and J.R. Hindley, editors, To H.B. Curry: Essays on Combina-
tory Logic, Lambda Calculus, and Formalism. Academic Press, London,
1980.

R.D. Lins. On the efficiency of categorical combinators as a rewrit-

ing system. Software—Practice and Ezperience, 17(8):547-559, August
'1987. .

48

[Pey87]

[Sta80a]

[Sta80b]

[Sta80c]

[Sta81]

[Sta82]

[Tur79]

[Wad71]

[Yok89]

S. L. Peyton Jones. The Implementation of Functional Programming
Languages. Prentice Hall International, Englewood Cliffs, New Jersey,
1987.

John Staples. Computation on graph-like expressions. Theoretical
Computer Science, 10:171-185, 1980.

John Staples. Optimal evaluations of graph-like expressions. Theoreti-
cal Computer Science, 10:297-316, 1980.

John Staples. Speeding up subtree replacement systems. Theoretical
Computer Science, 11:39-47, 1980.

John Staples. Efficient combinatory reduction. Zeitschr. f. math. Logik
und Grundlagen d. Math., 27:391-402, 1981.

John Staples. Two-level expression representation for faster evaluation.
In Proc. Second International Workshop on Graph Grammars and Their
Applications, pages 392—-404. Springer-Verlag, 1982. Lecture Notes in
Computer Science 153.

D.A. Turner. A new implementation technique for applicative lan-
guages. Software—Practice and Ezperience, 9:31-49, 1979.

C.P. Wadsworth. Semantics and Pragmatics of the Lambda-Calculus.
PhD thesis, Oxford University, 1971.

Hirofumi Yokouchi. Church-rosser theorem for a rewriting system on
categorical combinators. Theoretical Computer Science, 65:271-290,
1989.

49

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif

